[PATCH v2 07/16] drm/amd/powerplay: implement fw image related smum interface for tonga.

Rex Zhu Rex.Zhu at amd.com
Mon Sep 12 08:59:16 UTC 2016


Signed-off-by: Rex Zhu <Rex.Zhu at amd.com>
Reviewed-by: Alex Deucher <alexander.deucher at amd.com>
---
 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c  |    2 +-
 drivers/gpu/drm/amd/powerplay/smumgr/Makefile      |    2 +-
 drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c   | 3090 ++++++++++++++++++++
 drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h   |   60 +
 .../gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c    |   17 +
 .../gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h    |   37 +-
 6 files changed, 3205 insertions(+), 3 deletions(-)
 create mode 100644 drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c
 create mode 100644 drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h

diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
index a4e9df7..5bfdf72 100644
--- a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
@@ -802,7 +802,7 @@ static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
 
 	if (0 == result) {
 		data->soft_regs_start = tmp;
-		tonga_smu->ulSoftRegsStart = tmp;
+		tonga_smu->soft_regs_start = tmp;
 	}
 
 	error |= (0 != result);
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile
index 7561239..2ff4aa0 100644
--- a/drivers/gpu/drm/amd/powerplay/smumgr/Makefile
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/Makefile
@@ -3,7 +3,7 @@
 # It provides the smu management services for the driver.
 
 SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\
-	  polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o
+	  polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o tonga_smc.o
 
 AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR))
 
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c
new file mode 100644
index 0000000..565d08b
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.c
@@ -0,0 +1,3090 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ *
+ */
+
+#include "tonga_smc.h"
+#include "smu7_dyn_defaults.h"
+
+#include "smu7_hwmgr.h"
+#include "hardwaremanager.h"
+#include "ppatomctrl.h"
+#include "pp_debug.h"
+#include "cgs_common.h"
+#include "atombios.h"
+#include "tonga_smumgr.h"
+#include "pppcielanes.h"
+#include "pp_endian.h"
+#include "smu7_ppsmc.h"
+
+#include "smu72_discrete.h"
+
+#include "smu/smu_7_1_2_d.h"
+#include "smu/smu_7_1_2_sh_mask.h"
+
+#include "gmc/gmc_8_1_d.h"
+#include "gmc/gmc_8_1_sh_mask.h"
+
+#include "bif/bif_5_0_d.h"
+#include "bif/bif_5_0_sh_mask.h"
+
+#include "dce/dce_10_0_d.h"
+#include "dce/dce_10_0_sh_mask.h"
+
+
+#define VOLTAGE_SCALE 4
+#define POWERTUNE_DEFAULT_SET_MAX    1
+#define VOLTAGE_VID_OFFSET_SCALE1   625
+#define VOLTAGE_VID_OFFSET_SCALE2   100
+#define MC_CG_ARB_FREQ_F1           0x0b
+#define VDDC_VDDCI_DELTA            200
+
+
+static struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
+/*    sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
+	{1,               0xF,             0xFD,                               0x19,     5,               45,                  0,          0xB0000,
+	{0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,    0x83,  0x86,  0x6F,  0xC8,    0xC9,  0xC9,  0x2F,  0x4D, 0x61},
+	{0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
+};
+
+/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
+static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
+	{600, 1050, 3, 0},
+	{600, 1050, 6, 1} };
+
+/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
+static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
+	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
+	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
+
+/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
+static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
+	{0, 1, 3, 2, 4, 5},
+	{0, 2, 4, 5, 6, 5} };
+
+/* PPGen has the gain setting generated in x * 100 unit
+ * This function is to convert the unit to x * 4096(0x1000) unit.
+ *  This is the unit expected by SMC firmware
+ */
+
+
+static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
+	uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
+{
+	uint32_t i = 0;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	/* clock - voltage dependency table is empty table */
+	if (allowed_clock_voltage_table->count == 0)
+		return -1;
+
+	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
+		/* find first sclk bigger than request */
+		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
+			voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+								allowed_clock_voltage_table->entries[i].vddgfx);
+			voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
+								allowed_clock_voltage_table->entries[i].vddc);
+
+			if (allowed_clock_voltage_table->entries[i].vddci) {
+				voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
+									allowed_clock_voltage_table->entries[i].vddci);
+			} else {
+				voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
+									allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
+			}
+
+			if (allowed_clock_voltage_table->entries[i].mvdd) {
+				*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
+			}
+
+			voltage->Phases = 1;
+			return 0;
+		}
+	}
+
+	/* sclk is bigger than max sclk in the dependence table */
+	voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+		allowed_clock_voltage_table->entries[i-1].vddgfx);
+	voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
+		allowed_clock_voltage_table->entries[i-1].vddc);
+
+	if (allowed_clock_voltage_table->entries[i-1].vddci) {
+		voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
+			allowed_clock_voltage_table->entries[i-1].vddci);
+	}
+	if (allowed_clock_voltage_table->entries[i-1].mvdd) {
+		*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
+	}
+
+	return 0;
+}
+
+
+/**
+ * Vddc table preparation for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	unsigned int count;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+		table->VddcLevelCount = data->vddc_voltage_table.count;
+		for (count = 0; count < table->VddcLevelCount; count++) {
+			table->VddcTable[count] =
+				PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
+	}
+	return 0;
+}
+
+/**
+ * VddGfx table preparation for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	unsigned int count;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+		table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
+		for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
+			table->VddGfxTable[count] =
+				PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
+	}
+	return 0;
+}
+
+/**
+ * Vddci table preparation for SMC.
+ *
+ * @param    *hwmgr The address of the hardware manager.
+ * @param    *table The SMC DPM table structure to be populated.
+ * @return   0
+ */
+static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	uint32_t count;
+
+	table->VddciLevelCount = data->vddci_voltage_table.count;
+	for (count = 0; count < table->VddciLevelCount; count++) {
+		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
+			table->VddciTable[count] =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
+			table->SmioTable1.Pattern[count].Voltage =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
+			table->SmioTable1.Pattern[count].Smio =
+				(uint8_t) count;
+			table->Smio[count] |=
+				data->vddci_voltage_table.entries[count].smio_low;
+			table->VddciTable[count] =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+	}
+
+	table->SmioMask1 = data->vddci_voltage_table.mask_low;
+	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
+
+	return 0;
+}
+
+/**
+ * Mvdd table preparation for SMC.
+ *
+ * @param    *hwmgr The address of the hardware manager.
+ * @param    *table The SMC DPM table structure to be populated.
+ * @return   0
+ */
+static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	uint32_t count;
+
+	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+		table->MvddLevelCount = data->mvdd_voltage_table.count;
+		for (count = 0; count < table->MvddLevelCount; count++) {
+			table->SmioTable2.Pattern[count].Voltage =
+				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
+			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
+			table->SmioTable2.Pattern[count].Smio =
+				(uint8_t) count;
+			table->Smio[count] |=
+				data->mvdd_voltage_table.entries[count].smio_low;
+		}
+		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
+	}
+
+	return 0;
+}
+
+/**
+ * Preparation of vddc and vddgfx CAC tables for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	uint32_t count;
+	uint8_t index = 0;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
+	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
+
+	/* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
+	uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
+	uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
+
+	for (count = 0; count < vddc_level_count; count++) {
+		/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
+		index = phm_get_voltage_index(vddc_lookup_table,
+			data->vddc_voltage_table.entries[count].value);
+		table->BapmVddcVidLoSidd[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+		table->BapmVddcVidHiSidd[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+		table->BapmVddcVidHiSidd2[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+	}
+
+	if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) {
+		/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
+		for (count = 0; count < vddgfx_level_count; count++) {
+			index = phm_get_voltage_index(vddgfx_lookup_table,
+				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
+			table->BapmVddGfxVidHiSidd2[count] =
+				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
+		}
+	} else {
+		for (count = 0; count < vddc_level_count; count++) {
+			index = phm_get_voltage_index(vddc_lookup_table,
+				data->vddc_voltage_table.entries[count].value);
+			table->BapmVddGfxVidLoSidd[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+			table->BapmVddGfxVidHiSidd[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+			table->BapmVddGfxVidHiSidd2[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * Preparation of voltage tables for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+
+static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result;
+
+	result = tonga_populate_smc_vddc_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDC voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDCI voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDGFX voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_mvdd_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate MVDD voltage table to SMC", return -1);
+
+	result = tonga_populate_cac_tables(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate CAC voltage tables to SMC", return -1);
+
+	return 0;
+}
+
+static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
+		struct SMU72_Discrete_Ulv *state)
+{
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	state->CcPwrDynRm = 0;
+	state->CcPwrDynRm1 = 0;
+
+	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
+	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
+			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
+
+	state->VddcPhase = 1;
+
+	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
+	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
+	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
+
+	return 0;
+}
+
+static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
+		struct SMU72_Discrete_DpmTable *table)
+{
+	return tonga_populate_ulv_level(hwmgr, &table->Ulv);
+}
+
+static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct smu7_dpm_table *dpm_table = &data->dpm_table;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint32_t i;
+
+	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
+	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
+		table->LinkLevel[i].PcieGenSpeed  =
+			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
+		table->LinkLevel[i].PcieLaneCount =
+			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
+		table->LinkLevel[i].EnabledForActivity =
+			1;
+		table->LinkLevel[i].SPC =
+			(uint8_t)(data->pcie_spc_cap & 0xff);
+		table->LinkLevel[i].DownThreshold =
+			PP_HOST_TO_SMC_UL(5);
+		table->LinkLevel[i].UpThreshold =
+			PP_HOST_TO_SMC_UL(30);
+	}
+
+	smu_data->smc_state_table.LinkLevelCount =
+		(uint8_t)dpm_table->pcie_speed_table.count;
+	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
+		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
+
+	return 0;
+}
+
+/**
+ * Calculates the SCLK dividers using the provided engine clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    engine_clock the engine clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
+		uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
+{
+	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_clock_dividers_vi dividers;
+	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+	uint32_t    reference_clock;
+	uint32_t reference_divider;
+	uint32_t fbdiv;
+	int result;
+
+	/* get the engine clock dividers for this clock value*/
+	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error retrieving Engine Clock dividers from VBIOS.", return result);
+
+	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
+	reference_clock = atomctrl_get_reference_clock(hwmgr);
+
+	reference_divider = 1 + dividers.uc_pll_ref_div;
+
+	/* low 14 bits is fraction and high 12 bits is divider*/
+	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
+
+	/* SPLL_FUNC_CNTL setup*/
+	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
+	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
+
+	/* SPLL_FUNC_CNTL_3 setup*/
+	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
+
+	/* set to use fractional accumulation*/
+	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
+		pp_atomctrl_internal_ss_info ss_info;
+
+		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
+		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
+			/*
+			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
+			* ss_info.speed_spectrum_rate -- in unit of khz
+			*/
+			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
+			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
+
+			/* clkv = 2 * D * fbdiv / NS */
+			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
+
+			cg_spll_spread_spectrum =
+				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
+			cg_spll_spread_spectrum =
+				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
+			cg_spll_spread_spectrum_2 =
+				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
+		}
+	}
+
+	sclk->SclkFrequency        = engine_clock;
+	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
+	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
+	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
+	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
+	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
+
+	return 0;
+}
+
+/**
+ * Populates single SMC SCLK structure using the provided engine clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    engine_clock the engine clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
+						uint32_t engine_clock,
+				uint16_t sclk_activity_level_threshold,
+				SMU72_Discrete_GraphicsLevel *graphic_level)
+{
+	int result;
+	uint32_t mvdd;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info =
+			    (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
+
+	/* populate graphics levels*/
+	result = tonga_get_dependecy_volt_by_clk(hwmgr,
+		pptable_info->vdd_dep_on_sclk, engine_clock,
+		&graphic_level->MinVoltage, &mvdd);
+	PP_ASSERT_WITH_CODE((0 == result),
+		"can not find VDDC voltage value for VDDC	\
+		engine clock dependency table", return result);
+
+	/* SCLK frequency in units of 10KHz*/
+	graphic_level->SclkFrequency = engine_clock;
+	/* Indicates maximum activity level for this performance level. 50% for now*/
+	graphic_level->ActivityLevel = sclk_activity_level_threshold;
+
+	graphic_level->CcPwrDynRm = 0;
+	graphic_level->CcPwrDynRm1 = 0;
+	/* this level can be used if activity is high enough.*/
+	graphic_level->EnabledForActivity = 0;
+	/* this level can be used for throttling.*/
+	graphic_level->EnabledForThrottle = 1;
+	graphic_level->UpHyst = 0;
+	graphic_level->DownHyst = 0;
+	graphic_level->VoltageDownHyst = 0;
+	graphic_level->PowerThrottle = 0;
+
+	data->display_timing.min_clock_in_sr =
+			hwmgr->display_config.min_core_set_clock_in_sr;
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_SclkDeepSleep))
+		graphic_level->DeepSleepDivId =
+				smu7_get_sleep_divider_id_from_clock(engine_clock,
+						data->display_timing.min_clock_in_sr);
+
+	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
+	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+	if (0 == result) {
+		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
+		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
+		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
+	}
+
+	return result;
+}
+
+/**
+ * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
+ *
+ * @param    hwmgr      the address of the hardware manager
+ */
+int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct smu7_dpm_table *dpm_table = &data->dpm_table;
+	struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
+	uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
+	uint32_t level_array_adress = smu_data->dpm_table_start +
+				offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
+
+	uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
+						SMU72_MAX_LEVELS_GRAPHICS;
+
+	SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
+
+	uint32_t i, max_entry;
+	uint8_t highest_pcie_level_enabled = 0;
+	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
+	uint8_t count = 0;
+	int result = 0;
+
+	memset(levels, 0x00, level_array_size);
+
+	for (i = 0; i < dpm_table->sclk_table.count; i++) {
+		result = tonga_populate_single_graphic_level(hwmgr,
+					dpm_table->sclk_table.dpm_levels[i].value,
+					(uint16_t)smu_data->activity_target[i],
+					&(smu_data->smc_state_table.GraphicsLevel[i]));
+		if (result != 0)
+			return result;
+
+		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
+		if (i > 1)
+			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
+	}
+
+	/* Only enable level 0 for now. */
+	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
+
+	/* set highest level watermark to high */
+	if (dpm_table->sclk_table.count > 1)
+		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
+			PPSMC_DISPLAY_WATERMARK_HIGH;
+
+	smu_data->smc_state_table.GraphicsDpmLevelCount =
+		(uint8_t)dpm_table->sclk_table.count;
+	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
+		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
+
+	if (pcie_table != NULL) {
+		PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
+			"There must be 1 or more PCIE levels defined in PPTable.", return -1);
+		max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
+		for (i = 0; i < dpm_table->sclk_table.count; i++) {
+			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
+				(uint8_t) ((i < max_entry) ? i : max_entry);
+		}
+	} else {
+		if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
+			printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
+
+		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<(highest_pcie_level_enabled+1))) != 0)) {
+			highest_pcie_level_enabled++;
+		}
+
+		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<lowest_pcie_level_enabled)) == 0)) {
+			lowest_pcie_level_enabled++;
+		}
+
+		while ((count < highest_pcie_level_enabled) &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
+			count++;
+		}
+		mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
+			(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
+
+
+		/* set pcieDpmLevel to highest_pcie_level_enabled*/
+		for (i = 2; i < dpm_table->sclk_table.count; i++) {
+			smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
+		}
+
+		/* set pcieDpmLevel to lowest_pcie_level_enabled*/
+		smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
+
+		/* set pcieDpmLevel to mid_pcie_level_enabled*/
+		smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
+	}
+	/* level count will send to smc once at init smc table and never change*/
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress,
+				(uint8_t *)levels, (uint32_t)level_array_size,
+								SMC_RAM_END);
+
+	return result;
+}
+
+/**
+ * Populates the SMC MCLK structure using the provided memory clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    memory_clock the memory clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+static int tonga_calculate_mclk_params(
+		struct pp_hwmgr *hwmgr,
+		uint32_t memory_clock,
+		SMU72_Discrete_MemoryLevel *mclk,
+		bool strobe_mode,
+		bool dllStateOn
+		)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
+	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
+	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
+	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
+	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
+	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
+	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
+	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
+	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
+
+	pp_atomctrl_memory_clock_param mpll_param;
+	int result;
+
+	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
+				memory_clock, &mpll_param, strobe_mode);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
+
+	/* MPLL_FUNC_CNTL setup*/
+	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
+
+	/* MPLL_FUNC_CNTL_1 setup*/
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
+
+	/* MPLL_AD_FUNC_CNTL setup*/
+	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
+							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
+
+	if (data->is_memory_gddr5) {
+		/* MPLL_DQ_FUNC_CNTL setup*/
+		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
+								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
+		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
+								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
+		/*
+		 ************************************
+		 Fref = Reference Frequency
+		 NF = Feedback divider ratio
+		 NR = Reference divider ratio
+		 Fnom = Nominal VCO output frequency = Fref * NF / NR
+		 Fs = Spreading Rate
+		 D = Percentage down-spread / 2
+		 Fint = Reference input frequency to PFD = Fref / NR
+		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
+		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
+		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
+		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
+		 *************************************
+		 */
+		pp_atomctrl_internal_ss_info ss_info;
+		uint32_t freq_nom;
+		uint32_t tmp;
+		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
+
+		/* for GDDR5 for all modes and DDR3 */
+		if (1 == mpll_param.qdr)
+			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
+		else
+			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
+
+		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
+		tmp = (freq_nom / reference_clock);
+		tmp = tmp * tmp;
+
+		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
+			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
+			/* ss.Info.speed_spectrum_rate -- in unit of khz */
+			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
+			/*     = reference_clock * 5 / speed_spectrum_rate */
+			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
+
+			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
+			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
+			uint32_t clkv =
+				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
+							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
+
+			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
+			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
+		}
+	}
+
+	/* MCLK_PWRMGT_CNTL setup */
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
+
+
+	/* Save the result data to outpupt memory level structure */
+	mclk->MclkFrequency   = memory_clock;
+	mclk->MpllFuncCntl    = mpll_func_cntl;
+	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
+	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
+	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
+	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
+	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
+	mclk->DllCntl         = dll_cntl;
+	mclk->MpllSs1         = mpll_ss1;
+	mclk->MpllSs2         = mpll_ss2;
+
+	return 0;
+}
+
+static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
+		bool strobe_mode)
+{
+	uint8_t mc_para_index;
+
+	if (strobe_mode) {
+		if (memory_clock < 12500) {
+			mc_para_index = 0x00;
+		} else if (memory_clock > 47500) {
+			mc_para_index = 0x0f;
+		} else {
+			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
+		}
+	} else {
+		if (memory_clock < 65000) {
+			mc_para_index = 0x00;
+		} else if (memory_clock > 135000) {
+			mc_para_index = 0x0f;
+		} else {
+			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
+		}
+	}
+
+	return mc_para_index;
+}
+
+static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
+{
+	uint8_t mc_para_index;
+
+	if (memory_clock < 10000) {
+		mc_para_index = 0;
+	} else if (memory_clock >= 80000) {
+		mc_para_index = 0x0f;
+	} else {
+		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
+	}
+
+	return mc_para_index;
+}
+
+
+static int tonga_populate_single_memory_level(
+		struct pp_hwmgr *hwmgr,
+		uint32_t memory_clock,
+		SMU72_Discrete_MemoryLevel *memory_level
+		)
+{
+	uint32_t mvdd = 0;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	int result = 0;
+	bool dll_state_on;
+	struct cgs_display_info info = {0};
+	uint32_t mclk_edc_wr_enable_threshold = 40000;
+	uint32_t mclk_stutter_mode_threshold = 30000;
+	uint32_t mclk_edc_enable_threshold = 40000;
+	uint32_t mclk_strobe_mode_threshold = 40000;
+
+	if (NULL != pptable_info->vdd_dep_on_mclk) {
+		result = tonga_get_dependecy_volt_by_clk(hwmgr,
+			pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &mvdd);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
+	}
+
+	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) {
+		memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
+	} else {
+		memory_level->MinMvdd = mvdd;
+	}
+	memory_level->EnabledForThrottle = 1;
+	memory_level->EnabledForActivity = 0;
+	memory_level->UpHyst = 0;
+	memory_level->DownHyst = 100;
+	memory_level->VoltageDownHyst = 0;
+
+	/* Indicates maximum activity level for this performance level.*/
+	memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
+	memory_level->StutterEnable = 0;
+	memory_level->StrobeEnable = 0;
+	memory_level->EdcReadEnable = 0;
+	memory_level->EdcWriteEnable = 0;
+	memory_level->RttEnable = 0;
+
+	/* default set to low watermark. Highest level will be set to high later.*/
+	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+	cgs_get_active_displays_info(hwmgr->device, &info);
+	data->display_timing.num_existing_displays = info.display_count;
+
+	if ((mclk_stutter_mode_threshold != 0) &&
+	    (memory_clock <= mclk_stutter_mode_threshold) &&
+	    (!data->is_uvd_enabled)
+	    && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
+	    && (data->display_timing.num_existing_displays <= 2)
+	    && (data->display_timing.num_existing_displays != 0))
+		memory_level->StutterEnable = 1;
+
+	/* decide strobe mode*/
+	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
+		(memory_clock <= mclk_strobe_mode_threshold);
+
+	/* decide EDC mode and memory clock ratio*/
+	if (data->is_memory_gddr5) {
+		memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
+					memory_level->StrobeEnable);
+
+		if ((mclk_edc_enable_threshold != 0) &&
+				(memory_clock > mclk_edc_enable_threshold)) {
+			memory_level->EdcReadEnable = 1;
+		}
+
+		if ((mclk_edc_wr_enable_threshold != 0) &&
+				(memory_clock > mclk_edc_wr_enable_threshold)) {
+			memory_level->EdcWriteEnable = 1;
+		}
+
+		if (memory_level->StrobeEnable) {
+			if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
+					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
+				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+			} else {
+				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
+			}
+
+		} else {
+			dll_state_on = data->dll_default_on;
+		}
+	} else {
+		memory_level->StrobeRatio =
+			tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
+		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+	}
+
+	result = tonga_calculate_mclk_params(hwmgr,
+		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
+
+	if (0 == result) {
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
+		/* MCLK frequency in units of 10KHz*/
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
+		/* Indicates maximum activity level for this performance level.*/
+		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
+	}
+
+	return result;
+}
+
+/**
+ * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
+ *
+ * @param    hwmgr      the address of the hardware manager
+ */
+
+int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct smu7_dpm_table *dpm_table = &data->dpm_table;
+	int result;
+
+	/* populate MCLK dpm table to SMU7 */
+	uint32_t level_array_adress = smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
+	uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
+	SMU72_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
+	uint32_t i;
+
+	memset(levels, 0x00, level_array_size);
+
+	for (i = 0; i < dpm_table->mclk_table.count; i++) {
+		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
+			"can not populate memory level as memory clock is zero", return -1);
+		result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
+			&(smu_data->smc_state_table.MemoryLevel[i]));
+		if (0 != result) {
+			return result;
+		}
+	}
+
+	/* Only enable level 0 for now.*/
+	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
+
+	/*
+	* in order to prevent MC activity from stutter mode to push DPM up.
+	* the UVD change complements this by putting the MCLK in a higher state
+	* by default such that we are not effected by up threshold or and MCLK DPM latency.
+	*/
+	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
+	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
+
+	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
+	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
+	/* set highest level watermark to high*/
+	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
+
+	/* level count will send to smc once at init smc table and never change*/
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
+		level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
+		SMC_RAM_END);
+
+
+	return result;
+}
+
+/**
+ * Populates the SMC MVDD structure using the provided memory clock.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
+ * @param    voltage     the SMC VOLTAGE structure to be populated
+ */
+static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
+{
+	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+	uint32_t i = 0;
+
+	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
+		/* find mvdd value which clock is more than request */
+		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
+			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
+				/* Always round to higher voltage. */
+				smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
+				break;
+			}
+		}
+
+		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
+			"MVDD Voltage is outside the supported range.", return -1);
+
+	} else {
+		return -1;
+	}
+
+	return 0;
+}
+
+
+static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct pp_atomctrl_clock_dividers_vi dividers;
+
+	SMIO_Pattern voltage_level;
+	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
+	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
+	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
+
+	/* The ACPI state should not do DPM on DC (or ever).*/
+	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
+
+	table->ACPILevel.MinVoltage = smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
+
+	/* assign zero for now*/
+	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
+
+	/* get the engine clock dividers for this clock value*/
+	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
+		table->ACPILevel.SclkFrequency,  &dividers);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error retrieving Engine Clock dividers from VBIOS.", return result);
+
+	/* divider ID for required SCLK*/
+	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
+	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+	table->ACPILevel.DeepSleepDivId = 0;
+
+	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
+							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
+	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
+							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
+	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
+							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
+
+	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
+	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
+	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+	table->ACPILevel.CcPwrDynRm = 0;
+	table->ACPILevel.CcPwrDynRm1 = 0;
+
+
+	/* For various features to be enabled/disabled while this level is active.*/
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
+	/* SCLK frequency in units of 10KHz*/
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
+
+	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
+	table->MemoryACPILevel.MinVoltage = smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
+
+	/*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
+
+	if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
+		table->MemoryACPILevel.MinMvdd =
+			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
+	else
+		table->MemoryACPILevel.MinMvdd = 0;
+
+	/* Force reset on DLL*/
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
+
+	/* Disable DLL in ACPIState*/
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
+
+	/* Enable DLL bypass signal*/
+	dll_cntl            = PHM_SET_FIELD(dll_cntl,
+		DLL_CNTL, MRDCK0_BYPASS, 0);
+	dll_cntl            = PHM_SET_FIELD(dll_cntl,
+		DLL_CNTL, MRDCK1_BYPASS, 0);
+
+	table->MemoryACPILevel.DllCntl            =
+		PP_HOST_TO_SMC_UL(dll_cntl);
+	table->MemoryACPILevel.MclkPwrmgtCntl     =
+		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
+	table->MemoryACPILevel.MpllAdFuncCntl     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
+	table->MemoryACPILevel.MpllDqFuncCntl     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
+	table->MemoryACPILevel.MpllFuncCntl       =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
+	table->MemoryACPILevel.MpllFuncCntl_1     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
+	table->MemoryACPILevel.MpllFuncCntl_2     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
+	table->MemoryACPILevel.MpllSs1            =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
+	table->MemoryACPILevel.MpllSs2            =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
+
+	table->MemoryACPILevel.EnabledForThrottle = 0;
+	table->MemoryACPILevel.EnabledForActivity = 0;
+	table->MemoryACPILevel.UpHyst = 0;
+	table->MemoryACPILevel.DownHyst = 100;
+	table->MemoryACPILevel.VoltageDownHyst = 0;
+	/* Indicates maximum activity level for this performance level.*/
+	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
+
+	table->MemoryACPILevel.StutterEnable = 0;
+	table->MemoryACPILevel.StrobeEnable = 0;
+	table->MemoryACPILevel.EdcReadEnable = 0;
+	table->MemoryACPILevel.EdcWriteEnable = 0;
+	table->MemoryACPILevel.RttEnable = 0;
+
+	return result;
+}
+
+static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
+					SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->UvdLevelCount = (uint8_t) (mm_table->count);
+	table->UvdBootLevel = 0;
+
+	for (count = 0; count < table->UvdLevelCount; count++) {
+		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
+		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
+		table->UvdLevel[count].MinVoltage.Vddc =
+			phm_get_voltage_index(pptable_info->vddc_lookup_table,
+						mm_table->entries[count].vddc);
+		table->UvdLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+						mm_table->entries[count].vddgfx) : 0;
+		table->UvdLevel[count].MinVoltage.Vddci =
+			phm_get_voltage_id(&data->vddci_voltage_table,
+					     mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+		table->UvdLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+							  table->UvdLevel[count].VclkFrequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+				    "can not find divide id for Vclk clock", return result);
+
+		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
+
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+							  table->UvdLevel[count].DclkFrequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+				    "can not find divide id for Dclk clock", return result);
+
+		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
+		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
+	}
+
+	return result;
+
+}
+
+static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->VceLevelCount = (uint8_t) (mm_table->count);
+	table->VceBootLevel = 0;
+
+	for (count = 0; count < table->VceLevelCount; count++) {
+		table->VceLevel[count].Frequency =
+			mm_table->entries[count].eclk;
+		table->VceLevel[count].MinVoltage.Vddc =
+			phm_get_voltage_index(pptable_info->vddc_lookup_table,
+				mm_table->entries[count].vddc);
+		table->VceLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->VceLevel[count].MinVoltage.Vddci =
+			phm_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+		table->VceLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+					table->VceLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+				"can not find divide id for VCE engine clock", return result);
+
+		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->AcpLevelCount = (uint8_t) (mm_table->count);
+	table->AcpBootLevel = 0;
+
+	for (count = 0; count < table->AcpLevelCount; count++) {
+		table->AcpLevel[count].Frequency =
+			pptable_info->mm_dep_table->entries[count].aclk;
+		table->AcpLevel[count].MinVoltage.Vddc =
+			phm_get_voltage_index(pptable_info->vddc_lookup_table,
+			mm_table->entries[count].vddc);
+		table->AcpLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->AcpLevel[count].MinVoltage.Vddci =
+			phm_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+		table->AcpLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+			table->AcpLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find divide id for engine clock", return result);
+
+		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->SamuBootLevel = 0;
+	table->SamuLevelCount = (uint8_t) (mm_table->count);
+
+	for (count = 0; count < table->SamuLevelCount; count++) {
+		/* not sure whether we need evclk or not */
+		table->SamuLevel[count].Frequency =
+			pptable_info->mm_dep_table->entries[count].samclock;
+		table->SamuLevel[count].MinVoltage.Vddc =
+			phm_get_voltage_index(pptable_info->vddc_lookup_table,
+				mm_table->entries[count].vddc);
+		table->SamuLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+			phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->SamuLevel[count].MinVoltage.Vddci =
+			phm_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+		table->SamuLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+					table->SamuLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find divide id for samu clock", return result);
+
+		table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+static int tonga_populate_memory_timing_parameters(
+		struct pp_hwmgr *hwmgr,
+		uint32_t engine_clock,
+		uint32_t memory_clock,
+		struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
+		)
+{
+	uint32_t dramTiming;
+	uint32_t dramTiming2;
+	uint32_t burstTime;
+	int result;
+
+	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
+				engine_clock, memory_clock);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error calling VBIOS to set DRAM_TIMING.", return result);
+
+	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
+	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
+	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
+
+	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
+	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
+	arb_regs->McArbBurstTime = (uint8_t)burstTime;
+
+	return 0;
+}
+
+/**
+ * Setup parameters for the MC ARB.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ * This function is to be called from the SetPowerState table.
+ */
+static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	int result = 0;
+	SMU72_Discrete_MCArbDramTimingTable  arb_regs;
+	uint32_t i, j;
+
+	memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
+
+	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
+		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
+			result = tonga_populate_memory_timing_parameters
+				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
+				 data->dpm_table.mclk_table.dpm_levels[j].value,
+				 &arb_regs.entries[i][j]);
+
+			if (0 != result) {
+				break;
+			}
+		}
+	}
+
+	if (0 == result) {
+		result = tonga_copy_bytes_to_smc(
+				hwmgr->smumgr,
+				smu_data->arb_table_start,
+				(uint8_t *)&arb_regs,
+				sizeof(SMU72_Discrete_MCArbDramTimingTable),
+				SMC_RAM_END
+				);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	table->GraphicsBootLevel = 0;
+	table->MemoryBootLevel = 0;
+
+	/* find boot level from dpm table*/
+	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
+	data->vbios_boot_state.sclk_bootup_value,
+	(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
+
+	if (0 != result) {
+		smu_data->smc_state_table.GraphicsBootLevel = 0;
+		printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
+			in dependency table. Using Graphics DPM level 0!");
+		result = 0;
+	}
+
+	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
+		data->vbios_boot_state.mclk_bootup_value,
+		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
+
+	if (0 != result) {
+		smu_data->smc_state_table.MemoryBootLevel = 0;
+		printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
+			in dependency table. Using Memory DPM level 0!");
+		result = 0;
+	}
+
+	table->BootVoltage.Vddc =
+		phm_get_voltage_id(&(data->vddc_voltage_table),
+			data->vbios_boot_state.vddc_bootup_value);
+	table->BootVoltage.VddGfx =
+		phm_get_voltage_id(&(data->vddgfx_voltage_table),
+			data->vbios_boot_state.vddgfx_bootup_value);
+	table->BootVoltage.Vddci =
+		phm_get_voltage_id(&(data->vddci_voltage_table),
+			data->vbios_boot_state.vddci_bootup_value);
+	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
+
+	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
+
+	return result;
+}
+
+
+static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
+{
+	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
+			volt_with_cks, value;
+	uint16_t clock_freq_u16;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
+			volt_offset = 0;
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
+			table_info->vdd_dep_on_sclk;
+	uint32_t hw_revision, dev_id;
+	struct cgs_system_info sys_info = {0};
+
+	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
+
+	sys_info.size = sizeof(struct cgs_system_info);
+
+	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
+	cgs_query_system_info(hwmgr->device, &sys_info);
+	hw_revision = (uint32_t)sys_info.value;
+
+	sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
+	cgs_query_system_info(hwmgr->device, &sys_info);
+	dev_id = (uint32_t)sys_info.value;
+
+	/* Read SMU_Eefuse to read and calculate RO and determine
+	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
+	 */
+	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixSMU_EFUSE_0 + (146 * 4));
+	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixSMU_EFUSE_0 + (148 * 4));
+	efuse &= 0xFF000000;
+	efuse = efuse >> 24;
+	efuse2 &= 0xF;
+
+	if (efuse2 == 1)
+		ro = (2300 - 1350) * efuse / 255 + 1350;
+	else
+		ro = (2500 - 1000) * efuse / 255 + 1000;
+
+	if (ro >= 1660)
+		type = 0;
+	else
+		type = 1;
+
+	/* Populate Stretch amount */
+	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
+
+	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
+	for (i = 0; i < sclk_table->count; i++) {
+		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
+				sclk_table->entries[i].cks_enable << i;
+		if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
+			volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
+				(sclk_table->entries[i].clk/100) / 10000) * 1000 /
+				(8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
+			volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
+				(sclk_table->entries[i].clk/100) / 100000) * 1000 /
+				(6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
+		} else {
+			volt_without_cks = (uint32_t)((14041 *
+				(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
+				(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
+			volt_with_cks = (uint32_t)((13946 *
+				(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
+				(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
+		}
+		if (volt_without_cks >= volt_with_cks)
+			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
+					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
+		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
+	}
+
+	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+			STRETCH_ENABLE, 0x0);
+	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+			masterReset, 0x1);
+	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+			staticEnable, 0x1);
+	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+			masterReset, 0x0);
+
+	/* Populate CKS Lookup Table */
+	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
+		stretch_amount2 = 0;
+	else if (stretch_amount == 3 || stretch_amount == 4)
+		stretch_amount2 = 1;
+	else {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+				PHM_PlatformCaps_ClockStretcher);
+		PP_ASSERT_WITH_CODE(false,
+				"Stretch Amount in PPTable not supported\n",
+				return -EINVAL);
+	}
+
+	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixPWR_CKS_CNTL);
+	value &= 0xFFC2FF87;
+	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
+			tonga_clock_stretcher_lookup_table[stretch_amount2][0];
+	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
+			tonga_clock_stretcher_lookup_table[stretch_amount2][1];
+	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
+			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
+			SclkFrequency) / 100);
+	if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
+			clock_freq_u16 &&
+	    tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
+			clock_freq_u16) {
+		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
+		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
+		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
+		value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
+		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
+		value |= (tonga_clock_stretch_amount_conversion
+				[tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
+				 [stretch_amount]) << 3;
+	}
+	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
+			CKS_LOOKUPTableEntry[0].minFreq);
+	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
+			CKS_LOOKUPTableEntry[0].maxFreq);
+	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
+			tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
+	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
+			(tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
+
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixPWR_CKS_CNTL, value);
+
+	/* Populate DDT Lookup Table */
+	for (i = 0; i < 4; i++) {
+		/* Assign the minimum and maximum VID stored
+		 * in the last row of Clock Stretcher Voltage Table.
+		 */
+		smu_data->smc_state_table.ClockStretcherDataTable.
+		ClockStretcherDataTableEntry[i].minVID =
+				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
+		smu_data->smc_state_table.ClockStretcherDataTable.
+		ClockStretcherDataTableEntry[i].maxVID =
+				(uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
+		/* Loop through each SCLK and check the frequency
+		 * to see if it lies within the frequency for clock stretcher.
+		 */
+		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
+			cks_setting = 0;
+			clock_freq = PP_SMC_TO_HOST_UL(
+					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
+			/* Check the allowed frequency against the sclk level[j].
+			 *  Sclk's endianness has already been converted,
+			 *  and it's in 10Khz unit,
+			 *  as opposed to Data table, which is in Mhz unit.
+			 */
+			if (clock_freq >=
+					(tonga_clock_stretcher_ddt_table[type][i][0]) * 100) {
+				cks_setting |= 0x2;
+				if (clock_freq <
+						(tonga_clock_stretcher_ddt_table[type][i][1]) * 100)
+					cks_setting |= 0x1;
+			}
+			smu_data->smc_state_table.ClockStretcherDataTable.
+			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
+		}
+		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
+				ClockStretcherDataTable.
+				ClockStretcherDataTableEntry[i].setting);
+	}
+
+	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
+	value &= 0xFFFFFFFE;
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
+
+	return 0;
+}
+
+/**
+ * Populates the SMC VRConfig field in DPM table.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	uint16_t config;
+
+	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+		/*  Splitted mode */
+		config = VR_SVI2_PLANE_1;
+		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+			config = VR_SVI2_PLANE_2;
+			table->VRConfig |= config;
+		} else {
+			printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
+		}
+	} else {
+		/* Merged mode  */
+		config = VR_MERGED_WITH_VDDC;
+		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+		/* Set Vddc Voltage Controller  */
+		if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+			config = VR_SVI2_PLANE_1;
+			table->VRConfig |= config;
+		} else {
+			printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
+		}
+	}
+
+	/* Set Vddci Voltage Controller  */
+	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
+		config = VR_SVI2_PLANE_2;  /* only in merged mode */
+		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
+		config = VR_SMIO_PATTERN_1;
+		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+	}
+
+	/* Set Mvdd Voltage Controller */
+	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+		config = VR_SMIO_PATTERN_2;
+		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
+	}
+
+	return 0;
+}
+
+
+/**
+ * Initialize the ARB DRAM timing table's index field.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+static int tonga_init_arb_table_index(struct pp_smumgr *smumgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
+	uint32_t tmp;
+	int result;
+
+	/*
+	* This is a read-modify-write on the first byte of the ARB table.
+	* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
+	* This solution is ugly, but we never write the whole table only individual fields in it.
+	* In reality this field should not be in that structure but in a soft register.
+	*/
+	result = tonga_read_smc_sram_dword(smumgr,
+				smu_data->arb_table_start, &tmp, SMC_RAM_END);
+
+	if (0 != result)
+		return result;
+
+	tmp &= 0x00FFFFFF;
+	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
+
+	return tonga_write_smc_sram_dword(smumgr,
+			smu_data->arb_table_start,  tmp, SMC_RAM_END);
+}
+
+
+static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+	SMU72_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
+	int  i, j, k;
+	uint16_t *pdef1;
+	uint16_t *pdef2;
+
+
+	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
+	 * as requested by SMC team
+	 */
+	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
+			(uint16_t)(cac_dtp_table->usTDP * 256));
+	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
+			(uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
+
+	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
+			"Target Operating Temp is out of Range!",
+			);
+
+	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
+	dpm_table->GpuTjHyst = 8;
+
+	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
+
+	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient);
+	pdef1 = defaults->bapmti_r;
+	pdef2 = defaults->bapmti_rc;
+
+	for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
+		for (j = 0; j < SMU72_DTE_SOURCES; j++) {
+			for (k = 0; k < SMU72_DTE_SINKS; k++) {
+				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
+				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
+				pdef1++;
+				pdef2++;
+			}
+		}
+	}
+
+	return 0;
+}
+
+static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+
+	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
+	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
+	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
+	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
+
+	return 0;
+}
+
+static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
+{
+	uint16_t tdc_limit;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	/* TDC number of fraction bits are changed from 8 to 7
+	 * for Fiji as requested by SMC team
+	 */
+	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
+	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
+			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
+	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
+			defaults->tdc_vddc_throttle_release_limit_perc;
+	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
+
+	return 0;
+}
+
+static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+	uint32_t temp;
+
+	if (tonga_read_smc_sram_dword(hwmgr->smumgr,
+			fuse_table_offset +
+			offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
+			(uint32_t *)&temp, SMC_RAM_END))
+		PP_ASSERT_WITH_CODE(false,
+				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
+				return -EINVAL);
+	else
+		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
+
+	return 0;
+}
+
+static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
+{
+	int i;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	/* Currently not used. Set all to zero. */
+	for (i = 0; i < 16; i++)
+		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
+
+	return 0;
+}
+
+static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	if ((hwmgr->thermal_controller.advanceFanControlParameters.
+			usFanOutputSensitivity & (1 << 15)) ||
+		(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
+		hwmgr->thermal_controller.advanceFanControlParameters.
+		usFanOutputSensitivity = hwmgr->thermal_controller.
+			advanceFanControlParameters.usDefaultFanOutputSensitivity;
+
+	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
+			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
+					advanceFanControlParameters.usFanOutputSensitivity);
+	return 0;
+}
+
+static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
+{
+	int i;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	/* Currently not used. Set all to zero. */
+	for (i = 0; i < 16; i++)
+		smu_data->power_tune_table.GnbLPML[i] = 0;
+
+	return 0;
+}
+
+static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
+{
+	return 0;
+}
+
+static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
+	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
+	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
+
+	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
+	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
+
+	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
+			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
+	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
+			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
+
+	return 0;
+}
+
+static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint32_t pm_fuse_table_offset;
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_PowerContainment)) {
+		if (tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, PmFuseTable),
+				&pm_fuse_table_offset, SMC_RAM_END))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to get pm_fuse_table_offset Failed!",
+					return -EINVAL);
+
+		/* DW6 */
+		if (tonga_populate_svi_load_line(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate SviLoadLine Failed!",
+					return -EINVAL);
+		/* DW7 */
+		if (tonga_populate_tdc_limit(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate TDCLimit Failed!", return -EINVAL);
+		/* DW8 */
+		if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate TdcWaterfallCtl Failed !",
+					return -EINVAL);
+
+		/* DW9-DW12 */
+		if (tonga_populate_temperature_scaler(hwmgr) != 0)
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate LPMLTemperatureScaler Failed!",
+					return -EINVAL);
+
+		/* DW13-DW14 */
+		if (tonga_populate_fuzzy_fan(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate Fuzzy Fan Control parameters Failed!",
+					return -EINVAL);
+
+		/* DW15-DW18 */
+		if (tonga_populate_gnb_lpml(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate GnbLPML Failed!",
+					return -EINVAL);
+
+		/* DW19 */
+		if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate GnbLPML Min and Max Vid Failed!",
+					return -EINVAL);
+
+		/* DW20 */
+		if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
+					return -EINVAL);
+
+		if (tonga_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
+				(uint8_t *)&smu_data->power_tune_table,
+				sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
+			PP_ASSERT_WITH_CODE(false,
+					"Attempt to download PmFuseTable Failed!",
+					return -EINVAL);
+	}
+	return 0;
+}
+
+static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr,
+				 SMU72_Discrete_MCRegisters *mc_reg_table)
+{
+	const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend;
+
+	uint32_t i, j;
+
+	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
+		if (smu_data->mc_reg_table.validflag & 1<<j) {
+			PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
+				"Index of mc_reg_table->address[] array out of boundary", return -1);
+			mc_reg_table->address[i].s0 =
+				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
+			mc_reg_table->address[i].s1 =
+				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
+			i++;
+		}
+	}
+
+	mc_reg_table->last = (uint8_t)i;
+
+	return 0;
+}
+
+/*convert register values from driver to SMC format */
+static void tonga_convert_mc_registers(
+	const struct tonga_mc_reg_entry *entry,
+	SMU72_Discrete_MCRegisterSet *data,
+	uint32_t num_entries, uint32_t valid_flag)
+{
+	uint32_t i, j;
+
+	for (i = 0, j = 0; j < num_entries; j++) {
+		if (valid_flag & 1<<j) {
+			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
+			i++;
+		}
+	}
+}
+
+/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
+static int tonga_convert_mc_reg_table_entry_to_smc(
+		struct pp_smumgr *smumgr,
+		const uint32_t memory_clock,
+		SMU72_Discrete_MCRegisterSet *mc_reg_table_data
+		)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
+	uint32_t i = 0;
+
+	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
+		if (memory_clock <=
+			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
+			break;
+		}
+	}
+
+	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
+		--i;
+
+	tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
+				mc_reg_table_data, smu_data->mc_reg_table.last,
+				smu_data->mc_reg_table.validflag);
+
+	return 0;
+}
+
+static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_MCRegisters *mc_regs)
+{
+	int result = 0;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	int res;
+	uint32_t i;
+
+	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
+		res = tonga_convert_mc_reg_table_entry_to_smc(
+				hwmgr->smumgr,
+				data->dpm_table.mclk_table.dpm_levels[i].value,
+				&mc_regs->data[i]
+				);
+
+		if (0 != res)
+			result = res;
+	}
+
+	return result;
+}
+
+static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	struct pp_smumgr *smumgr = hwmgr->smumgr;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	uint32_t address;
+	int32_t result;
+
+	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
+		return 0;
+
+
+	memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
+
+	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
+
+	if (result != 0)
+		return result;
+
+
+	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
+
+	return  tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
+				 (uint8_t *)&smu_data->mc_regs.data[0],
+				sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
+				SMC_RAM_END);
+}
+
+static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	struct pp_smumgr *smumgr = hwmgr->smumgr;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
+
+	memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
+	result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs));
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
+
+	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize MCRegTable for driver state!", return result;);
+
+	return tonga_copy_bytes_to_smc(smumgr, smu_data->mc_reg_table_start,
+			(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
+}
+
+static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	struct  phm_ppt_v1_information *table_info =
+			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
+
+	if (table_info &&
+			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
+			table_info->cac_dtp_table->usPowerTuneDataSetID)
+		smu_data->power_tune_defaults =
+				&tonga_power_tune_data_set_array
+				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
+	else
+		smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
+}
+
+/**
+ * Initializes the SMC table and uploads it
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @param    pInput  the pointer to input data (PowerState)
+ * @return   always 0
+ */
+int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	SMU72_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	uint8_t i;
+	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
+
+
+	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
+
+	tonga_initialize_power_tune_defaults(hwmgr);
+
+	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
+		tonga_populate_smc_voltage_tables(hwmgr, table);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition))
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
+
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_StepVddc))
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
+
+	if (data->is_memory_gddr5)
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
+
+	i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
+
+	if (i == 1 || i == 0)
+		table->SystemFlags |= 0x40;
+
+	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
+		result = tonga_populate_ulv_state(hwmgr, table);
+		PP_ASSERT_WITH_CODE(0 == result,
+			"Failed to initialize ULV state!", return result;);
+
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixCG_ULV_PARAMETER, 0x40035);
+	}
+
+	result = tonga_populate_smc_link_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Link Level!", return result);
+
+	result = tonga_populate_all_graphic_levels(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Graphics Level!", return result);
+
+	result = tonga_populate_all_memory_levels(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Memory Level!", return result);
+
+	result = tonga_populate_smc_acpi_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize ACPI Level!", return result);
+
+	result = tonga_populate_smc_vce_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize VCE Level!", return result);
+
+	result = tonga_populate_smc_acp_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize ACP Level!", return result);
+
+	result = tonga_populate_smc_samu_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize SAMU Level!", return result);
+
+	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
+	/* need to populate the  ARB settings for the initial state. */
+	result = tonga_program_memory_timing_parameters(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to Write ARB settings for the initial state.", return result;);
+
+	result = tonga_populate_smc_uvd_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize UVD Level!", return result);
+
+	result = tonga_populate_smc_boot_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Boot Level!", return result);
+
+	tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to populate BAPM Parameters!", return result);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ClockStretcher)) {
+		result = tonga_populate_clock_stretcher_data_table(hwmgr);
+		PP_ASSERT_WITH_CODE(0 == result,
+			"Failed to populate Clock Stretcher Data Table!", return result;);
+	}
+	table->GraphicsVoltageChangeEnable  = 1;
+	table->GraphicsThermThrottleEnable  = 1;
+	table->GraphicsInterval = 1;
+	table->VoltageInterval  = 1;
+	table->ThermalInterval  = 1;
+	table->TemperatureLimitHigh =
+		table_info->cac_dtp_table->usTargetOperatingTemp *
+		SMU7_Q88_FORMAT_CONVERSION_UNIT;
+	table->TemperatureLimitLow =
+		(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
+		SMU7_Q88_FORMAT_CONVERSION_UNIT;
+	table->MemoryVoltageChangeEnable  = 1;
+	table->MemoryInterval  = 1;
+	table->VoltageResponseTime  = 0;
+	table->PhaseResponseTime  = 0;
+	table->MemoryThermThrottleEnable  = 1;
+
+	/*
+	* Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
+	* SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
+	* but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
+	* To avoid it, we set PCIeBootLinkLevel to highest dpm level
+	*/
+	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
+			"There must be 1 or more PCIE levels defined in PPTable.",
+			return -1);
+
+	table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
+
+	table->PCIeGenInterval  = 1;
+
+	result = tonga_populate_vr_config(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to populate VRConfig setting!", return result);
+
+	table->ThermGpio  = 17;
+	table->SclkStepSize = 0x4000;
+
+	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
+						&gpio_pin_assignment)) {
+		table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot);
+	} else {
+		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot);
+	}
+
+	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
+						&gpio_pin_assignment)) {
+		table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+	} else {
+		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+	}
+
+	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_Falcon_QuickTransition);
+
+	if (0) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_Falcon_QuickTransition);
+	}
+
+	if (atomctrl_get_pp_assign_pin(hwmgr,
+			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ThermalOutGPIO);
+
+		table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+
+		table->ThermOutPolarity =
+			(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
+			(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
+
+		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
+
+		/* if required, combine VRHot/PCC with thermal out GPIO*/
+		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot) &&
+			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_CombinePCCWithThermalSignal)){
+			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
+		}
+	} else {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ThermalOutGPIO);
+
+		table->ThermOutGpio = 17;
+		table->ThermOutPolarity = 1;
+		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
+	}
+
+	for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
+		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
+	}
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
+	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
+	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
+	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
+	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
+
+	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->dpm_table_start +
+										offsetof(SMU72_Discrete_DpmTable, SystemFlags),
+										(uint8_t *)&(table->SystemFlags),
+										sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
+										SMC_RAM_END);
+
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to upload dpm data to SMC memory!", return result;);
+
+	result = tonga_init_arb_table_index(hwmgr->smumgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"Failed to upload arb data to SMC memory!", return result);
+
+	tonga_populate_pm_fuses(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == result),
+		"Failed to populate initialize pm fuses!", return result);
+
+	result = tonga_populate_initial_mc_reg_table(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == result),
+		"Failed to populate initialize MC Reg table!", return result);
+
+	return 0;
+}
+
+/**
+* Set up the fan table to control the fan using the SMC.
+* @param    hwmgr  the address of the powerplay hardware manager.
+* @param    pInput the pointer to input data
+* @param    pOutput the pointer to output data
+* @param    pStorage the pointer to temporary storage
+* @param    Result the last failure code
+* @return   result from set temperature range routine
+*/
+int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
+	uint32_t duty100;
+	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
+	uint16_t fdo_min, slope1, slope2;
+	uint32_t reference_clock;
+	int res;
+	uint64_t tmp64;
+
+	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
+		return 0;
+
+	if (0 == smu_data->fan_table_start) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
+		return 0;
+	}
+
+	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
+
+	if (0 == duty100) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
+		return 0;
+	}
+
+	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
+	do_div(tmp64, 10000);
+	fdo_min = (uint16_t)tmp64;
+
+	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
+	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
+
+	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
+	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
+
+	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
+	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
+
+	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
+	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
+	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
+
+	fan_table.Slope1 = cpu_to_be16(slope1);
+	fan_table.Slope2 = cpu_to_be16(slope2);
+
+	fan_table.FdoMin = cpu_to_be16(fdo_min);
+
+	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
+
+	fan_table.HystUp = cpu_to_be16(1);
+
+	fan_table.HystSlope = cpu_to_be16(1);
+
+	fan_table.TempRespLim = cpu_to_be16(5);
+
+	reference_clock = smu7_get_xclk(hwmgr);
+
+	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
+
+	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
+
+	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
+
+	fan_table.FanControl_GL_Flag = 1;
+
+	res = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
+/* TO DO FOR SOME DEVICE ID 0X692b, send this msg return invalid command.
+	if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit != 0)
+		res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanMinPwm, \
+						hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit) ? 0 : -1);
+
+	if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit != 0)
+		res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanSclkTarget, \
+					hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit) ? 0 : -1);
+
+	if (0 != res)
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
+*/
+	return 0;
+}
+
+
+static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+	if (data->need_update_smu7_dpm_table &
+		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
+		return tonga_program_memory_timing_parameters(hwmgr);
+
+	return 0;
+}
+
+int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	int result = 0;
+	uint32_t low_sclk_interrupt_threshold = 0;
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_SclkThrottleLowNotification)
+		&& (hwmgr->gfx_arbiter.sclk_threshold !=
+				data->low_sclk_interrupt_threshold)) {
+		data->low_sclk_interrupt_threshold =
+				hwmgr->gfx_arbiter.sclk_threshold;
+		low_sclk_interrupt_threshold =
+				data->low_sclk_interrupt_threshold;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
+
+		result = tonga_copy_bytes_to_smc(
+				hwmgr->smumgr,
+				smu_data->dpm_table_start +
+				offsetof(SMU72_Discrete_DpmTable,
+					LowSclkInterruptThreshold),
+				(uint8_t *)&low_sclk_interrupt_threshold,
+				sizeof(uint32_t),
+				SMC_RAM_END);
+	}
+
+	result = tonga_update_and_upload_mc_reg_table(hwmgr);
+
+	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
+
+	result = tonga_program_mem_timing_parameters(hwmgr);
+	PP_ASSERT_WITH_CODE((result == 0),
+			"Failed to program memory timing parameters!",
+			);
+
+	return result;
+}
+
+uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
+{
+	switch (type) {
+	case SMU_SoftRegisters:
+		switch (member) {
+		case HandshakeDisables:
+			return offsetof(SMU72_SoftRegisters, HandshakeDisables);
+		case VoltageChangeTimeout:
+			return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
+		case AverageGraphicsActivity:
+			return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
+		case PreVBlankGap:
+			return offsetof(SMU72_SoftRegisters, PreVBlankGap);
+		case VBlankTimeout:
+			return offsetof(SMU72_SoftRegisters, VBlankTimeout);
+		}
+	case SMU_Discrete_DpmTable:
+		switch (member) {
+		case UvdBootLevel:
+			return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
+		case VceBootLevel:
+			return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
+		case SamuBootLevel:
+			return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
+		case LowSclkInterruptThreshold:
+			return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
+		}
+	}
+	printk("cant't get the offset of type %x member %x \n", type, member);
+	return 0;
+}
+
+uint32_t tonga_get_mac_definition(uint32_t value)
+{
+	switch (value) {
+	case SMU_MAX_LEVELS_GRAPHICS:
+		return SMU72_MAX_LEVELS_GRAPHICS;
+	case SMU_MAX_LEVELS_MEMORY:
+		return SMU72_MAX_LEVELS_MEMORY;
+	case SMU_MAX_LEVELS_LINK:
+		return SMU72_MAX_LEVELS_LINK;
+	case SMU_MAX_ENTRIES_SMIO:
+		return SMU72_MAX_ENTRIES_SMIO;
+	case SMU_MAX_LEVELS_VDDC:
+		return SMU72_MAX_LEVELS_VDDC;
+	case SMU_MAX_LEVELS_VDDGFX:
+		return SMU72_MAX_LEVELS_VDDGFX;
+	case SMU_MAX_LEVELS_VDDCI:
+		return SMU72_MAX_LEVELS_VDDCI;
+	case SMU_MAX_LEVELS_MVDD:
+		return SMU72_MAX_LEVELS_MVDD;
+	}
+
+	printk("cant't get the mac of %x \n", value);
+	return 0;
+}
+
+
+static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint32_t mm_boot_level_offset, mm_boot_level_value;
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	smu_data->smc_state_table.UvdBootLevel = 0;
+	if (table_info->mm_dep_table->count > 0)
+		smu_data->smc_state_table.UvdBootLevel =
+				(uint8_t) (table_info->mm_dep_table->count - 1);
+	mm_boot_level_offset = smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
+						UvdBootLevel);
+	mm_boot_level_offset /= 4;
+	mm_boot_level_offset *= 4;
+	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset);
+	mm_boot_level_value &= 0x00FFFFFF;
+	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
+	cgs_write_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_UVDDPM) ||
+		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_StablePState))
+		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
+				PPSMC_MSG_UVDDPM_SetEnabledMask,
+				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
+	return 0;
+}
+
+static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint32_t mm_boot_level_offset, mm_boot_level_value;
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+
+	smu_data->smc_state_table.VceBootLevel =
+		(uint8_t) (table_info->mm_dep_table->count - 1);
+
+	mm_boot_level_offset = smu_data->dpm_table_start +
+					offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
+	mm_boot_level_offset /= 4;
+	mm_boot_level_offset *= 4;
+	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset);
+	mm_boot_level_value &= 0xFF00FFFF;
+	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
+	cgs_write_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
+		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
+				PPSMC_MSG_VCEDPM_SetEnabledMask,
+				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
+	return 0;
+}
+
+static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	uint32_t mm_boot_level_offset, mm_boot_level_value;
+
+	smu_data->smc_state_table.SamuBootLevel = 0;
+	mm_boot_level_offset = smu_data->dpm_table_start +
+				offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
+
+	mm_boot_level_offset /= 4;
+	mm_boot_level_offset *= 4;
+	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset);
+	mm_boot_level_value &= 0xFFFFFF00;
+	mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
+	cgs_write_ind_register(hwmgr->device,
+			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_StablePState))
+		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
+				PPSMC_MSG_SAMUDPM_SetEnabledMask,
+				(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
+	return 0;
+}
+
+int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
+{
+	switch (type) {
+	case SMU_UVD_TABLE:
+		tonga_update_uvd_smc_table(hwmgr);
+		break;
+	case SMU_VCE_TABLE:
+		tonga_update_vce_smc_table(hwmgr);
+		break;
+	case SMU_SAMU_TABLE:
+		tonga_update_samu_smc_table(hwmgr);
+		break;
+	default:
+		break;
+	}
+	return 0;
+}
+
+
+/**
+ * Get the location of various tables inside the FW image.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
+{
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	uint32_t tmp;
+	int result;
+	bool error = false;
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, DpmTable),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		smu_data->dpm_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, SoftRegisters),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		data->soft_regs_start = tmp;
+		smu_data->soft_regs_start = tmp;
+	}
+
+	error |= (0 != result);
+
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, mcRegisterTable),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		smu_data->mc_reg_table_start = tmp;
+	}
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, FanTable),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		smu_data->fan_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		smu_data->arb_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, Version),
+				&tmp, SMC_RAM_END);
+
+	if (0 == result) {
+		hwmgr->microcode_version_info.SMC = tmp;
+	}
+
+	error |= (0 != result);
+
+	return error ? 1 : 0;
+}
+
+/*---------------------------MC----------------------------*/
+
+static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
+{
+	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
+}
+
+static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
+{
+	bool result = true;
+
+	switch (in_reg) {
+	case  mmMC_SEQ_RAS_TIMING:
+		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
+		break;
+
+	case  mmMC_SEQ_DLL_STBY:
+		*out_reg = mmMC_SEQ_DLL_STBY_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CMD0:
+		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CMD1:
+		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CTRL:
+		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
+		break;
+
+	case mmMC_SEQ_CAS_TIMING:
+		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
+		break;
+
+	case mmMC_SEQ_MISC_TIMING:
+		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
+		break;
+
+	case mmMC_SEQ_MISC_TIMING2:
+		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
+		break;
+
+	case mmMC_SEQ_PMG_DVS_CMD:
+		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
+		break;
+
+	case mmMC_SEQ_PMG_DVS_CTL:
+		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
+		break;
+
+	case mmMC_SEQ_RD_CTL_D0:
+		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
+		break;
+
+	case mmMC_SEQ_RD_CTL_D1:
+		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_D0:
+		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_D1:
+		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
+		break;
+
+	case mmMC_PMG_CMD_EMRS:
+		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS:
+		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS1:
+		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
+		break;
+
+	case mmMC_SEQ_PMG_TIMING:
+		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS2:
+		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_2:
+		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
+		break;
+
+	default:
+		result = false;
+		break;
+	}
+
+	return result;
+}
+
+static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
+{
+	uint32_t i;
+	uint16_t address;
+
+	for (i = 0; i < table->last; i++) {
+		table->mc_reg_address[i].s0 =
+			tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
+			? address : table->mc_reg_address[i].s1;
+	}
+	return 0;
+}
+
+static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
+					struct tonga_mc_reg_table *ni_table)
+{
+	uint8_t i, j;
+
+	PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+		"Invalid VramInfo table.", return -1);
+	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
+		"Invalid VramInfo table.", return -1);
+
+	for (i = 0; i < table->last; i++) {
+		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
+	}
+	ni_table->last = table->last;
+
+	for (i = 0; i < table->num_entries; i++) {
+		ni_table->mc_reg_table_entry[i].mclk_max =
+			table->mc_reg_table_entry[i].mclk_max;
+		for (j = 0; j < table->last; j++) {
+			ni_table->mc_reg_table_entry[i].mc_data[j] =
+				table->mc_reg_table_entry[i].mc_data[j];
+		}
+	}
+
+	ni_table->num_entries = table->num_entries;
+
+	return 0;
+}
+
+/**
+ * VBIOS omits some information to reduce size, we need to recover them here.
+ * 1.   when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to  mmMC_PMG_CMD_EMRS /_LP[15:0].
+ *      Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
+ * 2.   when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
+ * 3.   need to set these data for each clock range
+ *
+ * @param    hwmgr the address of the powerplay hardware manager.
+ * @param    table the address of MCRegTable
+ * @return   always 0
+ */
+static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
+					struct tonga_mc_reg_table *table)
+{
+	uint8_t i, j, k;
+	uint32_t temp_reg;
+	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+	for (i = 0, j = table->last; i < table->last; i++) {
+		PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+			"Invalid VramInfo table.", return -1);
+
+		switch (table->mc_reg_address[i].s1) {
+
+		case mmMC_SEQ_MISC1:
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					((temp_reg & 0xffff0000)) |
+					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					(temp_reg & 0xffff0000) |
+					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+
+				if (!data->is_memory_gddr5) {
+					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
+				}
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+
+			if (!data->is_memory_gddr5) {
+				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
+				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
+				for (k = 0; k < table->num_entries; k++) {
+					table->mc_reg_table_entry[k].mc_data[j] =
+						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
+				}
+				j++;
+				PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+					"Invalid VramInfo table.", return -1);
+			}
+
+			break;
+
+		case mmMC_SEQ_RESERVE_M:
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					(temp_reg & 0xffff0000) |
+					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+			break;
+
+		default:
+			break;
+		}
+
+	}
+
+	table->last = j;
+
+	return 0;
+}
+
+static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
+{
+	uint8_t i, j;
+	for (i = 0; i < table->last; i++) {
+		for (j = 1; j < table->num_entries; j++) {
+			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
+				table->mc_reg_table_entry[j].mc_data[i]) {
+				table->validflag |= (1<<i);
+				break;
+			}
+		}
+	}
+
+	return 0;
+}
+
+int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+	pp_atomctrl_mc_reg_table *table;
+	struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
+	uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
+
+	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
+
+	if (NULL == table)
+		return -ENOMEM;
+
+	/* Program additional LP registers that are no longer programmed by VBIOS */
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
+
+	memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
+
+	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
+
+	if (0 == result)
+		result = tonga_copy_vbios_smc_reg_table(table, ni_table);
+
+	if (0 == result) {
+		tonga_set_s0_mc_reg_index(ni_table);
+		result = tonga_set_mc_special_registers(hwmgr, ni_table);
+	}
+
+	if (0 == result)
+		tonga_set_valid_flag(ni_table);
+
+	kfree(table);
+
+	return result;
+}
+
+bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
+{
+	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
+			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
+			? true : false;
+}
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h
new file mode 100644
index 0000000..8ae169f
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smc.h
@@ -0,0 +1,60 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#ifndef _TONGA_SMC_H
+#define _TONGA_SMC_H
+
+#include "smumgr.h"
+#include "smu72.h"
+
+
+#define ASICID_IS_TONGA_P(wDID, bRID)	 \
+	(((wDID == 0x6930) && ((bRID == 0xF0) || (bRID == 0xF1) || (bRID == 0xFF))) \
+	|| ((wDID == 0x6920) && ((bRID == 0) || (bRID == 1))))
+
+
+struct tonga_pt_defaults {
+	uint8_t   svi_load_line_en;
+	uint8_t   svi_load_line_vddC;
+	uint8_t   tdc_vddc_throttle_release_limit_perc;
+	uint8_t   tdc_mawt;
+	uint8_t   tdc_waterfall_ctl;
+	uint8_t   dte_ambient_temp_base;
+	uint32_t  display_cac;
+	uint32_t  bamp_temp_gradient;
+	uint16_t  bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
+	uint16_t  bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
+};
+
+int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr);
+int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr);
+int tonga_init_smc_table(struct pp_hwmgr *hwmgr);
+int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr);
+int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type);
+int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr);
+uint32_t tonga_get_offsetof(uint32_t type, uint32_t member);
+uint32_t tonga_get_mac_definition(uint32_t value);
+int tonga_process_firmware_header(struct pp_hwmgr *hwmgr);
+int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr);
+bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr);
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
index f42c536..b543d6c 100644
--- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
@@ -33,6 +33,7 @@
 #include "smu/smu_7_1_2_d.h"
 #include "smu/smu_7_1_2_sh_mask.h"
 #include "cgs_common.h"
+#include "tonga_smc.h"
 
 #define TONGA_SMC_SIZE			0x20000
 #define BUFFER_SIZE			80000
@@ -749,6 +750,8 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
 	struct tonga_smumgr *tonga_smu;
 	uint8_t *internal_buf;
 	uint64_t mc_addr = 0;
+	int i;
+
 	/* Allocate memory for backend private data */
 	tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
 	tonga_smu->header_buffer.data_size =
@@ -793,6 +796,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
 		(cgs_handle_t)tonga_smu->smu_buffer.handle);
 		return -1;);
 
+	for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++)
+		tonga_smu->activity_target[i] = 30;
+
 	return 0;
 }
 
@@ -807,6 +813,17 @@ static const struct pp_smumgr_func tonga_smu_funcs = {
 	.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
 	.download_pptable_settings = NULL,
 	.upload_pptable_settings = NULL,
+	.update_smc_table = tonga_update_smc_table,
+	.get_offsetof = tonga_get_offsetof,
+	.process_firmware_header = tonga_process_firmware_header,
+	.init_smc_table = tonga_init_smc_table,
+	.update_sclk_threshold = tonga_update_sclk_threshold,
+	.thermal_setup_fan_table = tonga_thermal_setup_fan_table,
+	.populate_all_graphic_levels = tonga_populate_all_graphic_levels,
+	.populate_all_memory_levels = tonga_populate_all_memory_levels,
+	.get_mac_definition = tonga_get_mac_definition,
+	.initialize_mc_reg_table = tonga_initialize_mc_reg_table,
+	.is_dpm_running = tonga_is_dpm_running,
 };
 
 int tonga_smum_init(struct pp_smumgr *smumgr)
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h
index 33c788d..b2ad232 100644
--- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.h
@@ -24,6 +24,10 @@
 #ifndef _TONGA_SMUMGR_H_
 #define _TONGA_SMUMGR_H_
 
+#include "smu72_discrete.h"
+
+#define SMC_RAM_END		0x40000
+
 struct tonga_buffer_entry {
 	uint32_t data_size;
 	uint32_t mc_addr_low;
@@ -32,13 +36,44 @@ struct tonga_buffer_entry {
 	unsigned long  handle;
 };
 
+
+struct tonga_mc_reg_entry {
+	uint32_t mclk_max;
+	uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
+};
+
+struct tonga_mc_reg_table {
+	uint8_t   last;               /* number of registers*/
+	uint8_t   num_entries;        /* number of entries in mc_reg_table_entry used*/
+	uint16_t  validflag;          /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/
+	struct tonga_mc_reg_entry    mc_reg_table_entry[MAX_AC_TIMING_ENTRIES];
+	SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
+};
+
+
 struct tonga_smumgr {
 	uint8_t *pHeader;
 	uint8_t *pMecImage;
-	uint32_t ulSoftRegsStart;
+
+
+	uint32_t soft_regs_start;
+	uint32_t dpm_table_start;
+	uint32_t mc_reg_table_start;
+	uint32_t fan_table_start;
+	uint32_t arb_table_start;
 
 	struct tonga_buffer_entry header_buffer;
 	struct tonga_buffer_entry smu_buffer;
+
+	struct SMU72_Discrete_DpmTable       smc_state_table;
+	struct SMU72_Discrete_Ulv            ulv_setting;
+	struct SMU72_Discrete_PmFuses  power_tune_table;
+	struct tonga_pt_defaults  *power_tune_defaults;
+	SMU72_Discrete_MCRegisters      mc_regs;
+	struct tonga_mc_reg_table mc_reg_table;
+
+	uint32_t        activity_target[SMU72_MAX_LEVELS_GRAPHICS];
+
 };
 
 extern int tonga_smum_init(struct pp_smumgr *smumgr);
-- 
1.9.1



More information about the amd-gfx mailing list