[PATCH 21/51] drm/amd/powerplay: add Tonga dpm support (v3)

Alex Deucher alexdeucher at gmail.com
Wed Nov 11 22:18:11 PST 2015


From: yanyang1 <young.yang at amd.com>

This implements DPM for tonga.  DPM handles dynamic
clock and voltage scaling.

v2: merge all the patches related with tonga dpm
v3: merge dpm force level fix, cgs display fix, spelling fix

Reviewed-by: Alex Deucher <alexander.deucher at amd.com>
Reviewed-by: Jammy Zhou <Jammy.Zhou at amd.com>
Signed-off-by: yanyang1 <young.yang at amd.com>
Signed-off-by: Rex Zhu <Rex.Zhu at amd.com>
Signed-off-by: Eric Huang <JinHuiEric.Huang at amd.com>
---
 drivers/gpu/drm/amd/powerplay/Makefile             |    5 +-
 drivers/gpu/drm/amd/powerplay/hwmgr/Makefile       |    4 +-
 drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c        |   10 +
 drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h    |  105 +
 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c   |  704 +++
 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h   |  237 +
 drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h  |   42 +
 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c  |   64 +
 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h  |   31 +
 .../drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h   |  107 +
 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c  | 5714 ++++++++++++++++++++
 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h  |  427 ++
 .../gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h  |   66 +
 .../gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h    |  406 ++
 .../amd/powerplay/hwmgr/tonga_processpptables.c    | 1129 ++++
 .../amd/powerplay/hwmgr/tonga_processpptables.h    |   35 +
 .../gpu/drm/amd/powerplay/inc/hardwaremanager.h    |   18 +-
 drivers/gpu/drm/amd/powerplay/inc/hwmgr.h          |   90 +
 drivers/gpu/drm/amd/powerplay/inc/pp_debug.h       |    2 +-
 .../gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h  |  100 +
 20 files changed, 9284 insertions(+), 12 deletions(-)
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
 create mode 100644 drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
 create mode 100644 drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h

diff --git a/drivers/gpu/drm/amd/powerplay/Makefile b/drivers/gpu/drm/amd/powerplay/Makefile
index 0231021..e195bf5 100644
--- a/drivers/gpu/drm/amd/powerplay/Makefile
+++ b/drivers/gpu/drm/amd/powerplay/Makefile
@@ -2,7 +2,10 @@
 subdir-ccflags-y += -Iinclude/drm  \
 		-Idrivers/gpu/drm/amd/powerplay/inc/  \
 		-Idrivers/gpu/drm/amd/include/asic_reg  \
-		-Idrivers/gpu/drm/amd/include
+		-Idrivers/gpu/drm/amd/include  \
+		-Idrivers/gpu/drm/amd/powerplay/smumgr\
+		-Idrivers/gpu/drm/amd/powerplay/hwmgr \
+		-Idrivers/gpu/drm/amd/powerplay/eventmgr
 
 AMD_PP_PATH = ../powerplay
 
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
index 46cc494..fd73d3c 100644
--- a/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/Makefile
@@ -4,7 +4,9 @@
 
 HARDWARE_MGR = hwmgr.o processpptables.o functiontables.o \
 	       hardwaremanager.o pp_acpi.o cz_hwmgr.o \
-               cz_clockpowergating.o
+               cz_clockpowergating.o \
+	       tonga_processpptables.o ppatomctrl.o \
+               tonga_hwmgr.o 	pppcielanes.o
 
 AMD_PP_HWMGR = $(addprefix $(AMD_PP_PATH)/hwmgr/,$(HARDWARE_MGR))
 
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
index 5d1ba90..407b2e3 100644
--- a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr.c
@@ -28,6 +28,7 @@
 #include "power_state.h"
 #include "hwmgr.h"
 #include "cz_hwmgr.h"
+#include "tonga_hwmgr.h"
 
 int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
 {
@@ -53,6 +54,15 @@ int hwmgr_init(struct amd_pp_init *pp_init, struct pp_instance *handle)
 	case AMD_FAMILY_CZ:
 		cz_hwmgr_init(hwmgr);
 		break;
+	case AMD_FAMILY_VI:
+		switch (hwmgr->chip_id) {
+		case CHIP_TONGA:
+			tonga_hwmgr_init(hwmgr);
+			break;
+		default:
+			return -EINVAL;
+		}
+		break;
 	default:
 		return -EINVAL;
 	}
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
new file mode 100644
index 0000000..c9e6c2d
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/hwmgr_ppt.h
@@ -0,0 +1,105 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef PP_HWMGR_PPT_H
+#define PP_HWMGR_PPT_H
+
+#include "hardwaremanager.h"
+#include "smumgr.h"
+#include "atom-types.h"
+
+struct phm_ppt_v1_clock_voltage_dependency_record {
+	uint32_t clk;
+	uint8_t vddInd;
+	uint16_t vdd_offset;
+	uint16_t vddc;
+	uint16_t vddgfx;
+	uint16_t vddci;
+	uint16_t mvdd;
+	uint8_t phases;
+	uint8_t cks_enable;
+	uint8_t cks_voffset;
+};
+
+typedef struct phm_ppt_v1_clock_voltage_dependency_record phm_ppt_v1_clock_voltage_dependency_record;
+
+struct phm_ppt_v1_clock_voltage_dependency_table {
+	uint32_t count;                                            /* Number of entries. */
+	phm_ppt_v1_clock_voltage_dependency_record entries[1];     /* Dynamically allocate count entries. */
+};
+
+typedef struct phm_ppt_v1_clock_voltage_dependency_table phm_ppt_v1_clock_voltage_dependency_table;
+
+
+/* Multimedia Clock Voltage Dependency records and table */
+struct phm_ppt_v1_mm_clock_voltage_dependency_record {
+	uint32_t  dclk;                                              /* UVD D-clock */
+	uint32_t  vclk;                                              /* UVD V-clock */
+	uint32_t  eclk;                                              /* VCE clock */
+	uint32_t  aclk;                                              /* ACP clock */
+	uint32_t  samclock;                                          /* SAMU clock */
+	uint8_t	vddcInd;
+	uint16_t vddgfx_offset;
+	uint16_t vddc;
+	uint16_t vddgfx;
+	uint8_t phases;
+};
+typedef struct phm_ppt_v1_mm_clock_voltage_dependency_record phm_ppt_v1_mm_clock_voltage_dependency_record;
+
+struct phm_ppt_v1_mm_clock_voltage_dependency_table {
+	uint32_t count;													/* Number of entries. */
+	phm_ppt_v1_mm_clock_voltage_dependency_record entries[1];		/* Dynamically allocate count entries. */
+};
+typedef struct phm_ppt_v1_mm_clock_voltage_dependency_table phm_ppt_v1_mm_clock_voltage_dependency_table;
+
+struct phm_ppt_v1_voltage_lookup_record {
+	uint16_t us_calculated;
+	uint16_t us_vdd;												/* Base voltage */
+	uint16_t us_cac_low;
+	uint16_t us_cac_mid;
+	uint16_t us_cac_high;
+};
+typedef struct phm_ppt_v1_voltage_lookup_record phm_ppt_v1_voltage_lookup_record;
+
+struct phm_ppt_v1_voltage_lookup_table {
+	uint32_t count;
+	phm_ppt_v1_voltage_lookup_record entries[1];    /* Dynamically allocate count entries. */
+};
+typedef struct phm_ppt_v1_voltage_lookup_table phm_ppt_v1_voltage_lookup_table;
+
+/* PCIE records and Table */
+
+struct phm_ppt_v1_pcie_record {
+	uint8_t gen_speed;
+	uint8_t lane_width;
+};
+typedef struct phm_ppt_v1_pcie_record phm_ppt_v1_pcie_record;
+
+struct phm_ppt_v1_pcie_table {
+	uint32_t count;                                            /* Number of entries. */
+	phm_ppt_v1_pcie_record entries[1];                         /* Dynamically allocate count entries. */
+};
+typedef struct phm_ppt_v1_pcie_table phm_ppt_v1_pcie_table;
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
new file mode 100644
index 0000000..9af2f59
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
@@ -0,0 +1,704 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/fb.h>
+
+#include "ppatomctrl.h"
+#include "atombios.h"
+#include "cgs_common.h"
+#include "pp_debug.h"
+#define MEM_ID_MASK           0xff000000
+#define MEM_ID_SHIFT          24
+#define CLOCK_RANGE_MASK      0x00ffffff
+#define CLOCK_RANGE_SHIFT     0
+#define LOW_NIBBLE_MASK       0xf
+#define DATA_EQU_PREV         0
+#define DATA_FROM_TABLE       4
+
+union voltage_object_info {
+	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
+	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
+	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
+};
+
+static int atomctrl_retrieve_ac_timing(
+		uint8_t index,
+		ATOM_INIT_REG_BLOCK *reg_block,
+		pp_atomctrl_mc_reg_table *table)
+{
+	uint32_t i, j;
+	uint8_t tmem_id;
+	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
+		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
+
+	uint8_t num_ranges = 0;
+
+	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
+			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
+		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
+
+		if (index == tmem_id) {
+			table->mc_reg_table_entry[num_ranges].mclk_max =
+				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
+						CLOCK_RANGE_SHIFT);
+
+			for (i = 0, j = 1; i < table->last; i++) {
+				if ((table->mc_reg_address[i].uc_pre_reg_data &
+							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
+					table->mc_reg_table_entry[num_ranges].mc_data[i] =
+						(uint32_t)*((uint32_t *)reg_data + j);
+					j++;
+				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
+							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
+					table->mc_reg_table_entry[num_ranges].mc_data[i] =
+						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
+				}
+			}
+			num_ranges++;
+		}
+
+		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
+			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
+	}
+
+	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
+			"Invalid VramInfo table.", return -1);
+	table->num_entries = num_ranges;
+
+	return 0;
+}
+
+/**
+ * Get memory clock AC timing registers index from VBIOS table
+ * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
+ * @param    reg_block the address ATOM_INIT_REG_BLOCK
+ * @param    table the address of MCRegTable
+ * @return   PP_Result_OK
+ */
+static int atomctrl_set_mc_reg_address_table(
+		ATOM_INIT_REG_BLOCK *reg_block,
+		pp_atomctrl_mc_reg_table *table)
+{
+	uint8_t i = 0;
+	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
+			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
+	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
+
+	num_entries--;        /* subtract 1 data end mark entry */
+
+	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
+			"Invalid VramInfo table.", return -1);
+
+	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
+	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
+			(i < num_entries)) {
+		table->mc_reg_address[i].s1 =
+			(uint16_t)(le16_to_cpu(format->usRegIndex));
+		table->mc_reg_address[i].uc_pre_reg_data =
+			format->ucPreRegDataLength;
+
+		i++;
+		format = (ATOM_INIT_REG_INDEX_FORMAT *)
+			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
+	}
+
+	table->last = i;
+	return 0;
+}
+
+
+int atomctrl_initialize_mc_reg_table(
+		struct pp_hwmgr *hwmgr,
+		uint8_t module_index,
+		pp_atomctrl_mc_reg_table *table)
+{
+	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
+	ATOM_INIT_REG_BLOCK *reg_block;
+	int result = 0;
+	u8 frev, crev;
+	u16 size;
+
+	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
+		cgs_atom_get_data_table(hwmgr->device,
+				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
+
+	if (module_index >= vram_info->ucNumOfVRAMModule) {
+		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
+		result = -1;
+	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
+		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
+		result = -1;
+	}
+
+	if (0 == result) {
+		reg_block = (ATOM_INIT_REG_BLOCK *)
+			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
+		result = atomctrl_set_mc_reg_address_table(reg_block, table);
+	}
+
+	if (0 == result) {
+		result = atomctrl_retrieve_ac_timing(module_index,
+					reg_block, table);
+	}
+
+	return result;
+}
+
+/**
+ * Set DRAM timings based on engine clock and memory clock.
+ */
+int atomctrl_set_engine_dram_timings_rv770(
+		struct pp_hwmgr *hwmgr,
+		uint32_t engine_clock,
+		uint32_t memory_clock)
+{
+	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
+
+	/* They are both in 10KHz Units. */
+	engine_clock_parameters.ulTargetEngineClock =
+		(uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
+	engine_clock_parameters.ulTargetEngineClock |=
+		(COMPUTE_ENGINE_PLL_PARAM << 24);
+
+	/* in 10 khz units.*/
+	engine_clock_parameters.sReserved.ulClock =
+		(uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
+	return cgs_atom_exec_cmd_table(hwmgr->device,
+			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
+			&engine_clock_parameters);
+}
+
+/**
+ * Private Function to get the PowerPlay Table Address.
+ * WARNING: The tabled returned by this function is in
+ * dynamically allocated memory.
+ * The caller has to release if by calling kfree.
+ */
+static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
+{
+	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
+	u8 frev, crev;
+	u16 size;
+	union voltage_object_info *voltage_info;
+
+	voltage_info = (union voltage_object_info *)
+		cgs_atom_get_data_table(device, index,
+			&size, &frev, &crev);
+
+	if (voltage_info != NULL)
+		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
+	else
+		return NULL;
+}
+
+static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
+		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
+		uint8_t voltage_type, uint8_t voltage_mode)
+{
+	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
+	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
+	uint8_t *start = (uint8_t *)voltage_object_info_table;
+
+	while (offset < size) {
+		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
+			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
+
+		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
+			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
+			return voltage_object;
+
+		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
+	}
+
+	return NULL;
+}
+
+/** atomctrl_get_memory_pll_dividers_si().
+ *
+ * @param hwmgr                 input parameter: pointer to HwMgr
+ * @param clock_value             input parameter: memory clock
+ * @param dividers                 output parameter: memory PLL dividers
+ * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
+ */
+int atomctrl_get_memory_pll_dividers_si(
+		struct pp_hwmgr *hwmgr,
+		uint32_t clock_value,
+		pp_atomctrl_memory_clock_param *mpll_param,
+		bool strobe_mode)
+{
+	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
+	int result;
+
+	mpll_parameters.ulClock = (uint32_t) clock_value;
+	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
+
+	result = cgs_atom_exec_cmd_table
+		(hwmgr->device,
+		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
+		 &mpll_parameters);
+
+	if (0 == result) {
+		mpll_param->mpll_fb_divider.clk_frac =
+			mpll_parameters.ulFbDiv.usFbDivFrac;
+		mpll_param->mpll_fb_divider.cl_kf =
+			mpll_parameters.ulFbDiv.usFbDiv;
+		mpll_param->mpll_post_divider =
+			(uint32_t)mpll_parameters.ucPostDiv;
+		mpll_param->vco_mode =
+			(uint32_t)(mpll_parameters.ucPllCntlFlag &
+					MPLL_CNTL_FLAG_VCO_MODE_MASK);
+		mpll_param->yclk_sel =
+			(uint32_t)((mpll_parameters.ucPllCntlFlag &
+						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
+		mpll_param->qdr =
+			(uint32_t)((mpll_parameters.ucPllCntlFlag &
+						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
+		mpll_param->half_rate =
+			(uint32_t)((mpll_parameters.ucPllCntlFlag &
+						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
+		mpll_param->dll_speed =
+			(uint32_t)(mpll_parameters.ucDllSpeed);
+		mpll_param->bw_ctrl =
+			(uint32_t)(mpll_parameters.ucBWCntl);
+	}
+
+	return result;
+}
+
+int atomctrl_get_engine_pll_dividers_vi(
+		struct pp_hwmgr *hwmgr,
+		uint32_t clock_value,
+		pp_atomctrl_clock_dividers_vi *dividers)
+{
+	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
+	int result;
+
+	pll_patameters.ulClock.ulClock = clock_value;
+	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
+
+	result = cgs_atom_exec_cmd_table
+		(hwmgr->device,
+		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
+		 &pll_patameters);
+
+	if (0 == result) {
+		dividers->pll_post_divider =
+			pll_patameters.ulClock.ucPostDiv;
+		dividers->real_clock =
+			pll_patameters.ulClock.ulClock;
+
+		dividers->ul_fb_div.ul_fb_div_frac =
+			pll_patameters.ulFbDiv.usFbDivFrac;
+		dividers->ul_fb_div.ul_fb_div =
+			pll_patameters.ulFbDiv.usFbDiv;
+
+		dividers->uc_pll_ref_div =
+			pll_patameters.ucPllRefDiv;
+		dividers->uc_pll_post_div =
+			pll_patameters.ucPllPostDiv;
+		dividers->uc_pll_cntl_flag =
+			pll_patameters.ucPllCntlFlag;
+	}
+
+	return result;
+}
+
+int atomctrl_get_dfs_pll_dividers_vi(
+		struct pp_hwmgr *hwmgr,
+		uint32_t clock_value,
+		pp_atomctrl_clock_dividers_vi *dividers)
+{
+	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
+	int result;
+
+	pll_patameters.ulClock.ulClock = clock_value;
+	pll_patameters.ulClock.ucPostDiv =
+		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
+
+	result = cgs_atom_exec_cmd_table
+		(hwmgr->device,
+		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
+		 &pll_patameters);
+
+	if (0 == result) {
+		dividers->pll_post_divider =
+			pll_patameters.ulClock.ucPostDiv;
+		dividers->real_clock =
+			pll_patameters.ulClock.ulClock;
+
+		dividers->ul_fb_div.ul_fb_div_frac =
+			pll_patameters.ulFbDiv.usFbDivFrac;
+		dividers->ul_fb_div.ul_fb_div =
+			pll_patameters.ulFbDiv.usFbDiv;
+
+		dividers->uc_pll_ref_div =
+			pll_patameters.ucPllRefDiv;
+		dividers->uc_pll_post_div =
+			pll_patameters.ucPllPostDiv;
+		dividers->uc_pll_cntl_flag =
+			pll_patameters.ucPllCntlFlag;
+	}
+
+	return result;
+}
+
+/**
+ * Get the reference clock in 10KHz
+ */
+uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
+{
+	ATOM_FIRMWARE_INFO *fw_info;
+	u8 frev, crev;
+	u16 size;
+	uint32_t clock;
+
+	fw_info = (ATOM_FIRMWARE_INFO *)
+		cgs_atom_get_data_table(hwmgr->device,
+			GetIndexIntoMasterTable(DATA, FirmwareInfo),
+			&size, &frev, &crev);
+
+	if (fw_info == NULL)
+		clock = 2700;
+	else
+		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
+
+	return clock;
+}
+
+/**
+ * Returns 0 if the given voltage type is controlled by GPIO pins.
+ * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
+ * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
+ * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
+ */
+bool atomctrl_is_voltage_controled_by_gpio_v3(
+		struct pp_hwmgr *hwmgr,
+		uint8_t voltage_type,
+		uint8_t voltage_mode)
+{
+	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
+		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
+	bool ret;
+
+	PP_ASSERT_WITH_CODE((NULL != voltage_info),
+			"Could not find Voltage Table in BIOS.", return -1;);
+
+	ret = (NULL != atomctrl_lookup_voltage_type_v3
+			(voltage_info, voltage_type, voltage_mode)) ? 0 : 1;
+
+	return ret;
+}
+
+int atomctrl_get_voltage_table_v3(
+		struct pp_hwmgr *hwmgr,
+		uint8_t voltage_type,
+		uint8_t voltage_mode,
+		pp_atomctrl_voltage_table *voltage_table)
+{
+	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
+		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
+	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
+	unsigned int i;
+
+	PP_ASSERT_WITH_CODE((NULL != voltage_info),
+			"Could not find Voltage Table in BIOS.", return -1;);
+
+	voltage_object = atomctrl_lookup_voltage_type_v3
+		(voltage_info, voltage_type, voltage_mode);
+
+	if (voltage_object == NULL)
+		return -1;
+
+	PP_ASSERT_WITH_CODE(
+			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
+			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
+			"Too many voltage entries!",
+			return -1;
+			);
+
+	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
+		voltage_table->entries[i].value =
+			voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
+		voltage_table->entries[i].smio_low =
+			voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
+	}
+
+	voltage_table->mask_low    =
+		voltage_object->asGpioVoltageObj.ulGpioMaskVal;
+	voltage_table->count      =
+		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
+	voltage_table->phase_delay =
+		voltage_object->asGpioVoltageObj.ucPhaseDelay;
+
+	return 0;
+}
+
+static bool atomctrl_lookup_gpio_pin(
+		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
+		const uint32_t pinId,
+		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
+{
+	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
+	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
+	uint8_t *start = (uint8_t *)gpio_lookup_table;
+
+	while (offset < size) {
+		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
+			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
+
+		if (pinId == pin_assignment->ucGPIO_ID) {
+			gpio_pin_assignment->uc_gpio_pin_bit_shift =
+				pin_assignment->ucGpioPinBitShift;
+			gpio_pin_assignment->us_gpio_pin_aindex =
+				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
+			return 0;
+		}
+
+		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
+	}
+
+	return 1;
+}
+
+/**
+ * Private Function to get the PowerPlay Table Address.
+ * WARNING: The tabled returned by this function is in
+ * dynamically allocated memory.
+ * The caller has to release if by calling kfree.
+ */
+static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
+{
+	u8 frev, crev;
+	u16 size;
+	void *table_address;
+
+	table_address = (ATOM_GPIO_PIN_LUT *)
+		cgs_atom_get_data_table(device,
+				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
+				&size, &frev, &crev);
+
+	PP_ASSERT_WITH_CODE((NULL != table_address),
+			"Error retrieving BIOS Table Address!", return NULL;);
+
+	return (ATOM_GPIO_PIN_LUT *)table_address;
+}
+
+/**
+ * Returns 1 if the given pin id find in lookup table.
+ */
+bool atomctrl_get_pp_assign_pin(
+		struct pp_hwmgr *hwmgr,
+		const uint32_t pinId,
+		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
+{
+	bool bRet = 0;
+	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
+		get_gpio_lookup_table(hwmgr->device);
+
+	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
+			"Could not find GPIO lookup Table in BIOS.", return -1);
+
+	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
+		gpio_pin_assignment);
+
+	return bRet;
+}
+
+/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
+ * @param hwmgr               	input: pointer to hwManager
+ * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
+ * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
+ *                                   		which is define in PPTable SCLK/VDDC dependence
+ *				table associated with this virtual_voltage_Id
+ * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
+ * @param voltage		       output: real voltage level in unit of mv
+ */
+int atomctrl_get_voltage_evv_on_sclk(
+		struct pp_hwmgr *hwmgr,
+		uint8_t voltage_type,
+		uint32_t sclk, uint16_t virtual_voltage_Id,
+		uint16_t *voltage)
+{
+	int result;
+	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
+
+	get_voltage_info_param_space.ucVoltageType   =
+		voltage_type;
+	get_voltage_info_param_space.ucVoltageMode   =
+		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
+	get_voltage_info_param_space.usVoltageLevel  =
+		virtual_voltage_Id;
+	get_voltage_info_param_space.ulSCLKFreq      =
+		sclk;
+
+	result = cgs_atom_exec_cmd_table(hwmgr->device,
+			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
+			&get_voltage_info_param_space);
+
+	if (0 != result)
+		return result;
+
+	*voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
+			(&get_voltage_info_param_space))->usVoltageLevel;
+
+	return result;
+}
+
+/**
+ * Get the mpll reference clock in 10KHz
+ */
+uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
+{
+	ATOM_COMMON_TABLE_HEADER *fw_info;
+	uint32_t clock;
+	u8 frev, crev;
+	u16 size;
+
+	fw_info = (ATOM_COMMON_TABLE_HEADER *)
+		cgs_atom_get_data_table(hwmgr->device,
+				GetIndexIntoMasterTable(DATA, FirmwareInfo),
+				&size, &frev, &crev);
+
+	if (fw_info == NULL)
+		clock = 2700;
+	else {
+		if ((fw_info->ucTableFormatRevision == 2) &&
+			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
+			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
+				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
+			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
+		} else {
+			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
+				(ATOM_FIRMWARE_INFO *)fw_info;
+			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
+		}
+	}
+
+	return clock;
+}
+
+/**
+ * Get the asic internal spread spectrum table
+ */
+static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
+{
+	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
+	u8 frev, crev;
+	u16 size;
+
+	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
+		cgs_atom_get_data_table(device,
+			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
+			&size, &frev, &crev);
+
+	return table;
+}
+
+/**
+ * Get the asic internal spread spectrum assignment
+ */
+static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
+		const uint8_t clockSource,
+		const uint32_t clockSpeed,
+		pp_atomctrl_internal_ss_info *ssEntry)
+{
+	ATOM_ASIC_INTERNAL_SS_INFO *table;
+	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
+	int entry_found = 0;
+
+	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
+
+	table = asic_internal_ss_get_ss_table(hwmgr->device);
+
+	if (NULL == table)
+		return -1;
+
+	ssInfo = &table->asSpreadSpectrum[0];
+
+	while (((uint8_t *)ssInfo - (uint8_t *)table) <
+		le16_to_cpu(table->sHeader.usStructureSize)) {
+		if ((clockSource == ssInfo->ucClockIndication) &&
+			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
+			entry_found = 1;
+			break;
+		}
+
+		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
+				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
+	}
+
+	if (entry_found) {
+		ssEntry->speed_spectrum_percentage =
+			ssInfo->usSpreadSpectrumPercentage;
+		ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
+
+		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
+			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
+			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
+			ssEntry->speed_spectrum_rate /= 100;
+		}
+
+		switch (ssInfo->ucSpreadSpectrumMode) {
+		case 0:
+			ssEntry->speed_spectrum_mode =
+				pp_atomctrl_spread_spectrum_mode_down;
+			break;
+		case 1:
+			ssEntry->speed_spectrum_mode =
+				pp_atomctrl_spread_spectrum_mode_center;
+			break;
+		default:
+			ssEntry->speed_spectrum_mode =
+				pp_atomctrl_spread_spectrum_mode_down;
+			break;
+		}
+	}
+
+	return entry_found ? 0 : 1;
+}
+
+/**
+ * Get the memory clock spread spectrum info
+ */
+int atomctrl_get_memory_clock_spread_spectrum(
+		struct pp_hwmgr *hwmgr,
+		const uint32_t memory_clock,
+		pp_atomctrl_internal_ss_info *ssInfo)
+{
+	return asic_internal_ss_get_ss_asignment(hwmgr,
+			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
+}
+/**
+ * Get the engine clock spread spectrum info
+ */
+int atomctrl_get_engine_clock_spread_spectrum(
+		struct pp_hwmgr *hwmgr,
+		const uint32_t engine_clock,
+		pp_atomctrl_internal_ss_info *ssInfo)
+{
+	return asic_internal_ss_get_ss_asignment(hwmgr,
+			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
+}
+
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
new file mode 100644
index 0000000..23da436
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.h
@@ -0,0 +1,237 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef PP_ATOMVOLTAGECTRL_H
+#define PP_ATOMVOLTAGECTRL_H
+
+#include "hwmgr.h"
+
+#define MEM_TYPE_GDDR5  0x50
+#define MEM_TYPE_GDDR4  0x40
+#define MEM_TYPE_GDDR3  0x30
+#define MEM_TYPE_DDR2   0x20
+#define MEM_TYPE_GDDR1  0x10
+#define MEM_TYPE_DDR3   0xb0
+#define MEM_TYPE_MASK   0xF0
+
+
+/* As returned from PowerConnectorDetectionTable. */
+#define PP_ATOM_POWER_BUDGET_DISABLE_OVERDRIVE  0x80
+#define PP_ATOM_POWER_BUDGET_SHOW_WARNING       0x40
+#define PP_ATOM_POWER_BUDGET_SHOW_WAIVER        0x20
+#define PP_ATOM_POWER_POWER_BUDGET_BEHAVIOUR    0x0F
+
+/* New functions for Evergreen and beyond. */
+#define PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES 32
+
+struct pp_atomctrl_clock_dividers {
+	uint32_t pll_post_divider;
+	uint32_t pll_feedback_divider;
+	uint32_t pll_ref_divider;
+	bool  enable_post_divider;
+};
+
+typedef struct pp_atomctrl_clock_dividers pp_atomctrl_clock_dividers;
+
+union pp_atomctrl_tcipll_fb_divider {
+	struct {
+		uint32_t ul_fb_div_frac : 14;
+		uint32_t ul_fb_div : 12;
+		uint32_t un_used : 6;
+	};
+	uint32_t ul_fb_divider;
+};
+
+typedef union pp_atomctrl_tcipll_fb_divider pp_atomctrl_tcipll_fb_divider;
+
+struct pp_atomctrl_clock_dividers_rv730 {
+	uint32_t pll_post_divider;
+	pp_atomctrl_tcipll_fb_divider mpll_feedback_divider;
+	uint32_t pll_ref_divider;
+	bool  enable_post_divider;
+	bool  enable_dithen;
+	uint32_t vco_mode;
+};
+typedef struct pp_atomctrl_clock_dividers_rv730 pp_atomctrl_clock_dividers_rv730;
+
+
+struct pp_atomctrl_clock_dividers_kong {
+	uint32_t    pll_post_divider;
+	uint32_t    real_clock;
+};
+typedef struct pp_atomctrl_clock_dividers_kong pp_atomctrl_clock_dividers_kong;
+
+struct pp_atomctrl_clock_dividers_ci {
+	uint32_t    pll_post_divider;               /* post divider value */
+	uint32_t    real_clock;
+	pp_atomctrl_tcipll_fb_divider   ul_fb_div;         /* Output Parameter: PLL FB divider */
+	uint8_t   uc_pll_ref_div;                      /* Output Parameter: PLL ref divider */
+	uint8_t   uc_pll_post_div;                      /* Output Parameter: PLL post divider */
+	uint8_t   uc_pll_cntl_flag;                    /*Output Flags: control flag */
+};
+typedef struct pp_atomctrl_clock_dividers_ci pp_atomctrl_clock_dividers_ci;
+
+struct pp_atomctrl_clock_dividers_vi {
+	uint32_t    pll_post_divider;               /* post divider value */
+	uint32_t    real_clock;
+	pp_atomctrl_tcipll_fb_divider   ul_fb_div;         /*Output Parameter: PLL FB divider */
+	uint8_t   uc_pll_ref_div;                      /*Output Parameter: PLL ref divider */
+	uint8_t   uc_pll_post_div;                     /*Output Parameter: PLL post divider */
+	uint8_t   uc_pll_cntl_flag;                    /*Output Flags: control flag */
+};
+typedef struct pp_atomctrl_clock_dividers_vi pp_atomctrl_clock_dividers_vi;
+
+union pp_atomctrl_s_mpll_fb_divider {
+	struct {
+		uint32_t cl_kf : 12;
+		uint32_t clk_frac : 12;
+		uint32_t un_used : 8;
+	};
+	uint32_t ul_fb_divider;
+};
+typedef union pp_atomctrl_s_mpll_fb_divider pp_atomctrl_s_mpll_fb_divider;
+
+enum pp_atomctrl_spread_spectrum_mode {
+	pp_atomctrl_spread_spectrum_mode_down = 0,
+	pp_atomctrl_spread_spectrum_mode_center
+};
+typedef enum pp_atomctrl_spread_spectrum_mode pp_atomctrl_spread_spectrum_mode;
+
+struct pp_atomctrl_memory_clock_param {
+	pp_atomctrl_s_mpll_fb_divider mpll_fb_divider;
+	uint32_t mpll_post_divider;
+	uint32_t bw_ctrl;
+	uint32_t dll_speed;
+	uint32_t vco_mode;
+	uint32_t yclk_sel;
+	uint32_t qdr;
+	uint32_t half_rate;
+};
+typedef struct pp_atomctrl_memory_clock_param pp_atomctrl_memory_clock_param;
+
+struct pp_atomctrl_internal_ss_info {
+	uint32_t speed_spectrum_percentage;                      /* in 1/100 percentage */
+	uint32_t speed_spectrum_rate;                            /* in KHz */
+	pp_atomctrl_spread_spectrum_mode speed_spectrum_mode;
+};
+typedef struct pp_atomctrl_internal_ss_info pp_atomctrl_internal_ss_info;
+
+#ifndef NUMBER_OF_M3ARB_PARAMS
+#define NUMBER_OF_M3ARB_PARAMS 3
+#endif
+
+#ifndef NUMBER_OF_M3ARB_PARAM_SETS
+#define NUMBER_OF_M3ARB_PARAM_SETS 10
+#endif
+
+struct pp_atomctrl_kong_system_info {
+	uint32_t			ul_bootup_uma_clock;          /* in 10kHz unit */
+	uint16_t			us_max_nb_voltage;            /* high NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */
+	uint16_t			us_min_nb_voltage;            /* low NB voltage, calculated using current VDDNB (D24F2xDC) and VDDNB offset fuse; */
+	uint16_t			us_bootup_nb_voltage;         /* boot up NB voltage */
+	uint8_t			uc_htc_tmp_lmt;               /* bit [22:16] of D24F3x64 Hardware Thermal Control (HTC) Register, may not be needed, TBD */
+	uint8_t			uc_tj_offset;                /* bit [28:22] of D24F3xE4 Thermtrip Status Register,may not be needed, TBD */
+	/* 0: default 1: uvd 2: fs-3d */
+	uint32_t          ul_csr_m3_srb_cntl[NUMBER_OF_M3ARB_PARAM_SETS][NUMBER_OF_M3ARB_PARAMS];/* arrays with values for CSR M3 arbiter for default */
+};
+typedef struct pp_atomctrl_kong_system_info pp_atomctrl_kong_system_info;
+
+struct pp_atomctrl_memory_info {
+	uint8_t memory_vendor;
+	uint8_t memory_type;
+};
+typedef struct pp_atomctrl_memory_info pp_atomctrl_memory_info;
+
+#define MAX_AC_TIMING_ENTRIES 16
+
+struct pp_atomctrl_memory_clock_range_table {
+	uint8_t   num_entries;
+	uint8_t   rsv[3];
+
+	uint32_t mclk[MAX_AC_TIMING_ENTRIES];
+};
+typedef struct pp_atomctrl_memory_clock_range_table pp_atomctrl_memory_clock_range_table;
+
+struct pp_atomctrl_voltage_table_entry {
+	uint16_t value;
+	uint32_t smio_low;
+};
+
+typedef struct pp_atomctrl_voltage_table_entry pp_atomctrl_voltage_table_entry;
+
+struct pp_atomctrl_voltage_table {
+	uint32_t count;
+	uint32_t mask_low;
+	uint32_t phase_delay;   /* Used for ATOM_GPIO_VOLTAGE_OBJECT_V3 and later */
+	pp_atomctrl_voltage_table_entry entries[PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES];
+};
+
+typedef struct pp_atomctrl_voltage_table pp_atomctrl_voltage_table;
+
+#define VBIOS_MC_REGISTER_ARRAY_SIZE           32
+#define VBIOS_MAX_AC_TIMING_ENTRIES            20
+
+struct pp_atomctrl_mc_reg_entry {
+	uint32_t           mclk_max;
+	uint32_t mc_data[VBIOS_MC_REGISTER_ARRAY_SIZE];
+};
+typedef struct pp_atomctrl_mc_reg_entry pp_atomctrl_mc_reg_entry;
+
+struct pp_atomctrl_mc_register_address {
+	uint16_t s1;
+	uint8_t  uc_pre_reg_data;
+};
+
+typedef struct pp_atomctrl_mc_register_address pp_atomctrl_mc_register_address;
+
+struct pp_atomctrl_mc_reg_table {
+	uint8_t                         last;                    /* number of registers */
+	uint8_t                         num_entries;             /* number of AC timing entries */
+	pp_atomctrl_mc_reg_entry        mc_reg_table_entry[VBIOS_MAX_AC_TIMING_ENTRIES];
+	pp_atomctrl_mc_register_address mc_reg_address[VBIOS_MC_REGISTER_ARRAY_SIZE];
+};
+typedef struct pp_atomctrl_mc_reg_table pp_atomctrl_mc_reg_table;
+
+struct pp_atomctrl_gpio_pin_assignment {
+	uint16_t                   us_gpio_pin_aindex;
+	uint8_t                    uc_gpio_pin_bit_shift;
+};
+typedef struct pp_atomctrl_gpio_pin_assignment pp_atomctrl_gpio_pin_assignment;
+
+extern bool atomctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr, const uint32_t pinId, pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment);
+extern int atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage);
+extern uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr);
+extern int atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t memory_clock, pp_atomctrl_internal_ss_info *ssInfo);
+extern int atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr *hwmgr, const uint32_t engine_clock, pp_atomctrl_internal_ss_info *ssInfo);
+extern int atomctrl_initialize_mc_reg_table(struct pp_hwmgr *hwmgr, uint8_t module_index, pp_atomctrl_mc_reg_table *table);
+extern int atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock);
+extern uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr);
+extern int atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param, bool strobe_mode);
+extern int atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
+extern int atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_vi *dividers);
+extern bool atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode);
+extern int atomctrl_get_voltage_table_v3(struct pp_hwmgr *hwmgr, uint8_t voltage_type, uint8_t voltage_mode, pp_atomctrl_voltage_table *voltage_table);
+
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
new file mode 100644
index 0000000..7269ac1
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppinterrupt.h
@@ -0,0 +1,42 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#ifndef PP_INTERRUPT_H
+#define PP_INTERRUPT_H
+
+/**
+ * The type of the interrupt callback functions in PowerPlay
+ */
+typedef void (*pp_interrupt_callback) (void *context, uint32_t ul_context_data);
+
+/**
+ * Event Manager action chain list information
+ */
+struct pp_interrupt_registration_info {
+	pp_interrupt_callback callback;  /* Pointer to callback function */
+	void *context;                  /* Pointer to callback function context */
+	uint32_t *interrupt_enable_id;    /* Registered interrupt id */
+};
+
+typedef struct pp_interrupt_registration_info pp_interrupt_registration_info;
+
+#endif
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
new file mode 100644
index 0000000..186496a
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.c
@@ -0,0 +1,64 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#include <linux/types.h>
+#include "atom-types.h"
+#include "atombios.h"
+#include "pppcielanes.h"
+
+/** \file
+ * Functions related to PCIe lane changes.
+ */
+
+/* For converting from number of lanes to lane bits.  */
+static const unsigned char pp_r600_encode_lanes[] = {
+	0,          /*  0 Not Supported  */
+	1,          /*  1 Lane  */
+	2,          /*  2 Lanes  */
+	0,          /*  3 Not Supported  */
+	3,          /*  4 Lanes  */
+	0,          /*  5 Not Supported  */
+	0,          /*  6 Not Supported  */
+	0,          /*  7 Not Supported  */
+	4,          /*  8 Lanes  */
+	0,          /*  9 Not Supported  */
+	0,          /* 10 Not Supported  */
+	0,          /* 11 Not Supported  */
+	5,          /* 12 Lanes (Not actually supported)  */
+	0,          /* 13 Not Supported  */
+	0,          /* 14 Not Supported  */
+	0,          /* 15 Not Supported  */
+	6           /* 16 Lanes  */
+};
+
+static const unsigned char pp_r600_decoded_lanes[8] = { 16, 1, 2, 4, 8, 12, 16, };
+
+uint8_t encode_pcie_lane_width(uint32_t num_lanes)
+{
+	return pp_r600_encode_lanes[num_lanes];
+}
+
+uint8_t decode_pcie_lane_width(uint32_t num_lanes)
+{
+	return pp_r600_decoded_lanes[num_lanes];
+}
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
new file mode 100644
index 0000000..70b163b
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/pppcielanes.h
@@ -0,0 +1,31 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef PP_PCIELANES_H
+#define PP_PCIELANES_H
+
+extern uint8_t encode_pcie_lane_width(uint32_t num_lanes);
+extern uint8_t decode_pcie_lane_width(uint32_t num_lanes);
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
new file mode 100644
index 0000000..080d69d
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_dyn_defaults.h
@@ -0,0 +1,107 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#ifndef TONGA_DYN_DEFAULTS_H
+#define TONGA_DYN_DEFAULTS_H
+
+
+/** \file
+ * Volcanic Islands Dynamic default parameters.
+ */
+
+enum TONGAdpm_TrendDetection {
+	TONGAdpm_TrendDetection_AUTO,
+	TONGAdpm_TrendDetection_UP,
+	TONGAdpm_TrendDetection_DOWN
+};
+typedef enum TONGAdpm_TrendDetection TONGAdpm_TrendDetection;
+
+/* Bit vector representing same fields as hardware register. */
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0              0x3FFFC102  /* CP_Gfx_busy */
+/* HDP_busy */
+/* IH_busy */
+/* DRM_busy */
+/* DRMDMA_busy */
+/* UVD_busy */
+/* VCE_busy */
+/* ACP_busy */
+/* SAMU_busy */
+/* AVP_busy  */
+/* SDMA enabled */
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1              0x000400  /* FE_Gfx_busy  - Intended for primary usage.   Rest are for flexibility. */
+/* SH_Gfx_busy */
+/* RB_Gfx_busy */
+/* VCE_busy */
+
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2              0xC00080  /* SH_Gfx_busy - Intended for primary usage.   Rest are for flexibility. */
+/* FE_Gfx_busy */
+/* RB_Gfx_busy */
+/* ACP_busy */
+
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3              0xC00200  /* RB_Gfx_busy - Intended for primary usage.   Rest are for flexibility. */
+/* FE_Gfx_busy */
+/* SH_Gfx_busy */
+/* UVD_busy */
+
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4              0xC01680  /* UVD_busy */
+/* VCE_busy */
+/* ACP_busy */
+/* SAMU_busy */
+
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5              0xC00033  /* GFX, HDP, DRMDMA */
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6              0xC00033  /* GFX, HDP, DRMDMA */
+#define PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7              0x3FFFC000  /* GFX, HDP, DRMDMA */
+
+
+/* thermal protection counter (units).*/
+#define PPTONGA_THERMALPROTECTCOUNTER_DFLT            0x200 /* ~19us */
+
+/* static screen threshold unit */
+#define PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT        0
+
+/* static screen threshold */
+#define PPTONGA_STATICSCREENTHRESHOLD_DFLT            0x00C8
+
+/* gfx idle clock stop threshold */
+#define PPTONGA_GFXIDLECLOCKSTOPTHRESHOLD_DFLT        0x200 /* ~19us with static screen threshold unit of 0 */
+
+/* Fixed reference divider to use when building baby stepping tables. */
+#define PPTONGA_REFERENCEDIVIDER_DFLT                  4
+
+/*
+ * ULV voltage change delay time
+ * Used to be delay_vreg in N.I. split for S.I.
+ * Using N.I. delay_vreg value as default
+ * ReferenceClock = 2700
+ * VoltageResponseTime = 1000
+ * VDDCDelayTime = (VoltageResponseTime * ReferenceClock) / 1600 = 1687
+ */
+
+#define PPTONGA_ULVVOLTAGECHANGEDELAY_DFLT             1687
+
+#define PPTONGA_CGULVPARAMETER_DFLT                    0x00040035
+#define PPTONGA_CGULVCONTROL_DFLT                      0x00007450
+#define PPTONGA_TARGETACTIVITY_DFLT                     30  /*30%  */
+#define PPTONGA_MCLK_TARGETACTIVITY_DFLT                10  /*10%  */
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
new file mode 100644
index 0000000..0feb1a8
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c
@@ -0,0 +1,5714 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/fb.h>
+#include "linux/delay.h"
+#include "pp_acpi.h"
+#include "hwmgr.h"
+#include <atombios.h>
+#include "tonga_hwmgr.h"
+#include "pptable.h"
+#include "processpptables.h"
+#include "tonga_processpptables.h"
+#include "tonga_pptable.h"
+#include "pp_debug.h"
+#include "tonga_ppsmc.h"
+#include "cgs_common.h"
+#include "pppcielanes.h"
+#include "tonga_dyn_defaults.h"
+#include "smumgr.h"
+#include "tonga_smumgr.h"
+
+#include "smu/smu_7_1_2_d.h"
+#include "smu/smu_7_1_2_sh_mask.h"
+
+#include "gmc/gmc_8_1_d.h"
+#include "gmc/gmc_8_1_sh_mask.h"
+
+#include "bif/bif_5_0_d.h"
+#include "bif/bif_5_0_sh_mask.h"
+
+#define MC_CG_ARB_FREQ_F0           0x0a
+#define MC_CG_ARB_FREQ_F1           0x0b
+#define MC_CG_ARB_FREQ_F2           0x0c
+#define MC_CG_ARB_FREQ_F3           0x0d
+
+#define MC_CG_SEQ_DRAMCONF_S0       0x05
+#define MC_CG_SEQ_DRAMCONF_S1       0x06
+#define MC_CG_SEQ_YCLK_SUSPEND      0x04
+#define MC_CG_SEQ_YCLK_RESUME       0x0a
+
+#define PCIE_BUS_CLK                10000
+#define TCLK                        (PCIE_BUS_CLK / 10)
+
+#define SMC_RAM_END 0x40000
+#define SMC_CG_IND_START            0xc0030000
+#define SMC_CG_IND_END              0xc0040000  /* First byte after SMC_CG_IND*/
+
+#define VOLTAGE_SCALE               4
+#define VOLTAGE_VID_OFFSET_SCALE1   625
+#define VOLTAGE_VID_OFFSET_SCALE2   100
+
+#define VDDC_VDDCI_DELTA            200
+#define VDDC_VDDGFX_DELTA           300
+
+#define MC_SEQ_MISC0_GDDR5_SHIFT 28
+#define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
+#define MC_SEQ_MISC0_GDDR5_VALUE 5
+
+typedef uint32_t PECI_RegistryValue;
+
+/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
+uint16_t PP_ClockStretcherLookupTable[2][4] = {
+	{600, 1050, 3, 0},
+	{600, 1050, 6, 1} };
+
+/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
+uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
+	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
+	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
+
+/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
+uint8_t PP_ClockStretchAmountConversion[2][6] = {
+	{0, 1, 3, 2, 4, 5},
+	{0, 2, 4, 5, 6, 5} };
+
+/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
+enum DPM_EVENT_SRC {
+	DPM_EVENT_SRC_ANALOG = 0,               /* Internal analog trip point */
+	DPM_EVENT_SRC_EXTERNAL = 1,             /* External (GPIO 17) signal */
+	DPM_EVENT_SRC_DIGITAL = 2,              /* Internal digital trip point (DIG_THERM_DPM) */
+	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,   /* Internal analog or external */
+	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4   /* Internal digital or external */
+};
+typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
+
+enum DISPLAY_GAP {
+	DISPLAY_GAP_VBLANK_OR_WM = 0,   /* Wait for vblank or MCHG watermark. */
+	DISPLAY_GAP_VBLANK       = 1,   /* Wait for vblank. */
+	DISPLAY_GAP_WATERMARK    = 2,   /* Wait for MCHG watermark. (Note that HW may deassert WM in VBI depending on DC_STUTTER_CNTL.) */
+	DISPLAY_GAP_IGNORE       = 3    /* Do not wait. */
+};
+typedef enum DISPLAY_GAP DISPLAY_GAP;
+
+const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
+
+struct tonga_power_state *cast_phw_tonga_power_state(
+				  struct pp_hw_power_state *hw_ps)
+{
+	PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
+				"Invalid Powerstate Type!",
+				 return NULL;);
+
+	return (struct tonga_power_state *)hw_ps;
+}
+
+const struct tonga_power_state *cast_const_phw_tonga_power_state(
+				 const struct pp_hw_power_state *hw_ps)
+{
+	PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
+				"Invalid Powerstate Type!",
+				 return NULL;);
+
+	return (const struct tonga_power_state *)hw_ps;
+}
+
+int tonga_add_voltage(struct pp_hwmgr *hwmgr,
+	phm_ppt_v1_voltage_lookup_table *look_up_table,
+	phm_ppt_v1_voltage_lookup_record *record)
+{
+	uint32_t i;
+	PP_ASSERT_WITH_CODE((NULL != look_up_table),
+		"Lookup Table empty.", return -1;);
+	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
+		"Lookup Table empty.", return -1;);
+	PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
+		"Lookup Table is full.", return -1;);
+
+	/* This is to avoid entering duplicate calculated records. */
+	for (i = 0; i < look_up_table->count; i++) {
+		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
+			if (look_up_table->entries[i].us_calculated == 1)
+				return 0;
+			else
+				break;
+		}
+	}
+
+	look_up_table->entries[i].us_calculated = 1;
+	look_up_table->entries[i].us_vdd = record->us_vdd;
+	look_up_table->entries[i].us_cac_low = record->us_cac_low;
+	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
+	look_up_table->entries[i].us_cac_high = record->us_cac_high;
+	/* Only increment the count when we're appending, not replacing duplicate entry. */
+	if (i == look_up_table->count)
+		look_up_table->count++;
+
+	return 0;
+}
+
+uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
+		uint32_t voltage)
+{
+	uint8_t count = (uint8_t) (voltage_table->count);
+	uint8_t i = 0;
+
+	PP_ASSERT_WITH_CODE((NULL != voltage_table),
+		"Voltage Table empty.", return 0;);
+	PP_ASSERT_WITH_CODE((0 != count),
+		"Voltage Table empty.", return 0;);
+
+	for (i = 0; i < count; i++) {
+		/* find first voltage bigger than requested */
+		if (voltage_table->entries[i].value >= voltage)
+			return i;
+	}
+
+	/* voltage is bigger than max voltage in the table */
+	return i - 1;
+}
+
+/**
+ * @brief PhwTonga_GetVoltageOrder
+ *  Returns index of requested voltage record in lookup(table)
+ * @param hwmgr - pointer to hardware manager
+ * @param lookupTable - lookup list to search in
+ * @param voltage - voltage to look for
+ * @return 0 on success
+ */
+uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
+		uint16_t voltage)
+{
+	uint8_t count = (uint8_t) (look_up_table->count);
+	uint8_t i;
+
+	PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
+	PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
+
+	for (i = 0; i < count; i++) {
+		/* find first voltage equal or bigger than requested */
+		if (look_up_table->entries[i].us_vdd >= voltage)
+			return i;
+	}
+
+	/* voltage is bigger than max voltage in the table */
+	return i-1;
+}
+
+bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
+{
+	/*
+	 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
+	 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
+	 * whereas voltage control is a fundemental change that will not be disabled
+	 */
+
+	return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
+					FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
+}
+
+/**
+ * Re-generate the DPM level mask value
+ * @param    hwmgr      the address of the hardware manager
+ */
+static uint32_t tonga_get_dpm_level_enable_mask_value(
+			struct tonga_single_dpm_table * dpm_table)
+{
+	uint32_t i;
+	uint32_t mask_value = 0;
+
+	for (i = dpm_table->count; i > 0; i--) {
+		mask_value = mask_value << 1;
+
+		if (dpm_table->dpm_levels[i-1].enabled)
+			mask_value |= 0x1;
+		else
+			mask_value &= 0xFFFFFFFE;
+	}
+	return mask_value;
+}
+
+/**
+ * Retrieve DPM default values from registry (if available)
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ */
+void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	phw_tonga_ulv_parm *ulv = &(data->ulv);
+	uint32_t tmp;
+
+	ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
+	data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
+	data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
+	data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
+	data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
+	data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
+	data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
+	data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
+	data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
+
+	data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
+	data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
+
+	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_ABM);
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_NonABMSupportInPPLib);
+
+	tmp = 0;
+	if (tmp == 0)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_DynamicACTiming);
+
+	tmp = 0;
+	if (0 != tmp)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_DisableMemoryTransition);
+
+	data->mclk_strobe_mode_threshold = 40000;
+	data->mclk_stutter_mode_threshold = 30000;
+	data->mclk_edc_enable_threshold = 40000;
+	data->mclk_edc_wr_enable_threshold = 40000;
+
+	tmp = 0;
+	if (tmp != 0)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_DisableMCLS);
+
+	data->pcie_gen_performance.max = PP_PCIEGen1;
+	data->pcie_gen_performance.min = PP_PCIEGen3;
+	data->pcie_gen_power_saving.max = PP_PCIEGen1;
+	data->pcie_gen_power_saving.min = PP_PCIEGen3;
+
+	data->pcie_lane_performance.max = 0;
+	data->pcie_lane_performance.min = 16;
+	data->pcie_lane_power_saving.max = 0;
+	data->pcie_lane_power_saving.min = 16;
+
+	tmp = 0;
+
+	if (tmp)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_SclkThrottleLowNotification);
+
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_DynamicUVDState);
+
+}
+
+int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	int result = 0;
+	uint32_t low_sclk_interrupt_threshold = 0;
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_SclkThrottleLowNotification)
+		&& (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
+		data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
+		low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
+
+		result = tonga_copy_bytes_to_smc(
+				hwmgr->smumgr,
+				data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
+				LowSclkInterruptThreshold),
+				(uint8_t *)&low_sclk_interrupt_threshold,
+				sizeof(uint32_t),
+				data->sram_end
+				);
+	}
+
+	return result;
+}
+
+/**
+ * Find SCLK value that is associated with specified virtual_voltage_Id.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @param    virtual_voltage_Id  voltageId to look for.
+ * @param    sclk output value .
+ * @return   always 0 if success and 2 if association not found
+ */
+static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
+	phm_ppt_v1_voltage_lookup_table *lookup_table,
+	uint16_t virtual_voltage_id, uint32_t *sclk)
+{
+	uint8_t entryId;
+	uint8_t voltageId;
+	struct phm_ppt_v1_information *pptable_info =
+					(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
+
+	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
+	for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
+		voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
+		if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
+			break;
+	}
+
+	PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
+			"Can't find requested voltage id in vdd_dep_on_sclk table!",
+			return -1;
+			);
+
+	*sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
+
+	return 0;
+}
+
+/**
+ * Get Leakage VDDC based on leakage ID.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   2 if vddgfx returned is greater than 2V or if BIOS
+ */
+int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
+	uint16_t    virtual_voltage_id;
+	uint16_t    vddc = 0;
+	uint16_t    vddgfx = 0;
+	uint16_t    i, j;
+	uint32_t  sclk = 0;
+
+	/* retrieve voltage for leakage ID (0xff01 + i) */
+	for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
+		virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
+
+		/* in split mode we should have only vddgfx EVV leakages */
+		if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
+			if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
+						pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
+				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+							PHM_PlatformCaps_ClockStretcher)) {
+					for (j = 1; j < sclk_table->count; j++) {
+						if (sclk_table->entries[j].clk == sclk &&
+								sclk_table->entries[j].cks_enable == 0) {
+							sclk += 5000;
+							break;
+						}
+					}
+				}
+				PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
+						(hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
+						 virtual_voltage_id, &vddgfx),
+						"Error retrieving EVV voltage value!", continue);
+
+				/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
+				PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
+
+				/* the voltage should not be zero nor equal to leakage ID */
+				if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
+					data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
+					data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
+					data->vddcgfx_leakage.count++;
+				}
+			}
+		} else {
+			/*  in merged mode we have only vddc EVV leakages */
+			if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
+						pptable_info->vddc_lookup_table,
+						virtual_voltage_id, &sclk)) {
+				PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
+						(hwmgr, VOLTAGE_TYPE_VDDC, sclk,
+						 virtual_voltage_id, &vddc),
+						"Error retrieving EVV voltage value!", continue);
+
+				/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
+				if (vddc > 2000)
+					printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
+
+				/* the voltage should not be zero nor equal to leakage ID */
+				if (vddc != 0 && vddc != virtual_voltage_id) {
+					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
+					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
+					data->vddc_leakage.count++;
+				}
+			}
+		}
+	}
+
+	return 0;
+}
+
+int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* enable SCLK dpm */
+	if (0 == data->sclk_dpm_key_disabled) {
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+						   PPSMC_MSG_DPM_Enable)),
+				"Failed to enable SCLK DPM during DPM Start Function!",
+				return -1);
+	}
+
+	/* enable MCLK dpm */
+	if (0 == data->mclk_dpm_key_disabled) {
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					     PPSMC_MSG_MCLKDPM_Enable)),
+				"Failed to enable MCLK DPM during DPM Start Function!",
+				return -1);
+
+		PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
+
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_CPL_CNTL, 0x100005);/*Read */
+
+		udelay(10);
+
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixLCAC_CPL_CNTL, 0x500005);/* write */
+
+	}
+
+	return 0;
+}
+
+int tonga_start_dpm(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* enable general power management */
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
+	/* enable sclk deep sleep */
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
+
+	/* prepare for PCIE DPM */
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
+			offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
+
+	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
+
+	PP_ASSERT_WITH_CODE(
+			(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					PPSMC_MSG_Voltage_Cntl_Enable)),
+			"Failed to enable voltage DPM during DPM Start Function!",
+			return -1);
+
+	if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
+		PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
+	}
+
+	/* enable PCIE dpm */
+	if (0 == data->pcie_dpm_key_disabled) {
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+						PPSMC_MSG_PCIeDPM_Enable)),
+				"Failed to enable pcie DPM during DPM Start Function!",
+				return -1
+				);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+				PHM_PlatformCaps_Falcon_QuickTransition)) {
+				   smum_send_msg_to_smc(hwmgr->smumgr,
+				    PPSMC_MSG_EnableACDCGPIOInterrupt);
+	}
+
+	return 0;
+}
+
+int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* disable SCLK dpm */
+	if (0 == data->sclk_dpm_key_disabled) {
+		/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+		PP_ASSERT_WITH_CODE(
+				(0 == tonga_is_dpm_running(hwmgr)),
+				"Trying to Disable SCLK DPM when DPM is disabled",
+				return -1
+				);
+
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+						  PPSMC_MSG_DPM_Disable)),
+				"Failed to disable SCLK DPM during DPM stop Function!",
+				return -1);
+	}
+
+	/* disable MCLK dpm */
+	if (0 == data->mclk_dpm_key_disabled) {
+		/* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
+		PP_ASSERT_WITH_CODE(
+				(0 == tonga_is_dpm_running(hwmgr)),
+				"Trying to Disable MCLK DPM when DPM is disabled",
+				return -1
+				);
+
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					    PPSMC_MSG_MCLKDPM_Disable)),
+				"Failed to Disable MCLK DPM during DPM stop Function!",
+				return -1);
+	}
+
+	return 0;
+}
+
+int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
+	/* disable sclk deep sleep*/
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
+
+	/* disable PCIE dpm */
+	if (0 == data->pcie_dpm_key_disabled) {
+		/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+		PP_ASSERT_WITH_CODE(
+				(0 == tonga_is_dpm_running(hwmgr)),
+				"Trying to Disable PCIE DPM when DPM is disabled",
+				return -1
+				);
+		PP_ASSERT_WITH_CODE(
+				(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+						PPSMC_MSG_PCIeDPM_Disable)),
+				"Failed to disable pcie DPM during DPM stop Function!",
+				return -1);
+	}
+
+	if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
+		PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
+
+	/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+	PP_ASSERT_WITH_CODE(
+			(0 == tonga_is_dpm_running(hwmgr)),
+			"Trying to Disable Voltage CNTL when DPM is disabled",
+			return -1
+			);
+
+	PP_ASSERT_WITH_CODE(
+			(0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					PPSMC_MSG_Voltage_Cntl_Disable)),
+			"Failed to disable voltage DPM during DPM stop Function!",
+			return -1);
+
+	return 0;
+}
+
+int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
+{
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
+
+	return 0;
+}
+
+/**
+ * Send a message to the SMC and return a parameter
+ *
+ * @param    hwmgr:  the address of the powerplay hardware manager.
+ * @param    msg: the message to send.
+ * @param    parameter: pointer to the received parameter
+ * @return   The response that came from the SMC.
+ */
+PPSMC_Result tonga_send_msg_to_smc_return_parameter(
+		struct pp_hwmgr *hwmgr,
+		PPSMC_Msg msg,
+		uint32_t *parameter)
+{
+	int result;
+
+	result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
+
+	if ((0 == result) && parameter) {
+		*parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
+	}
+
+	return result;
+}
+
+/**
+ * force DPM power State
+ *
+ * @param    hwmgr:  the address of the powerplay hardware manager.
+ * @param    n     :  DPM level
+ * @return   The response that came from the SMC.
+ */
+int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t level_mask = 1 << n;
+
+	/* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
+	PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
+			"Trying to force SCLK when DPM is disabled", return -1;);
+	if (0 == data->sclk_dpm_key_disabled)
+		return (0 == smum_send_msg_to_smc_with_parameter(
+							     hwmgr->smumgr,
+		     (PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
+						    level_mask) ? 0 : 1);
+
+	return 0;
+}
+
+/**
+ * force DPM power State
+ *
+ * @param    hwmgr:  the address of the powerplay hardware manager.
+ * @param    n     :  DPM level
+ * @return   The response that came from the SMC.
+ */
+int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t level_mask = 1 << n;
+
+	/* Checking if DPM is running.  If we discover hang because of this, we should skip this message. */
+	PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
+			"Trying to Force MCLK when DPM is disabled", return -1;);
+	if (0 == data->mclk_dpm_key_disabled)
+		return (0 == smum_send_msg_to_smc_with_parameter(
+								hwmgr->smumgr,
+								(PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
+								level_mask) ? 0 : 1);
+
+	return 0;
+}
+
+/**
+ * force DPM power State
+ *
+ * @param    hwmgr:  the address of the powerplay hardware manager.
+ * @param    n     :  DPM level
+ * @return   The response that came from the SMC.
+ */
+int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+	PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
+			"Trying to Force PCIE level when DPM is disabled", return -1;);
+	if (0 == data->pcie_dpm_key_disabled)
+		return (0 == smum_send_msg_to_smc_with_parameter(
+							     hwmgr->smumgr,
+			   (PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
+								n) ? 0 : 1);
+
+	return 0;
+}
+
+/**
+ * Set the initial state by calling SMC to switch to this state directly
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
+{
+	/*
+	* SMC only stores one state that SW will ask to switch too,
+	* so we switch the the just uploaded one
+	*/
+	return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
+}
+
+/**
+ * Get the location of various tables inside the FW image.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
+
+	uint32_t tmp;
+	int result;
+	bool error = 0;
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, DpmTable),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		data->dpm_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, SoftRegisters),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		data->soft_regs_start = tmp;
+		tonga_smu->ulSoftRegsStart = tmp;
+	}
+
+	error |= (0 != result);
+
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, mcRegisterTable),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		data->mc_reg_table_start = tmp;
+	}
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, FanTable),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		data->fan_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		data->arb_table_start = tmp;
+	}
+
+	error |= (0 != result);
+
+
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				SMU72_FIRMWARE_HEADER_LOCATION +
+				offsetof(SMU72_Firmware_Header, Version),
+				&tmp, data->sram_end);
+
+	if (0 == result) {
+		hwmgr->microcode_version_info.SMC = tmp;
+	}
+
+	error |= (0 != result);
+
+	return error ? 1 : 0;
+}
+
+/**
+ * Read clock related registers.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
+	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
+	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
+	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
+	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
+	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
+		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
+	data->clock_registers.vDLL_CNTL                  =
+		cgs_read_register(hwmgr->device, mmDLL_CNTL);
+	data->clock_registers.vMCLK_PWRMGT_CNTL          =
+		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
+	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
+		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
+	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
+		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
+	data->clock_registers.vMPLL_FUNC_CNTL            =
+		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
+	data->clock_registers.vMPLL_FUNC_CNTL_1          =
+		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
+	data->clock_registers.vMPLL_FUNC_CNTL_2          =
+		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
+	data->clock_registers.vMPLL_SS1                  =
+		cgs_read_register(hwmgr->device, mmMPLL_SS1);
+	data->clock_registers.vMPLL_SS2                  =
+		cgs_read_register(hwmgr->device, mmMPLL_SS2);
+
+	return 0;
+}
+
+/**
+ * Find out if memory is GDDR5.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t temp;
+
+	temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
+
+	data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
+			((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
+			 MC_SEQ_MISC0_GDDR5_SHIFT));
+
+	return 0;
+}
+
+/**
+ * Enables Dynamic Power Management by SMC
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
+{
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
+
+	return 0;
+}
+
+/**
+ * Initialize PowerGating States for different engines
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	data->uvd_power_gated = 0;
+	data->vce_power_gated = 0;
+	data->samu_power_gated = 0;
+	data->acp_power_gated = 0;
+	data->pg_acp_init = 1;
+
+	return 0;
+}
+
+/**
+ * Checks if DPM is enabled
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
+{
+	/*
+	 * We return the status of Voltage Control instead of checking SCLK/MCLK DPM
+	 * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
+	 * whereas voltage control is a fundemental change that will not be disabled
+	 */
+	return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
+}
+
+/**
+ * Checks if DPM is stopped
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	if (0 != tonga_is_dpm_running(hwmgr)) {
+		/* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
+		if (!data->dpm_table_start) {
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * Remove repeated voltage values and create table with unique values.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @param    voltage_table  the pointer to changing voltage table
+ * @return    1 in success
+ */
+
+static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
+			pp_atomctrl_voltage_table *voltage_table)
+{
+	uint32_t table_size, i, j;
+	uint16_t vvalue;
+	bool bVoltageFound = 0;
+	pp_atomctrl_voltage_table *table;
+
+	PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
+	table_size = sizeof(pp_atomctrl_voltage_table);
+	table = kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == table)
+		return -ENOMEM;
+
+	memset(table, 0x00, table_size);
+	table->mask_low = voltage_table->mask_low;
+	table->phase_delay = voltage_table->phase_delay;
+
+	for (i = 0; i < voltage_table->count; i++) {
+		vvalue = voltage_table->entries[i].value;
+		bVoltageFound = 0;
+
+		for (j = 0; j < table->count; j++) {
+			if (vvalue == table->entries[j].value) {
+				bVoltageFound = 1;
+				break;
+			}
+		}
+
+		if (!bVoltageFound) {
+			table->entries[table->count].value = vvalue;
+			table->entries[table->count].smio_low =
+				voltage_table->entries[i].smio_low;
+			table->count++;
+		}
+	}
+
+	memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
+
+	kfree(table);
+
+	return 0;
+}
+
+static int tonga_get_svi2_vdd_ci_voltage_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
+{
+	uint32_t i;
+	int result;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
+
+	PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
+			"Voltage Dependency Table empty.", return -1;);
+
+	vddci_voltage_table->mask_low = 0;
+	vddci_voltage_table->phase_delay = 0;
+	vddci_voltage_table->count = voltage_dependency_table->count;
+
+	for (i = 0; i < voltage_dependency_table->count; i++) {
+		vddci_voltage_table->entries[i].value =
+			voltage_dependency_table->entries[i].vddci;
+		vddci_voltage_table->entries[i].smio_low = 0;
+	}
+
+	result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
+	PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to trim VDDCI table.", return result;);
+
+	return 0;
+}
+
+
+
+static int tonga_get_svi2_vdd_voltage_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_voltage_lookup_table *look_up_table,
+		pp_atomctrl_voltage_table *voltage_table)
+{
+	uint8_t i = 0;
+
+	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
+			"Voltage Lookup Table empty.", return -1;);
+
+	voltage_table->mask_low = 0;
+	voltage_table->phase_delay = 0;
+
+	voltage_table->count = look_up_table->count;
+
+	for (i = 0; i < voltage_table->count; i++) {
+		voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
+		voltage_table->entries[i].smio_low = 0;
+	}
+
+	return 0;
+}
+
+/*
+ * -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
+ * If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
+ */
+
+static void tonga_trim_voltage_table_to_fit_state_table(
+		struct pp_hwmgr *hwmgr,
+		uint32_t max_voltage_steps,
+		pp_atomctrl_voltage_table *voltage_table)
+{
+	unsigned int i, diff;
+
+	if (voltage_table->count <= max_voltage_steps) {
+		return;
+	}
+
+	diff = voltage_table->count - max_voltage_steps;
+
+	for (i = 0; i < max_voltage_steps; i++) {
+		voltage_table->entries[i] = voltage_table->entries[i + diff];
+	}
+
+	voltage_table->count = max_voltage_steps;
+
+	return;
+}
+
+/**
+ * Create Voltage Tables.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	int result;
+
+	/* MVDD has only GPIO voltage control */
+	if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+		result = atomctrl_get_voltage_table_v3(hwmgr,
+					VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to retrieve MVDD table.", return result;);
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
+		/* GPIO voltage */
+		result = atomctrl_get_voltage_table_v3(hwmgr,
+					VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to retrieve VDDCI table.", return result;);
+	} else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
+		/* SVI2 voltage */
+		result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
+					pptable_info->vdd_dep_on_mclk);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+		/* VDDGFX has only SVI2 voltage control */
+		result = tonga_get_svi2_vdd_voltage_table(hwmgr,
+					pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+		/* VDDC has only SVI2 voltage control */
+		result = tonga_get_svi2_vdd_voltage_table(hwmgr,
+					pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
+	}
+
+	PP_ASSERT_WITH_CODE(
+			(data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
+			"Too many voltage values for VDDC. Trimming to fit state table.",
+			tonga_trim_voltage_table_to_fit_state_table(hwmgr,
+			SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
+			);
+
+	PP_ASSERT_WITH_CODE(
+			(data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
+			"Too many voltage values for VDDGFX. Trimming to fit state table.",
+			tonga_trim_voltage_table_to_fit_state_table(hwmgr,
+			SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
+			);
+
+	PP_ASSERT_WITH_CODE(
+			(data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
+			"Too many voltage values for VDDCI. Trimming to fit state table.",
+			tonga_trim_voltage_table_to_fit_state_table(hwmgr,
+			SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
+			);
+
+	PP_ASSERT_WITH_CODE(
+			(data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
+			"Too many voltage values for MVDD. Trimming to fit state table.",
+			tonga_trim_voltage_table_to_fit_state_table(hwmgr,
+			SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
+			);
+
+	return 0;
+}
+
+/**
+ * Vddc table preparation for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	unsigned int count;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+		table->VddcLevelCount = data->vddc_voltage_table.count;
+		for (count = 0; count < table->VddcLevelCount; count++) {
+			table->VddcTable[count] =
+				PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
+	}
+	return 0;
+}
+
+/**
+ * VddGfx table preparation for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	unsigned int count;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+		table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
+		for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
+			table->VddGfxTable[count] =
+				PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
+	}
+	return 0;
+}
+
+/**
+ * Vddci table preparation for SMC.
+ *
+ * @param    *hwmgr The address of the hardware manager.
+ * @param    *table The SMC DPM table structure to be populated.
+ * @return   0
+ */
+static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t count;
+
+	table->VddciLevelCount = data->vddci_voltage_table.count;
+	for (count = 0; count < table->VddciLevelCount; count++) {
+		if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
+			table->VddciTable[count] =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		} else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
+			table->SmioTable1.Pattern[count].Voltage =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
+			table->SmioTable1.Pattern[count].Smio =
+				(uint8_t) count;
+			table->Smio[count] |=
+				data->vddci_voltage_table.entries[count].smio_low;
+			table->VddciTable[count] =
+				PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+		}
+	}
+
+	table->SmioMask1 = data->vddci_voltage_table.mask_low;
+	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
+
+	return 0;
+}
+
+/**
+ * Mvdd table preparation for SMC.
+ *
+ * @param    *hwmgr The address of the hardware manager.
+ * @param    *table The SMC DPM table structure to be populated.
+ * @return   0
+ */
+static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t count;
+
+	if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+		table->MvddLevelCount = data->mvdd_voltage_table.count;
+		for (count = 0; count < table->MvddLevelCount; count++) {
+			table->SmioTable2.Pattern[count].Voltage =
+				PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
+			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
+			table->SmioTable2.Pattern[count].Smio =
+				(uint8_t) count;
+			table->Smio[count] |=
+				data->mvdd_voltage_table.entries[count].smio_low;
+		}
+		table->SmioMask2 = data->vddci_voltage_table.mask_low;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
+	}
+
+	return 0;
+}
+
+/**
+ * Convert a voltage value in mv unit to VID number required by SMU firmware
+ */
+static uint8_t convert_to_vid(uint16_t vddc)
+{
+	return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
+}
+
+
+/**
+ * Preparation of vddc and vddgfx CAC tables for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	uint32_t count;
+	uint8_t index;
+	int result = 0;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
+	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
+
+	/* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
+	uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
+	uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
+
+	for (count = 0; count < vddcLevelCount; count++) {
+		/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
+		index = tonga_get_voltage_index(vddc_lookup_table,
+			data->vddc_voltage_table.entries[count].value);
+		table->BapmVddcVidLoSidd[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+		table->BapmVddcVidHiSidd[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+		table->BapmVddcVidHiSidd2[count] =
+			convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+	}
+
+	if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
+		/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
+		for (count = 0; count < vddgfxLevelCount; count++) {
+			index = tonga_get_voltage_index(vddgfx_lookup_table,
+				data->vddgfx_voltage_table.entries[count].value);
+			table->BapmVddGfxVidLoSidd[count] =
+				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
+			table->BapmVddGfxVidHiSidd[count] =
+				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
+			table->BapmVddGfxVidHiSidd2[count] =
+				convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
+		}
+	} else {
+		for (count = 0; count < vddcLevelCount; count++) {
+			index = tonga_get_voltage_index(vddc_lookup_table,
+				data->vddc_voltage_table.entries[count].value);
+			table->BapmVddGfxVidLoSidd[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+			table->BapmVddGfxVidHiSidd[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+			table->BapmVddGfxVidHiSidd2[count] =
+				convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+		}
+	}
+
+	return result;
+}
+
+
+/**
+ * Preparation of voltage tables for SMC.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+
+int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result;
+
+	result = tonga_populate_smc_vddc_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDC voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDCI voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate VDDGFX voltage table to SMC", return -1);
+
+	result = tonga_populate_smc_mvdd_table(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate MVDD voltage table to SMC", return -1);
+
+	result = tonga_populate_cac_tables(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+			"can not populate CAC voltage tables to SMC", return -1);
+
+	return 0;
+}
+
+/**
+ * Populates the SMC VRConfig field in DPM table.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    table     the SMC DPM table structure to be populated
+ * @return   always 0
+ */
+static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint16_t config;
+
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+		/*  Splitted mode */
+		config = VR_SVI2_PLANE_1;
+		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+		if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+			config = VR_SVI2_PLANE_2;
+			table->VRConfig |= config;
+		} else {
+			printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
+		}
+	} else {
+		/* Merged mode  */
+		config = VR_MERGED_WITH_VDDC;
+		table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+		/* Set Vddc Voltage Controller  */
+		if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+			config = VR_SVI2_PLANE_1;
+			table->VRConfig |= config;
+		} else {
+			printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
+		}
+	}
+
+	/* Set Vddci Voltage Controller  */
+	if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
+		config = VR_SVI2_PLANE_2;  /* only in merged mode */
+		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+	} else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
+		config = VR_SMIO_PATTERN_1;
+		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+	}
+
+	/* Set Mvdd Voltage Controller */
+	if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+		config = VR_SMIO_PATTERN_2;
+		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
+	}
+
+	return 0;
+}
+
+static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
+	uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
+{
+	uint32_t i = 0;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	/* clock - voltage dependency table is empty table */
+	if (allowed_clock_voltage_table->count == 0)
+		return -1;
+
+	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
+		/* find first sclk bigger than request */
+		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
+			voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
+								allowed_clock_voltage_table->entries[i].vddgfx);
+
+			voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
+								allowed_clock_voltage_table->entries[i].vddc);
+
+			if (allowed_clock_voltage_table->entries[i].vddci) {
+				voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
+									allowed_clock_voltage_table->entries[i].vddci);
+			} else {
+				voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
+									allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
+			}
+
+			if (allowed_clock_voltage_table->entries[i].mvdd) {
+				*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
+			}
+
+			voltage->Phases = 1;
+			return 0;
+		}
+	}
+
+	/* sclk is bigger than max sclk in the dependence table */
+	voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
+		allowed_clock_voltage_table->entries[i-1].vddgfx);
+	voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
+		allowed_clock_voltage_table->entries[i-1].vddc);
+
+	if (allowed_clock_voltage_table->entries[i-1].vddci) {
+		voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
+			allowed_clock_voltage_table->entries[i-1].vddci);
+	}
+	if (allowed_clock_voltage_table->entries[i-1].mvdd) {
+		*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
+	}
+
+	return 0;
+}
+
+/**
+ * Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
+{
+	return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
+}
+
+int tonga_populate_memory_timing_parameters(
+		struct pp_hwmgr *hwmgr,
+		uint32_t engine_clock,
+		uint32_t memory_clock,
+		struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
+		)
+{
+	uint32_t dramTiming;
+	uint32_t dramTiming2;
+	uint32_t burstTime;
+	int result;
+
+	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
+				engine_clock, memory_clock);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error calling VBIOS to set DRAM_TIMING.", return result);
+
+	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
+	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
+	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
+
+	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
+	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
+	arb_regs->McArbBurstTime = (uint8_t)burstTime;
+
+	return 0;
+}
+
+/**
+ * Setup parameters for the MC ARB.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ * This function is to be called from the SetPowerState table.
+ */
+int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	int result = 0;
+	SMU72_Discrete_MCArbDramTimingTable  arb_regs;
+	uint32_t i, j;
+
+	memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
+
+	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
+		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
+			result = tonga_populate_memory_timing_parameters
+				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
+				 data->dpm_table.mclk_table.dpm_levels[j].value,
+				 &arb_regs.entries[i][j]);
+
+			if (0 != result) {
+				break;
+			}
+		}
+	}
+
+	if (0 == result) {
+		result = tonga_copy_bytes_to_smc(
+				hwmgr->smumgr,
+				data->arb_table_start,
+				(uint8_t *)&arb_regs,
+				sizeof(SMU72_Discrete_MCArbDramTimingTable),
+				data->sram_end
+				);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_dpm_table *dpm_table = &data->dpm_table;
+	uint32_t i;
+
+	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
+	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
+		table->LinkLevel[i].PcieGenSpeed  =
+			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
+		table->LinkLevel[i].PcieLaneCount =
+			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
+		table->LinkLevel[i].EnabledForActivity =
+			1;
+		table->LinkLevel[i].SPC =
+			(uint8_t)(data->pcie_spc_cap & 0xff);
+		table->LinkLevel[i].DownThreshold =
+			PP_HOST_TO_SMC_UL(5);
+		table->LinkLevel[i].UpThreshold =
+			PP_HOST_TO_SMC_UL(30);
+	}
+
+	data->smc_state_table.LinkLevelCount =
+		(uint8_t)dpm_table->pcie_speed_table.count;
+	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
+		tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
+
+	return 0;
+}
+
+
+static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->VceLevelCount = (uint8_t) (mm_table->count);
+	table->VceBootLevel = 0;
+
+	for (count = 0; count < table->VceLevelCount; count++) {
+		table->VceLevel[count].Frequency =
+			mm_table->entries[count].eclk;
+		table->VceLevel[count].MinVoltage.Vddc =
+			tonga_get_voltage_index(pptable_info->vddc_lookup_table,
+				mm_table->entries[count].vddc);
+		table->VceLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
+			tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->VceLevel[count].MinVoltage.Vddci =
+			tonga_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - data->vddc_vddci_delta);
+		table->VceLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+					table->VceLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+				"can not find divide id for VCE engine clock", return result);
+
+		table->VceLevel[count].Divider    = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->AcpLevelCount = (uint8_t) (mm_table->count);
+	table->AcpBootLevel = 0;
+
+	for (count = 0; count < table->AcpLevelCount; count++) {
+		table->AcpLevel[count].Frequency =
+			pptable_info->mm_dep_table->entries[count].aclk;
+		table->AcpLevel[count].MinVoltage.Vddc =
+			tonga_get_voltage_index(pptable_info->vddc_lookup_table,
+			mm_table->entries[count].vddc);
+		table->AcpLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
+			tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->AcpLevel[count].MinVoltage.Vddci =
+			tonga_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - data->vddc_vddci_delta);
+		table->AcpLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+			table->AcpLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find divide id for engine clock", return result);
+
+		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	uint8_t count;
+	pp_atomctrl_clock_dividers_vi dividers;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	table->SamuBootLevel = 0;
+	table->SamuLevelCount = (uint8_t) (mm_table->count);
+
+	for (count = 0; count < table->SamuLevelCount; count++) {
+		/* not sure whether we need evclk or not */
+		table->SamuLevel[count].Frequency =
+			pptable_info->mm_dep_table->entries[count].samclock;
+		table->SamuLevel[count].MinVoltage.Vddc =
+			tonga_get_voltage_index(pptable_info->vddc_lookup_table,
+				mm_table->entries[count].vddc);
+		table->SamuLevel[count].MinVoltage.VddGfx =
+			(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
+			tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
+				mm_table->entries[count].vddgfx) : 0;
+		table->SamuLevel[count].MinVoltage.Vddci =
+			tonga_get_voltage_id(&data->vddci_voltage_table,
+				mm_table->entries[count].vddc - data->vddc_vddci_delta);
+		table->SamuLevel[count].MinVoltage.Phases = 1;
+
+		/* retrieve divider value for VBIOS */
+		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+					table->SamuLevel[count].Frequency, &dividers);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find divide id for samu clock", return result);
+
+		table->SamuLevel[count].Divider     = (uint8_t)dividers.pll_post_divider;
+
+		CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
+	}
+
+	return result;
+}
+
+/**
+ * Populates the SMC MCLK structure using the provided memory clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    memory_clock the memory clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+static int tonga_calculate_mclk_params(
+		struct pp_hwmgr *hwmgr,
+		uint32_t memory_clock,
+		SMU72_Discrete_MemoryLevel *mclk,
+		bool strobe_mode,
+		bool dllStateOn
+		)
+{
+	const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
+	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
+	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
+	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
+	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
+	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
+	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
+	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
+	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
+
+	pp_atomctrl_memory_clock_param mpll_param;
+	int result;
+
+	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
+				memory_clock, &mpll_param, strobe_mode);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
+
+	/* MPLL_FUNC_CNTL setup*/
+	mpll_func_cntl    = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
+
+	/* MPLL_FUNC_CNTL_1 setup*/
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
+	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
+							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
+
+	/* MPLL_AD_FUNC_CNTL setup*/
+	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
+							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
+
+	if (data->is_memory_GDDR5) {
+		/* MPLL_DQ_FUNC_CNTL setup*/
+		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
+								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
+		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
+								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
+		/*
+		 ************************************
+		 Fref = Reference Frequency
+		 NF = Feedback divider ratio
+		 NR = Reference divider ratio
+		 Fnom = Nominal VCO output frequency = Fref * NF / NR
+		 Fs = Spreading Rate
+		 D = Percentage down-spread / 2
+		 Fint = Reference input frequency to PFD = Fref / NR
+		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
+		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
+		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
+		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
+		 *************************************
+		 */
+		pp_atomctrl_internal_ss_info ss_info;
+		uint32_t freq_nom;
+		uint32_t tmp;
+		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
+
+		/* for GDDR5 for all modes and DDR3 */
+		if (1 == mpll_param.qdr)
+			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
+		else
+			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
+
+		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
+		tmp = (freq_nom / reference_clock);
+		tmp = tmp * tmp;
+
+		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
+			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
+			/* ss.Info.speed_spectrum_rate -- in unit of khz */
+			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
+			/*     = reference_clock * 5 / speed_spectrum_rate */
+			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
+
+			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
+			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
+			uint32_t clkv =
+				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
+							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
+
+			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
+			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
+		}
+	}
+
+	/* MCLK_PWRMGT_CNTL setup */
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
+	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
+
+
+	/* Save the result data to outpupt memory level structure */
+	mclk->MclkFrequency   = memory_clock;
+	mclk->MpllFuncCntl    = mpll_func_cntl;
+	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
+	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
+	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
+	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
+	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
+	mclk->DllCntl         = dll_cntl;
+	mclk->MpllSs1         = mpll_ss1;
+	mclk->MpllSs2         = mpll_ss2;
+
+	return 0;
+}
+
+static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
+		bool strobe_mode)
+{
+	uint8_t mc_para_index;
+
+	if (strobe_mode) {
+		if (memory_clock < 12500) {
+			mc_para_index = 0x00;
+		} else if (memory_clock > 47500) {
+			mc_para_index = 0x0f;
+		} else {
+			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
+		}
+	} else {
+		if (memory_clock < 65000) {
+			mc_para_index = 0x00;
+		} else if (memory_clock > 135000) {
+			mc_para_index = 0x0f;
+		} else {
+			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
+		}
+	}
+
+	return mc_para_index;
+}
+
+static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
+{
+	uint8_t mc_para_index;
+
+	if (memory_clock < 10000) {
+		mc_para_index = 0;
+	} else if (memory_clock >= 80000) {
+		mc_para_index = 0x0f;
+	} else {
+		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
+	}
+
+	return mc_para_index;
+}
+
+static int tonga_populate_single_memory_level(
+		struct pp_hwmgr *hwmgr,
+		uint32_t memory_clock,
+		SMU72_Discrete_MemoryLevel *memory_level
+		)
+{
+	uint32_t minMvdd = 0;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	int result = 0;
+	bool dllStateOn;
+	struct cgs_display_info info = {0};
+
+
+	if (NULL != pptable_info->vdd_dep_on_mclk) {
+		result = tonga_get_dependecy_volt_by_clk(hwmgr,
+			pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
+	}
+
+	if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
+		memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
+	} else {
+		memory_level->MinMvdd = minMvdd;
+	}
+	memory_level->EnabledForThrottle = 1;
+	memory_level->EnabledForActivity = 0;
+	memory_level->UpHyst = 0;
+	memory_level->DownHyst = 100;
+	memory_level->VoltageDownHyst = 0;
+
+	/* Indicates maximum activity level for this performance level.*/
+	memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
+	memory_level->StutterEnable = 0;
+	memory_level->StrobeEnable = 0;
+	memory_level->EdcReadEnable = 0;
+	memory_level->EdcWriteEnable = 0;
+	memory_level->RttEnable = 0;
+
+	/* default set to low watermark. Highest level will be set to high later.*/
+	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+	cgs_get_active_displays_info(hwmgr->device, &info);
+	data->display_timing.num_existing_displays = info.display_count;
+
+	if ((data->mclk_stutter_mode_threshold != 0) &&
+			(memory_clock <= data->mclk_stutter_mode_threshold) &&
+			(data->is_uvd_enabled == 0)
+#if defined(LINUX)
+			&& (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
+			&& (data->display_timing.num_existing_displays <= 2)
+			&& (data->display_timing.num_existing_displays != 0)
+#endif
+	)
+		memory_level->StutterEnable = 1;
+
+	/* decide strobe mode*/
+	memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
+		(memory_clock <= data->mclk_strobe_mode_threshold);
+
+	/* decide EDC mode and memory clock ratio*/
+	if (data->is_memory_GDDR5) {
+		memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
+					memory_level->StrobeEnable);
+
+		if ((data->mclk_edc_enable_threshold != 0) &&
+				(memory_clock > data->mclk_edc_enable_threshold)) {
+			memory_level->EdcReadEnable = 1;
+		}
+
+		if ((data->mclk_edc_wr_enable_threshold != 0) &&
+				(memory_clock > data->mclk_edc_wr_enable_threshold)) {
+			memory_level->EdcWriteEnable = 1;
+		}
+
+		if (memory_level->StrobeEnable) {
+			if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
+					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
+				dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+			} else {
+				dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
+			}
+
+		} else {
+			dllStateOn = data->dll_defaule_on;
+		}
+	} else {
+		memory_level->StrobeRatio =
+			tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
+		dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+	}
+
+	result = tonga_calculate_mclk_params(hwmgr,
+		memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
+
+	if (0 == result) {
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
+		/* MCLK frequency in units of 10KHz*/
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
+		/* Indicates maximum activity level for this performance level.*/
+		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
+		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
+	}
+
+	return result;
+}
+
+/**
+ * Populates the SMC MVDD structure using the provided memory clock.
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
+ * @param    voltage     the SMC VOLTAGE structure to be populated
+ */
+int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
+{
+	const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	uint32_t i = 0;
+
+	if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
+		/* find mvdd value which clock is more than request */
+		for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
+			if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
+				/* Always round to higher voltage. */
+				smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
+				break;
+			}
+		}
+
+		PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
+			"MVDD Voltage is outside the supported range.", return -1);
+
+	} else {
+		return -1;
+	}
+
+	return 0;
+}
+
+
+static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
+	SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_clock_dividers_vi dividers;
+	SMIO_Pattern voltage_level;
+	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
+	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
+	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
+
+	/* The ACPI state should not do DPM on DC (or ever).*/
+	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
+
+	table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
+
+	/* assign zero for now*/
+	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
+
+	/* get the engine clock dividers for this clock value*/
+	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
+		table->ACPILevel.SclkFrequency,  &dividers);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error retrieving Engine Clock dividers from VBIOS.", return result);
+
+	/* divider ID for required SCLK*/
+	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
+	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+	table->ACPILevel.DeepSleepDivId = 0;
+
+	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
+							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
+	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
+							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
+	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
+							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
+
+	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
+	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
+	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+	table->ACPILevel.CcPwrDynRm = 0;
+	table->ACPILevel.CcPwrDynRm1 = 0;
+
+
+	/* For various features to be enabled/disabled while this level is active.*/
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
+	/* SCLK frequency in units of 10KHz*/
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
+
+	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
+	table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
+
+	/*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
+
+	if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
+		table->MemoryACPILevel.MinMvdd =
+			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
+	else
+		table->MemoryACPILevel.MinMvdd = 0;
+
+	/* Force reset on DLL*/
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
+
+	/* Disable DLL in ACPIState*/
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
+	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
+
+	/* Enable DLL bypass signal*/
+	dll_cntl            = PHM_SET_FIELD(dll_cntl,
+		DLL_CNTL, MRDCK0_BYPASS, 0);
+	dll_cntl            = PHM_SET_FIELD(dll_cntl,
+		DLL_CNTL, MRDCK1_BYPASS, 0);
+
+	table->MemoryACPILevel.DllCntl            =
+		PP_HOST_TO_SMC_UL(dll_cntl);
+	table->MemoryACPILevel.MclkPwrmgtCntl     =
+		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
+	table->MemoryACPILevel.MpllAdFuncCntl     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
+	table->MemoryACPILevel.MpllDqFuncCntl     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
+	table->MemoryACPILevel.MpllFuncCntl       =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
+	table->MemoryACPILevel.MpllFuncCntl_1     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
+	table->MemoryACPILevel.MpllFuncCntl_2     =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
+	table->MemoryACPILevel.MpllSs1            =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
+	table->MemoryACPILevel.MpllSs2            =
+		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
+
+	table->MemoryACPILevel.EnabledForThrottle = 0;
+	table->MemoryACPILevel.EnabledForActivity = 0;
+	table->MemoryACPILevel.UpHyst = 0;
+	table->MemoryACPILevel.DownHyst = 100;
+	table->MemoryACPILevel.VoltageDownHyst = 0;
+	/* Indicates maximum activity level for this performance level.*/
+	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
+
+	table->MemoryACPILevel.StutterEnable = 0;
+	table->MemoryACPILevel.StrobeEnable = 0;
+	table->MemoryACPILevel.EdcReadEnable = 0;
+	table->MemoryACPILevel.EdcWriteEnable = 0;
+	table->MemoryACPILevel.RttEnable = 0;
+
+	return result;
+}
+
+static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
+{
+	int result = 0;
+	uint32_t i;
+
+	for (i = 0; i < table->count; i++) {
+		if (value == table->dpm_levels[i].value) {
+			*boot_level = i;
+			result = 0;
+		}
+	}
+	return result;
+}
+
+static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
+			SMU72_Discrete_DpmTable *table)
+{
+	int result = 0;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	table->GraphicsBootLevel  = 0;        /* 0 == DPM[0] (low), etc. */
+	table->MemoryBootLevel    = 0;        /* 0 == DPM[0] (low), etc. */
+
+	/* find boot level from dpm table*/
+	result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
+	data->vbios_boot_state.sclk_bootup_value,
+	(uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
+
+	if (0 != result) {
+		data->smc_state_table.GraphicsBootLevel = 0;
+		printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
+			in dependency table. Using Graphics DPM level 0!");
+		result = 0;
+	}
+
+	result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
+		data->vbios_boot_state.mclk_bootup_value,
+		(uint32_t *)&(data->smc_state_table.MemoryBootLevel));
+
+	if (0 != result) {
+		data->smc_state_table.MemoryBootLevel = 0;
+		printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
+			in dependency table. Using Memory DPM level 0!");
+		result = 0;
+	}
+
+	table->BootVoltage.Vddc =
+		tonga_get_voltage_id(&(data->vddc_voltage_table),
+			data->vbios_boot_state.vddc_bootup_value);
+	table->BootVoltage.VddGfx =
+		tonga_get_voltage_id(&(data->vddgfx_voltage_table),
+			data->vbios_boot_state.vddgfx_bootup_value);
+	table->BootVoltage.Vddci =
+		tonga_get_voltage_id(&(data->vddci_voltage_table),
+			data->vbios_boot_state.vddci_bootup_value);
+	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
+
+	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
+
+	return result;
+}
+
+
+/**
+ * Calculates the SCLK dividers using the provided engine clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    engine_clock the engine clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
+		uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
+{
+	const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_clock_dividers_vi dividers;
+	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+	uint32_t    reference_clock;
+	uint32_t reference_divider;
+	uint32_t fbdiv;
+	int result;
+
+	/* get the engine clock dividers for this clock value*/
+	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
+
+	PP_ASSERT_WITH_CODE(result == 0,
+		"Error retrieving Engine Clock dividers from VBIOS.", return result);
+
+	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
+	reference_clock = atomctrl_get_reference_clock(hwmgr);
+
+	reference_divider = 1 + dividers.uc_pll_ref_div;
+
+	/* low 14 bits is fraction and high 12 bits is divider*/
+	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
+
+	/* SPLL_FUNC_CNTL setup*/
+	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
+	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
+
+	/* SPLL_FUNC_CNTL_3 setup*/
+	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
+
+	/* set to use fractional accumulation*/
+	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
+		pp_atomctrl_internal_ss_info ss_info;
+
+		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
+		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
+			/*
+			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
+			* ss_info.speed_spectrum_rate -- in unit of khz
+			*/
+			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
+			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
+
+			/* clkv = 2 * D * fbdiv / NS */
+			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
+
+			cg_spll_spread_spectrum =
+				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
+			cg_spll_spread_spectrum =
+				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
+			cg_spll_spread_spectrum_2 =
+				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
+		}
+	}
+
+	sclk->SclkFrequency        = engine_clock;
+	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
+	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
+	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
+	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
+	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
+
+	return 0;
+}
+
+/**
+ * Populates single SMC SCLK structure using the provided engine clock
+ *
+ * @param    hwmgr      the address of the hardware manager
+ * @param    engine_clock the engine clock to use to populate the structure
+ * @param    sclk        the SMC SCLK structure to be populated
+ */
+static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
+{
+	int result;
+	uint32_t threshold;
+	uint32_t mvdd;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
+
+
+	/* populate graphics levels*/
+	result = tonga_get_dependecy_volt_by_clk(hwmgr,
+		pptable_info->vdd_dep_on_sclk, engine_clock,
+		&graphic_level->MinVoltage, &mvdd);
+	PP_ASSERT_WITH_CODE((0 == result),
+		"can not find VDDC voltage value for VDDC	\
+		engine clock dependency table", return result);
+
+	/* SCLK frequency in units of 10KHz*/
+	graphic_level->SclkFrequency = engine_clock;
+
+	/* Indicates maximum activity level for this performance level. 50% for now*/
+	graphic_level->ActivityLevel = sclk_activity_level_threshold;
+
+	graphic_level->CcPwrDynRm = 0;
+	graphic_level->CcPwrDynRm1 = 0;
+	/* this level can be used if activity is high enough.*/
+	graphic_level->EnabledForActivity = 0;
+	/* this level can be used for throttling.*/
+	graphic_level->EnabledForThrottle = 1;
+	graphic_level->UpHyst = 0;
+	graphic_level->DownHyst = 0;
+	graphic_level->VoltageDownHyst = 0;
+	graphic_level->PowerThrottle = 0;
+
+	threshold = engine_clock * data->fast_watemark_threshold / 100;
+/*
+	*get the DAL clock. do it in funture.
+	PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
+	data->display_timing.min_clock_insr = minClocks.engineClockInSR;
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
+	{
+		graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
+	}
+*/
+
+	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
+	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+	if (0 == result) {
+		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
+		/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
+		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
+		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
+	}
+
+	return result;
+}
+
+/**
+ * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
+ *
+ * @param    hwmgr      the address of the hardware manager
+ */
+static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	struct tonga_dpm_table *dpm_table = &data->dpm_table;
+	phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
+	uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
+	int result = 0;
+	uint32_t level_array_adress = data->dpm_table_start +
+		offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
+	uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
+		SMU72_MAX_LEVELS_GRAPHICS;   /* 64 -> long; 32 -> int*/
+	SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
+	uint32_t i, maxEntry;
+	uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
+	PECI_RegistryValue reg_value;
+	memset(levels, 0x00, level_array_size);
+
+	for (i = 0; i < dpm_table->sclk_table.count; i++) {
+		result = tonga_populate_single_graphic_level(hwmgr,
+					dpm_table->sclk_table.dpm_levels[i].value,
+					(uint16_t)data->activity_target[i],
+					&(data->smc_state_table.GraphicsLevel[i]));
+
+		if (0 != result)
+			return result;
+
+		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
+		if (i > 1)
+			data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
+
+		if (0 == i) {
+			reg_value = 0;
+			if (reg_value != 0)
+				data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
+		}
+
+		if (1 == i) {
+			reg_value = 0;
+			if (reg_value != 0)
+				data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
+		}
+	}
+
+	/* Only enable level 0 for now. */
+	data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
+
+	/* set highest level watermark to high */
+	if (dpm_table->sclk_table.count > 1)
+		data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
+			PPSMC_DISPLAY_WATERMARK_HIGH;
+
+	data->smc_state_table.GraphicsDpmLevelCount =
+		(uint8_t)dpm_table->sclk_table.count;
+	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
+		tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
+
+	if (pcie_table != NULL) {
+		PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
+			"There must be 1 or more PCIE levels defined in PPTable.", return -1);
+		maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
+		for (i = 0; i < dpm_table->sclk_table.count; i++) {
+			data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
+				(uint8_t) ((i < maxEntry) ? i : maxEntry);
+		}
+	} else {
+		if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
+			printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
+
+		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<(highest_pcie_level_enabled+1))) != 0)) {
+			highest_pcie_level_enabled++;
+		}
+
+		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<lowest_pcie_level_enabled)) == 0)) {
+			lowest_pcie_level_enabled++;
+		}
+
+		while ((count < highest_pcie_level_enabled) &&
+				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+					(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
+			count++;
+		}
+		mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
+			(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
+
+
+		/* set pcieDpmLevel to highest_pcie_level_enabled*/
+		for (i = 2; i < dpm_table->sclk_table.count; i++) {
+			data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
+		}
+
+		/* set pcieDpmLevel to lowest_pcie_level_enabled*/
+		data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
+
+		/* set pcieDpmLevel to mid_pcie_level_enabled*/
+		data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
+	}
+	/* level count will send to smc once at init smc table and never change*/
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
+
+	if (0 != result)
+		return result;
+
+	return 0;
+}
+
+/**
+ * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
+ *
+ * @param    hwmgr      the address of the hardware manager
+ */
+
+static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_dpm_table *dpm_table = &data->dpm_table;
+	int result;
+	/* populate MCLK dpm table to SMU7 */
+	uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
+	uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
+	SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
+	uint32_t i;
+
+	memset(levels, 0x00, level_array_size);
+
+	for (i = 0; i < dpm_table->mclk_table.count; i++) {
+		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
+			"can not populate memory level as memory clock is zero", return -1);
+		result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
+			&(data->smc_state_table.MemoryLevel[i]));
+		if (0 != result) {
+			return result;
+		}
+	}
+
+	/* Only enable level 0 for now.*/
+	data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
+
+	/*
+	* in order to prevent MC activity from stutter mode to push DPM up.
+	* the UVD change complements this by putting the MCLK in a higher state
+	* by default such that we are not effected by up threshold or and MCLK DPM latency.
+	*/
+	data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
+	CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
+
+	data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
+	data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
+	/* set highest level watermark to high*/
+	data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
+
+	/* level count will send to smc once at init smc table and never change*/
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
+		level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
+
+	if (0 != result) {
+		return result;
+	}
+
+	return 0;
+}
+
+struct TONGA_DLL_SPEED_SETTING {
+	uint16_t            Min;                          /* Minimum Data Rate*/
+	uint16_t            Max;                          /* Maximum Data Rate*/
+	uint32_t 			dll_speed;                     /* The desired DLL_SPEED setting*/
+};
+
+static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
+{
+	return 0;
+}
+
+/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
+
+
+static int tonga_reset_single_dpm_table(
+	struct pp_hwmgr *hwmgr,
+	struct tonga_single_dpm_table *dpm_table,
+	uint32_t count)
+{
+	uint32_t i;
+	if (!(count <= MAX_REGULAR_DPM_NUMBER))
+		printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
+			table entries to exceed max number! \n");
+
+	dpm_table->count = count;
+	for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
+		dpm_table->dpm_levels[i].enabled = 0;
+	}
+
+	return 0;
+}
+
+static void tonga_setup_pcie_table_entry(
+	struct tonga_single_dpm_table *dpm_table,
+	uint32_t index, uint32_t pcie_gen,
+	uint32_t pcie_lanes)
+{
+	dpm_table->dpm_levels[index].value = pcie_gen;
+	dpm_table->dpm_levels[index].param1 = pcie_lanes;
+	dpm_table->dpm_levels[index].enabled = 1;
+}
+
+bool is_pcie_gen3_supported(uint32_t pcie_link_speed_cap)
+{
+	if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
+		return 1;
+
+	return 0;
+}
+
+bool is_pcie_gen2_supported(uint32_t pcie_link_speed_cap)
+{
+	if (pcie_link_speed_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
+		return 1;
+
+	return 0;
+}
+
+/* Get the new PCIE speed given the ASIC PCIE Cap and the NewState's requested PCIE speed*/
+uint16_t get_pcie_gen_support(uint32_t pcie_link_speed_cap, uint16_t ns_pcie_gen)
+{
+	uint32_t asic_pcie_link_speed_cap = (pcie_link_speed_cap &
+		CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK);
+	uint32_t sys_pcie_link_speed_cap  = (pcie_link_speed_cap &
+		CAIL_PCIE_LINK_SPEED_SUPPORT_MASK);
+
+	switch (asic_pcie_link_speed_cap) {
+	case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1:
+		return PP_PCIEGen1;
+
+	case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2:
+		return PP_PCIEGen2;
+
+	case CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3:
+		return PP_PCIEGen3;
+
+	default:
+		if (is_pcie_gen3_supported(sys_pcie_link_speed_cap) &&
+			(ns_pcie_gen == PP_PCIEGen3)) {
+			return PP_PCIEGen3;
+		} else if (is_pcie_gen2_supported(sys_pcie_link_speed_cap) &&
+			((ns_pcie_gen == PP_PCIEGen3) || (ns_pcie_gen == PP_PCIEGen2))) {
+			return PP_PCIEGen2;
+		}
+	}
+
+	return PP_PCIEGen1;
+}
+
+uint16_t get_pcie_lane_support(uint32_t pcie_lane_width_cap, uint16_t ns_pcie_lanes)
+{
+	int i, j;
+	uint16_t new_pcie_lanes = ns_pcie_lanes;
+	uint16_t pcie_lanes[7] = {1, 2, 4, 8, 12, 16, 32};
+
+	switch (pcie_lane_width_cap) {
+	case 0:
+		printk(KERN_ERR "[ powerplay ] No valid PCIE lane width reported by CAIL!");
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1:
+		new_pcie_lanes = 1;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2:
+		new_pcie_lanes = 2;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4:
+		new_pcie_lanes = 4;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8:
+		new_pcie_lanes = 8;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12:
+		new_pcie_lanes = 12;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16:
+		new_pcie_lanes = 16;
+		break;
+	case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32:
+		new_pcie_lanes = 32;
+		break;
+	default:
+		for (i = 0; i < 7; i++) {
+			if (ns_pcie_lanes == pcie_lanes[i]) {
+				if (pcie_lane_width_cap & (0x10000 << i)) {
+					break;
+				} else {
+					for (j = i - 1; j >= 0; j--) {
+						if (pcie_lane_width_cap & (0x10000 << j)) {
+							new_pcie_lanes = pcie_lanes[j];
+							break;
+						}
+					}
+
+					if (j < 0) {
+						for (j = i + 1; j < 7; j++) {
+							if (pcie_lane_width_cap & (0x10000 << j)) {
+								new_pcie_lanes = pcie_lanes[j];
+								break;
+							}
+						}
+						if (j > 7)
+							printk(KERN_ERR "[ powerplay ] Cannot find a valid PCIE lane width!");
+					}
+				}
+				break;
+			}
+		}
+		break;
+	}
+
+	return new_pcie_lanes;
+}
+
+static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
+	uint32_t i, maxEntry;
+
+	if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
+		data->pcie_gen_power_saving = data->pcie_gen_performance;
+		data->pcie_lane_power_saving = data->pcie_lane_performance;
+	} else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
+		data->pcie_gen_performance = data->pcie_gen_power_saving;
+		data->pcie_lane_performance = data->pcie_lane_power_saving;
+	}
+
+	tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
+
+	if (pcie_table != NULL) {
+		/*
+		* maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
+		* If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
+		*/
+		maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
+						SMU72_MAX_LEVELS_LINK : pcie_table->count;
+		for (i = 1; i < maxEntry; i++) {
+			tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
+				get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
+				get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		}
+		data->dpm_table.pcie_speed_table.count = maxEntry - 1;
+	} else {
+		/* Hardcode Pcie Table */
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
+			get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
+			get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+		data->dpm_table.pcie_speed_table.count = 6;
+	}
+	/* Populate last level for boot PCIE level, but do not increment count. */
+	tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
+		data->dpm_table.pcie_speed_table.count,
+		get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
+		get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
+
+	return 0;
+
+}
+
+/*
+ * This function is to initalize all DPM state tables for SMU7 based on the dependency table.
+ * Dynamic state patching function will then trim these state tables to the allowed range based
+ * on the power policy or external client requests, such as UVD request, etc.
+ */
+static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	uint32_t i;
+
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
+		pptable_info->vdd_dep_on_sclk;
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
+		pptable_info->vdd_dep_on_mclk;
+
+	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
+		"SCLK dependency table is missing. This table is mandatory", return -1);
+	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
+		"SCLK dependency table has to have is missing. This table is mandatory", return -1);
+
+	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
+		"MCLK dependency table is missing. This table is mandatory", return -1);
+	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
+		"VMCLK dependency table has to have is missing. This table is mandatory", return -1);
+
+	/* clear the state table to reset everything to default */
+	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
+	tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
+	tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
+	/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
+	/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
+	/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
+	/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
+
+	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
+		"SCLK dependency table is missing. This table is mandatory", return -1);
+	/* Initialize Sclk DPM table based on allow Sclk values*/
+	data->dpm_table.sclk_table.count = 0;
+
+	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
+		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
+				allowed_vdd_sclk_table->entries[i].clk) {
+			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
+				allowed_vdd_sclk_table->entries[i].clk;
+			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
+			data->dpm_table.sclk_table.count++;
+		}
+	}
+
+	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
+		"MCLK dependency table is missing. This table is mandatory", return -1);
+	/* Initialize Mclk DPM table based on allow Mclk values */
+	data->dpm_table.mclk_table.count = 0;
+	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
+		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
+			allowed_vdd_mclk_table->entries[i].clk) {
+			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
+				allowed_vdd_mclk_table->entries[i].clk;
+			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
+			data->dpm_table.mclk_table.count++;
+		}
+	}
+
+	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
+	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
+		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
+		/* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
+		/* param1 is for corresponding std voltage */
+		data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
+	}
+	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
+
+	if (NULL != allowed_vdd_mclk_table) {
+		/* Initialize Vddci DPM table based on allow Mclk values */
+		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
+			data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
+			data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
+			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
+			data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
+		}
+		data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
+		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
+	}
+
+	/* setup PCIE gen speed levels*/
+	tonga_setup_default_pcie_tables(hwmgr);
+
+	/* save a copy of the default DPM table*/
+	memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
+
+	return 0;
+}
+
+int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
+		const struct tonga_power_state *bootState)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	uint8_t count, level;
+
+	count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
+	for (level = 0; level < count; level++) {
+		if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
+			bootState->performance_levels[0].engine_clock) {
+			data->smc_state_table.GraphicsBootLevel = level;
+			break;
+		}
+	}
+
+	count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
+	for (level = 0; level < count; level++) {
+		if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
+			bootState->performance_levels[0].memory_clock) {
+			data->smc_state_table.MemoryBootLevel = level;
+			break;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * Initializes the SMC table and uploads it
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @param    pInput  the pointer to input data (PowerState)
+ * @return   always 0
+ */
+int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	SMU72_Discrete_DpmTable  *table = &(data->smc_state_table);
+	const phw_tonga_ulv_parm *ulv = &(data->ulv);
+	uint8_t i;
+	PECI_RegistryValue reg_value;
+	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
+
+	result = tonga_setup_default_dpm_tables(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to setup default DPM tables!", return result;);
+	memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
+	if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
+		tonga_populate_smc_voltage_tables(hwmgr, table);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition)) {
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_StepVddc)) {
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
+	}
+
+	if (data->is_memory_GDDR5) {
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
+	}
+
+	i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
+
+	if (i == 1 || i == 0) {
+		table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
+	}
+
+	if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
+		PP_ASSERT_WITH_CODE(0 == result,
+			"Failed to initialize ULV state!", return result;);
+
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
+	}
+
+	result = tonga_populate_smc_link_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Link Level!", return result;);
+
+	result = tonga_populate_all_graphic_levels(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Graphics Level!", return result;);
+
+	result = tonga_populate_all_memory_levels(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Memory Level!", return result;);
+
+	result = tonga_populate_smv_acpi_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize ACPI Level!", return result;);
+
+	result = tonga_populate_smc_vce_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize VCE Level!", return result;);
+
+	result = tonga_populate_smc_acp_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize ACP Level!", return result;);
+
+	result = tonga_populate_smc_samu_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize SAMU Level!", return result;);
+
+	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
+	/* need to populate the  ARB settings for the initial state. */
+	result = tonga_program_memory_timing_parameters(hwmgr);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to Write ARB settings for the initial state.", return result;);
+
+	result = tonga_populate_smc_boot_level(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize Boot Level!", return result;);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ClockStretcher)) {
+		result = tonga_populate_clock_stretcher_data_table(hwmgr);
+		PP_ASSERT_WITH_CODE(0 == result,
+			"Failed to populate Clock Stretcher Data Table!", return result;);
+	}
+	table->GraphicsVoltageChangeEnable  = 1;
+	table->GraphicsThermThrottleEnable  = 1;
+	table->GraphicsInterval = 1;
+	table->VoltageInterval  = 1;
+	table->ThermalInterval  = 1;
+	table->TemperatureLimitHigh =
+		pptable_info->cac_dtp_table->usTargetOperatingTemp *
+		TONGA_Q88_FORMAT_CONVERSION_UNIT;
+	table->TemperatureLimitLow =
+		(pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
+		TONGA_Q88_FORMAT_CONVERSION_UNIT;
+	table->MemoryVoltageChangeEnable  = 1;
+	table->MemoryInterval  = 1;
+	table->VoltageResponseTime  = 0;
+	table->PhaseResponseTime  = 0;
+	table->MemoryThermThrottleEnable  = 1;
+
+	/*
+	* Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
+	* SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
+	* but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
+	* To avoid it, we set PCIeBootLinkLevel to highest dpm level
+	*/
+	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
+			"There must be 1 or more PCIE levels defined in PPTable.",
+			return -1);
+
+	table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
+
+	table->PCIeGenInterval  = 1;
+
+	result = tonga_populate_vr_config(hwmgr, table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to populate VRConfig setting!", return result);
+
+	table->ThermGpio  = 17;
+	table->SclkStepSize = 0x4000;
+
+	reg_value = 0;
+	if ((0 == reg_value) &&
+		(0 == atomctrl_get_pp_assign_pin(hwmgr,
+			VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
+		table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot);
+	} else {
+		table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot);
+	}
+
+	/* ACDC Switch GPIO */
+	reg_value = 0;
+	if ((0 == reg_value) &&
+		(0 == atomctrl_get_pp_assign_pin(hwmgr,
+			PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
+		table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+	} else {
+		table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+	}
+
+	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_Falcon_QuickTransition);
+
+	reg_value = 0;
+	if (1 == reg_value) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_AutomaticDCTransition);
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_Falcon_QuickTransition);
+	}
+
+	reg_value = 0;
+	if ((0 == reg_value) &&
+		(0 == atomctrl_get_pp_assign_pin(hwmgr,
+			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ThermalOutGPIO);
+
+		table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+
+		table->ThermOutPolarity =
+			(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
+			(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
+
+		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
+
+		/* if required, combine VRHot/PCC with thermal out GPIO*/
+		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_RegulatorHot) &&
+			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_CombinePCCWithThermalSignal)){
+			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
+		}
+	} else {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ThermalOutGPIO);
+
+		table->ThermOutGpio = 17;
+		table->ThermOutPolarity = 1;
+		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
+	}
+
+	for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
+		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
+	}
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
+	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
+	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
+	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
+	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
+	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
+
+	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
+	result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
+										offsetof(SMU72_Discrete_DpmTable, SystemFlags),
+										(uint8_t *)&(table->SystemFlags),
+										sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
+										data->sram_end);
+
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to upload dpm data to SMC memory!", return result;);
+
+	return result;
+}
+
+/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
+static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
+{
+	return;
+}
+
+int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
+{
+	PPSMC_Result result;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* Apply minimum voltage based on DAL's request level */
+	tonga_apply_dal_minimum_voltage_request(hwmgr);
+
+	if (0 == data->sclk_dpm_key_disabled) {
+		/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+		if (0 != tonga_is_dpm_running(hwmgr))
+			printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
+
+		if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
+			result = smum_send_msg_to_smc_with_parameter(
+								hwmgr->smumgr,
+				(PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
+				data->dpm_level_enable_mask.sclk_dpm_enable_mask);
+			PP_ASSERT_WITH_CODE((0 == result),
+				"Set Sclk Dpm enable Mask failed", return -1);
+		}
+	}
+
+	if (0 == data->mclk_dpm_key_disabled) {
+		/* Checking if DPM is running.  If we discover hang because of this, we should skip this message.*/
+		if (0 != tonga_is_dpm_running(hwmgr))
+			printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
+
+		if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
+			result = smum_send_msg_to_smc_with_parameter(
+								hwmgr->smumgr,
+				(PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
+				data->dpm_level_enable_mask.mclk_dpm_enable_mask);
+			PP_ASSERT_WITH_CODE((0 == result),
+				"Set Mclk Dpm enable Mask failed", return -1);
+		}
+	}
+
+	return 0;
+}
+
+
+int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
+{
+	uint32_t level, tmp;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	if (0 == data->pcie_dpm_key_disabled) {
+		/* PCIE */
+		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
+			level = 0;
+			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
+			while (tmp >>= 1)
+				level++ ;
+
+			if (0 != level) {
+				PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
+					"force highest pcie dpm state failed!", return -1);
+			}
+		}
+	}
+
+	if (0 == data->sclk_dpm_key_disabled) {
+		/* SCLK */
+		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
+			level = 0;
+			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
+			while (tmp >>= 1)
+				level++ ;
+
+			if (0 != level) {
+				PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
+					"force highest sclk dpm state failed!", return -1);
+				if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
+					CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
+					printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
+						Curr_Sclk_Index does not match the level \n");
+
+			}
+		}
+	}
+
+	if (0 == data->mclk_dpm_key_disabled) {
+		/* MCLK */
+		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
+			level = 0;
+			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
+			while (tmp >>= 1)
+				level++ ;
+
+			if (0 != level) {
+				PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
+					"force highest mclk dpm state failed!", return -1);
+				if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
+					TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
+					printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
+						Curr_Sclk_Index does not match the level \n");
+			}
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * Find the MC microcode version and store it in the HwMgr struct
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
+{
+	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
+
+	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
+
+	return 0;
+}
+
+/**
+ * Initialize Dynamic State Adjustment Rule Settings
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ */
+int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
+{
+	uint32_t table_size;
+	struct phm_clock_voltage_dependency_table *table_clk_vlt;
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	hwmgr->dyn_state.mclk_sclk_ratio = 4;
+	hwmgr->dyn_state.sclk_mclk_delta = 15000;      /* 150 MHz */
+	hwmgr->dyn_state.vddc_vddci_delta = 200;       /* 200mV */
+
+	/* initialize vddc_dep_on_dal_pwrl table */
+	table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
+	table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == table_clk_vlt) {
+		printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
+		return -ENOMEM;
+	} else {
+		table_clk_vlt->count = 4;
+		table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
+		table_clk_vlt->entries[0].v = 0;
+		table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
+		table_clk_vlt->entries[1].v = 720;
+		table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
+		table_clk_vlt->entries[2].v = 810;
+		table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
+		table_clk_vlt->entries[3].v = 900;
+		pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
+		hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
+	}
+
+	return 0;
+}
+
+static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
+		pptable_info->vdd_dep_on_sclk;
+	phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
+		pptable_info->vdd_dep_on_mclk;
+
+	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
+		"VDD dependency on SCLK table is missing. 	\
+		This table is mandatory", return -1);
+	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
+		"VDD dependency on SCLK table has to have is missing. 	\
+		This table is mandatory", return -1);
+
+	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
+		"VDD dependency on MCLK table is missing. 	\
+		This table is mandatory", return -1);
+	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
+		"VDD dependency on MCLK table has to have is missing.	 \
+		This table is mandatory", return -1);
+
+	data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
+	data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
+
+	pptable_info->max_clock_voltage_on_ac.sclk =
+		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
+	pptable_info->max_clock_voltage_on_ac.mclk =
+		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
+	pptable_info->max_clock_voltage_on_ac.vddc =
+		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
+	pptable_info->max_clock_voltage_on_ac.vddci =
+		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
+
+	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
+		pptable_info->max_clock_voltage_on_ac.sclk;
+	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
+		pptable_info->max_clock_voltage_on_ac.mclk;
+	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
+		pptable_info->max_clock_voltage_on_ac.vddc;
+	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
+		pptable_info->max_clock_voltage_on_ac.vddci;
+
+	return 0;
+}
+
+int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	int result = 1;
+
+	PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
+		"Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
+							return result);
+
+	if (0 == data->pcie_dpm_key_disabled) {
+		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
+							     hwmgr->smumgr,
+					PPSMC_MSG_PCIeDPM_UnForceLevel)),
+					   "unforce pcie level failed!",
+								return -1);
+	}
+
+	result = tonga_upload_dpm_level_enable_mask(hwmgr);
+
+	return result;
+}
+
+static uint32_t tonga_get_lowest_enable_level(
+				struct pp_hwmgr *hwmgr, uint32_t level_mask)
+{
+	uint32_t level = 0;
+
+	while (0 == (level_mask & (1 << level)))
+		level++;
+
+	return level;
+}
+
+static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
+{
+	uint32_t level = 0;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* for now force only sclk */
+	if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
+		level = tonga_get_lowest_enable_level(hwmgr,
+					data->dpm_level_enable_mask.sclk_dpm_enable_mask);
+
+		PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
+			"force sclk dpm state failed!", return -1);
+
+		if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
+			CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
+			printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index.	\
+				Curr_Sclk_Index does not match the level \n");
+	}
+
+	return 0;
+}
+
+static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
+{
+	uint8_t entryId;
+	uint8_t voltageId;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
+	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
+		for (entryId = 0; entryId < sclk_table->count; ++entryId) {
+			voltageId = sclk_table->entries[entryId].vddInd;
+			sclk_table->entries[entryId].vddgfx =
+				pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
+		}
+	} else {
+		for (entryId = 0; entryId < sclk_table->count; ++entryId) {
+			voltageId = sclk_table->entries[entryId].vddInd;
+			sclk_table->entries[entryId].vddc =
+				pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
+		}
+	}
+
+	for (entryId = 0; entryId < mclk_table->count; ++entryId) {
+		voltageId = mclk_table->entries[entryId].vddInd;
+		mclk_table->entries[entryId].vddc =
+			pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
+	}
+
+	for (entryId = 0; entryId < mm_table->count; ++entryId) {
+		voltageId = mm_table->entries[entryId].vddcInd;
+		mm_table->entries[entryId].vddc =
+			pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
+	}
+
+	return 0;
+
+}
+
+static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
+{
+	uint8_t entryId;
+	phm_ppt_v1_voltage_lookup_record v_record;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
+	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
+
+	if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
+		for (entryId = 0; entryId < sclk_table->count; ++entryId) {
+			if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
+				v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
+					sclk_table->entries[entryId].vdd_offset - 0xFFFF;
+			else
+				v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
+					sclk_table->entries[entryId].vdd_offset;
+
+			sclk_table->entries[entryId].vddc =
+				v_record.us_cac_low = v_record.us_cac_mid =
+				v_record.us_cac_high = v_record.us_vdd;
+
+			tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
+		}
+
+		for (entryId = 0; entryId < mclk_table->count; ++entryId) {
+			if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
+				v_record.us_vdd = mclk_table->entries[entryId].vddc +
+					mclk_table->entries[entryId].vdd_offset - 0xFFFF;
+			else
+				v_record.us_vdd = mclk_table->entries[entryId].vddc +
+					mclk_table->entries[entryId].vdd_offset;
+
+			mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
+				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
+			tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
+		}
+	}
+
+	return 0;
+
+}
+
+static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
+{
+	uint32_t entryId;
+	phm_ppt_v1_voltage_lookup_record v_record;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
+
+	if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
+		for (entryId = 0; entryId < mm_table->count; entryId++) {
+			if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
+				v_record.us_vdd = mm_table->entries[entryId].vddc +
+					mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
+			else
+				v_record.us_vdd = mm_table->entries[entryId].vddc +
+					mm_table->entries[entryId].vddgfx_offset;
+
+			/* Add the calculated VDDGFX to the VDDGFX lookup table */
+			mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
+				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
+			tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
+		}
+	}
+	return 0;
+}
+
+
+/**
+ * Change virtual leakage voltage to actual value.
+ *
+ * @param     hwmgr  the address of the powerplay hardware manager.
+ * @param     pointer to changing voltage
+ * @param     pointer to leakage table
+ */
+static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
+		uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
+{
+	uint32_t leakage_index;
+
+	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
+	for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
+		/* if this voltage matches a leakage voltage ID */
+		/* patch with actual leakage voltage */
+		if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
+			*voltage = pLeakageTable->actual_voltage[leakage_index];
+			break;
+		}
+	}
+
+	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
+		printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
+}
+
+/**
+ * Patch voltage lookup table by EVV leakages.
+ *
+ * @param     hwmgr  the address of the powerplay hardware manager.
+ * @param     pointer to voltage lookup table
+ * @param     pointer to leakage table
+ * @return     always 0
+ */
+static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_voltage_lookup_table *lookup_table,
+		phw_tonga_leakage_voltage *pLeakageTable)
+{
+	uint32_t i;
+
+	for (i = 0; i < lookup_table->count; i++) {
+		tonga_patch_with_vdd_leakage(hwmgr,
+			&lookup_table->entries[i].us_vdd, pLeakageTable);
+	}
+
+	return 0;
+}
+
+static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
+		phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
+{
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
+	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
+		pptable_info->max_clock_voltage_on_dc.vddc;
+
+	return 0;
+}
+
+static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
+		struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
+		uint16_t *Vddgfx)
+{
+	tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
+	return 0;
+}
+
+int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_voltage_lookup_table *lookup_table)
+{
+	uint32_t table_size, i, j;
+	phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
+	table_size = lookup_table->count;
+
+	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
+		"Lookup table is empty", return -1);
+
+	/* Sorting voltages */
+	for (i = 0; i < table_size - 1; i++) {
+		for (j = i + 1; j > 0; j--) {
+			if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
+				tmp_voltage_lookup_record = lookup_table->entries[j-1];
+				lookup_table->entries[j-1] = lookup_table->entries[j];
+				lookup_table->entries[j] = tmp_voltage_lookup_record;
+			}
+		}
+	}
+
+	return 0;
+}
+
+static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
+{
+	int result = 0;
+	int tmp_result;
+	tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
+		tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
+			pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
+		if (tmp_result != 0)
+			result = tmp_result;
+
+		tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
+			&(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
+		if (tmp_result != 0)
+			result = tmp_result;
+	} else {
+		tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
+			pptable_info->vddc_lookup_table, &(data->vddc_leakage));
+		if (tmp_result != 0)
+			result = tmp_result;
+
+		tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
+			&(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
+		if (tmp_result != 0)
+			result = tmp_result;
+	}
+
+	tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
+	if (tmp_result != 0)
+		result = tmp_result;
+
+	tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
+	if (tmp_result != 0)
+		result = tmp_result;
+
+	tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
+	if (tmp_result != 0)
+		result = tmp_result;
+
+	tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
+	if (tmp_result != 0)
+		result = tmp_result;
+
+	tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
+	if (tmp_result != 0)
+		result = tmp_result;
+
+	return result;
+}
+
+int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	data->low_sclk_interrupt_threshold = 0;
+
+	return 0;
+}
+
+int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
+{
+	int tmp_result, result = 0;
+
+	tmp_result = tonga_read_clock_registers(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to read clock registers!", result = tmp_result);
+
+	tmp_result = tonga_get_memory_type(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to get memory type!", result = tmp_result);
+
+	tmp_result = tonga_enable_acpi_power_management(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to enable ACPI power management!", result = tmp_result);
+
+	tmp_result = tonga_init_power_gate_state(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to init power gate state!", result = tmp_result);
+
+	tmp_result = tonga_get_mc_microcode_version(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to get MC microcode version!", result = tmp_result);
+
+	tmp_result = tonga_init_sclk_threshold(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to init sclk threshold!", result = tmp_result);
+
+	return result;
+}
+
+/**
+ * Enable voltage control
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
+{
+	/* enable voltage control */
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
+
+	return 0;
+}
+
+/**
+ * Checks if we want to support voltage control
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ */
+bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
+{
+	const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
+}
+
+/*---------------------------MC----------------------------*/
+
+uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
+{
+	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
+}
+
+bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
+{
+	bool result = 1;
+
+	switch (inReg) {
+	case  mmMC_SEQ_RAS_TIMING:
+		*outReg = mmMC_SEQ_RAS_TIMING_LP;
+		break;
+
+	case  mmMC_SEQ_DLL_STBY:
+		*outReg = mmMC_SEQ_DLL_STBY_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CMD0:
+		*outReg = mmMC_SEQ_G5PDX_CMD0_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CMD1:
+		*outReg = mmMC_SEQ_G5PDX_CMD1_LP;
+		break;
+
+	case  mmMC_SEQ_G5PDX_CTRL:
+		*outReg = mmMC_SEQ_G5PDX_CTRL_LP;
+		break;
+
+	case mmMC_SEQ_CAS_TIMING:
+		*outReg = mmMC_SEQ_CAS_TIMING_LP;
+		break;
+
+	case mmMC_SEQ_MISC_TIMING:
+		*outReg = mmMC_SEQ_MISC_TIMING_LP;
+		break;
+
+	case mmMC_SEQ_MISC_TIMING2:
+		*outReg = mmMC_SEQ_MISC_TIMING2_LP;
+		break;
+
+	case mmMC_SEQ_PMG_DVS_CMD:
+		*outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
+		break;
+
+	case mmMC_SEQ_PMG_DVS_CTL:
+		*outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
+		break;
+
+	case mmMC_SEQ_RD_CTL_D0:
+		*outReg = mmMC_SEQ_RD_CTL_D0_LP;
+		break;
+
+	case mmMC_SEQ_RD_CTL_D1:
+		*outReg = mmMC_SEQ_RD_CTL_D1_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_D0:
+		*outReg = mmMC_SEQ_WR_CTL_D0_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_D1:
+		*outReg = mmMC_SEQ_WR_CTL_D1_LP;
+		break;
+
+	case mmMC_PMG_CMD_EMRS:
+		*outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS:
+		*outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS1:
+		*outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
+		break;
+
+	case mmMC_SEQ_PMG_TIMING:
+		*outReg = mmMC_SEQ_PMG_TIMING_LP;
+		break;
+
+	case mmMC_PMG_CMD_MRS2:
+		*outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
+		break;
+
+	case mmMC_SEQ_WR_CTL_2:
+		*outReg = mmMC_SEQ_WR_CTL_2_LP;
+		break;
+
+	default:
+		result = 0;
+		break;
+	}
+
+	return result;
+}
+
+int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
+{
+	uint32_t i;
+	uint16_t address;
+
+	for (i = 0; i < table->last; i++) {
+		table->mc_reg_address[i].s0 =
+			tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
+			? address : table->mc_reg_address[i].s1;
+	}
+	return 0;
+}
+
+int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
+{
+	uint8_t i, j;
+
+	PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+		"Invalid VramInfo table.", return -1);
+	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
+		"Invalid VramInfo table.", return -1);
+
+	for (i = 0; i < table->last; i++) {
+		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
+	}
+	ni_table->last = table->last;
+
+	for (i = 0; i < table->num_entries; i++) {
+		ni_table->mc_reg_table_entry[i].mclk_max =
+			table->mc_reg_table_entry[i].mclk_max;
+		for (j = 0; j < table->last; j++) {
+			ni_table->mc_reg_table_entry[i].mc_data[j] =
+				table->mc_reg_table_entry[i].mc_data[j];
+		}
+	}
+	ni_table->num_entries = table->num_entries;
+
+	return 0;
+}
+
+/**
+ * VBIOS omits some information to reduce size, we need to recover them here.
+ * 1.   when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to  mmMC_PMG_CMD_EMRS /_LP[15:0].
+ *      Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
+ * 2.   when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
+ * 3.   need to set these data for each clock range
+ *
+ * @param    hwmgr the address of the powerplay hardware manager.
+ * @param    table the address of MCRegTable
+ * @return   always 0
+ */
+int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
+{
+	uint8_t i, j, k;
+	uint32_t temp_reg;
+	const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	for (i = 0, j = table->last; i < table->last; i++) {
+		PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+			"Invalid VramInfo table.", return -1);
+		switch (table->mc_reg_address[i].s1) {
+		/*
+		* mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to  mmMC_PMG_CMD_EMRS /_LP[15:0].
+		* Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
+		*/
+		case mmMC_SEQ_MISC1:
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					((temp_reg & 0xffff0000)) |
+					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					(temp_reg & 0xffff0000) |
+					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+
+				if (!data->is_memory_GDDR5) {
+					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
+				}
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+
+			if (!data->is_memory_GDDR5) {
+				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
+				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
+				for (k = 0; k < table->num_entries; k++) {
+					table->mc_reg_table_entry[k].mc_data[j] =
+						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
+				}
+				j++;
+				PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+					"Invalid VramInfo table.", return -1);
+			}
+
+			break;
+
+		case mmMC_SEQ_RESERVE_M:
+			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
+			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
+			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
+			for (k = 0; k < table->num_entries; k++) {
+				table->mc_reg_table_entry[k].mc_data[j] =
+					(temp_reg & 0xffff0000) |
+					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+			}
+			j++;
+			PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+				"Invalid VramInfo table.", return -1);
+			break;
+
+		default:
+			break;
+		}
+
+	}
+
+	table->last = j;
+
+	return 0;
+}
+
+int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
+{
+	uint8_t i, j;
+	for (i = 0; i < table->last; i++) {
+		for (j = 1; j < table->num_entries; j++) {
+			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
+				table->mc_reg_table_entry[j].mc_data[i]) {
+				table->validflag |= (1<<i);
+				break;
+			}
+		}
+	}
+
+	return 0;
+}
+
+int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_mc_reg_table *table;
+	phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
+	uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
+
+	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
+
+	if (NULL == table)
+		return -1;
+
+	/* Program additional LP registers that are no longer programmed by VBIOS */
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
+	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
+
+	memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
+
+	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
+
+	if (0 == result)
+		result = tonga_copy_vbios_smc_reg_table(table, ni_table);
+
+	if (0 == result) {
+		tonga_set_s0_mc_reg_index(ni_table);
+		result = tonga_set_mc_special_registers(hwmgr, ni_table);
+	}
+
+	if (0 == result)
+		tonga_set_valid_flag(ni_table);
+
+	kfree(table);
+	return result;
+}
+
+/*
+* Copy one arb setting to another and then switch the active set.
+* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
+*/
+int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
+		uint32_t arbFreqSrc, uint32_t arbFreqDest)
+{
+	uint32_t mc_arb_dram_timing;
+	uint32_t mc_arb_dram_timing2;
+	uint32_t burst_time;
+	uint32_t mc_cg_config;
+
+	switch (arbFreqSrc) {
+	case MC_CG_ARB_FREQ_F0:
+		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
+		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
+		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
+		break;
+
+	case MC_CG_ARB_FREQ_F1:
+		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
+		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
+		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
+		break;
+
+	default:
+		return -1;
+	}
+
+	switch (arbFreqDest) {
+	case MC_CG_ARB_FREQ_F0:
+		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
+		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
+		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
+		break;
+
+	case MC_CG_ARB_FREQ_F1:
+		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
+		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
+		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
+		break;
+
+	default:
+		return -1;
+	}
+
+	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
+	mc_cg_config |= 0x0000000F;
+	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
+	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
+
+	return 0;
+}
+
+/**
+ * Initial switch from ARB F0->F1
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ * This function is to be called from the SetPowerState table.
+ */
+int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
+{
+	return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
+}
+
+/**
+ * Initialize the ARB DRAM timing table's index field.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
+{
+	const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	uint32_t tmp;
+	int result;
+
+	/*
+	* This is a read-modify-write on the first byte of the ARB table.
+	* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
+	* This solution is ugly, but we never write the whole table only individual fields in it.
+	* In reality this field should not be in that structure but in a soft register.
+	*/
+	result = tonga_read_smc_sram_dword(hwmgr->smumgr,
+				data->arb_table_start, &tmp, data->sram_end);
+
+	if (0 != result)
+		return result;
+
+	tmp &= 0x00FFFFFF;
+	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
+
+	return tonga_write_smc_sram_dword(hwmgr->smumgr,
+			data->arb_table_start,  tmp, data->sram_end);
+}
+
+int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
+{
+	const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	uint32_t i, j;
+
+	for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
+		if (data->tonga_mc_reg_table.validflag & 1<<j) {
+			PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
+				"Index of mc_reg_table->address[] array out of boundary", return -1);
+			mc_reg_table->address[i].s0 =
+				PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
+			mc_reg_table->address[i].s1 =
+				PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
+			i++;
+		}
+	}
+
+	mc_reg_table->last = (uint8_t)i;
+
+	return 0;
+}
+
+/*convert register values from driver to SMC format */
+void tonga_convert_mc_registers(
+	const phw_tonga_mc_reg_entry * pEntry,
+	SMU72_Discrete_MCRegisterSet *pData,
+	uint32_t numEntries, uint32_t validflag)
+{
+	uint32_t i, j;
+
+	for (i = 0, j = 0; j < numEntries; j++) {
+		if (validflag & 1<<j) {
+			pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
+			i++;
+		}
+	}
+}
+
+/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
+int tonga_convert_mc_reg_table_entry_to_smc(
+		struct pp_hwmgr *hwmgr,
+		const uint32_t memory_clock,
+		SMU72_Discrete_MCRegisterSet *mc_reg_table_data
+		)
+{
+	const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	uint32_t i = 0;
+
+	for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
+		if (memory_clock <=
+			data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
+			break;
+		}
+	}
+
+	if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
+		--i;
+
+	tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
+		mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
+
+	return 0;
+}
+
+int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
+		SMU72_Discrete_MCRegisters *mc_reg_table)
+{
+	int result = 0;
+	tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	int res;
+	uint32_t i;
+
+	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
+		res = tonga_convert_mc_reg_table_entry_to_smc(
+				hwmgr,
+				data->dpm_table.mclk_table.dpm_levels[i].value,
+				&mc_reg_table->data[i]
+				);
+
+		if (0 != res)
+			result = res;
+	}
+
+	return result;
+}
+
+int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	int result;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
+	result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
+
+	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
+	PP_ASSERT_WITH_CODE(0 == result,
+		"Failed to initialize MCRegTable for driver state!", return result;);
+
+	return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
+			(uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
+}
+
+/**
+ * Programs static screed detection parameters
+ *
+ * @param   hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* Set static screen threshold unit*/
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
+		CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
+		data->static_screen_threshold_unit);
+	/* Set static screen threshold*/
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
+		CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
+		data->static_screen_threshold);
+
+	return 0;
+}
+
+/**
+ * Setup display gap for glitch free memory clock switching.
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
+{
+	uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
+							CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
+
+	display_gap = PHM_SET_FIELD(display_gap,
+					CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
+
+	display_gap = PHM_SET_FIELD(display_gap,
+					CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
+
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_DISPLAY_GAP_CNTL, display_gap);
+
+	return 0;
+}
+
+/**
+ * Programs activity state transition voting clients
+ *
+ * @param    hwmgr  the address of the powerplay hardware manager.
+ * @return   always 0
+ */
+int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
+
+	/* Clear reset for voting clients before enabling DPM */
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
+		SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
+	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
+		SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
+
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
+	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+		ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
+
+	return 0;
+}
+
+
+int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
+{
+	int tmp_result, result = 0;
+
+	tmp_result = tonga_check_for_dpm_stopped(hwmgr);
+
+	if (cf_tonga_voltage_control(hwmgr)) {
+		tmp_result = tonga_enable_voltage_control(hwmgr);
+		PP_ASSERT_WITH_CODE((0 == tmp_result),
+			"Failed to enable voltage control!", result = tmp_result);
+
+		tmp_result = tonga_construct_voltage_tables(hwmgr);
+		PP_ASSERT_WITH_CODE((0 == tmp_result),
+			"Failed to contruct voltage tables!", result = tmp_result);
+	}
+
+	tmp_result = tonga_initialize_mc_reg_table(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to initialize MC reg table!", result = tmp_result);
+
+	tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to program static screen threshold parameters!", result = tmp_result);
+
+	tmp_result = tonga_enable_display_gap(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to enable display gap!", result = tmp_result);
+
+	tmp_result = tonga_program_voting_clients(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to program voting clients!", result = tmp_result);
+
+	tmp_result = tonga_process_firmware_header(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to process firmware header!", result = tmp_result);
+
+	tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
+
+	tmp_result = tonga_init_smc_table(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to initialize SMC table!", result = tmp_result);
+
+	tmp_result = tonga_init_arb_table_index(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to initialize ARB table index!", result = tmp_result);
+
+	tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to populate initialize MC Reg table!", result = tmp_result);
+
+	/* enable SCLK control */
+	tmp_result = tonga_enable_sclk_control(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to enable SCLK control!", result = tmp_result);
+
+	/* enable DPM */
+	tmp_result = tonga_start_dpm(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to start DPM!", result = tmp_result);
+
+	return result;
+}
+
+int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
+{
+	int tmp_result, result = 0;
+
+	tmp_result = tonga_check_for_dpm_running(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"SMC is still running!", return 0);
+
+	tmp_result = tonga_stop_dpm(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to stop DPM!", result = tmp_result);
+
+	tmp_result = tonga_reset_to_default(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result),
+		"Failed to reset to default!", result = tmp_result);
+
+	return result;
+}
+
+int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
+{
+	int result;
+
+	result = tonga_set_boot_state(hwmgr);
+	if (0 != result)
+		printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
+
+	return result;
+}
+
+int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
+{
+	if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
+		kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
+		hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
+	}
+
+	if (NULL != hwmgr->backend) {
+		kfree(hwmgr->backend);
+		hwmgr->backend = NULL;
+	}
+
+	return 0;
+}
+
+/**
+ * Initializes the Volcanic Islands Hardware Manager
+ *
+ * @param   hwmgr the address of the powerplay hardware manager.
+ * @return   1 if success; otherwise appropriate error code.
+ */
+int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
+{
+	int result = 0;
+	SMU72_Discrete_DpmTable  *table = NULL;
+	tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	phw_tonga_ulv_parm *ulv;
+
+	PP_ASSERT_WITH_CODE((NULL != hwmgr),
+		"Invalid Parameter!", return -1;);
+
+	data->dll_defaule_on = 0;
+	data->sram_end = SMC_RAM_END;
+
+	data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
+	data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
+
+	data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
+	data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
+	data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
+
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_DisableVoltageIsland);
+
+	data->sclk_dpm_key_disabled = 0;
+	data->mclk_dpm_key_disabled = 0;
+	data->pcie_dpm_key_disabled = 0;
+	data->pcc_monitor_enabled = 0;
+
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_UnTabledHardwareInterface);
+
+	data->gpio_debug = 0;
+	data->engine_clock_data = 0;
+	data->memory_clock_data = 0;
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_DynamicPatchPowerState);
+
+	/* need to set voltage control types before EVV patching*/
+	data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
+	data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
+	data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
+	data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
+
+	if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
+		data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ControlVDDGFX)) {
+		if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
+			data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+		}
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ControlVDDGFX);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_EnableMVDDControl)) {
+		if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+					VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
+			data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
+		}
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_EnableMVDDControl);
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ControlVDDCI)) {
+		if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+					VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
+			data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
+		else if (0 == atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
+						VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
+			data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
+	}
+
+	if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_ControlVDDCI);
+
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_TablelessHardwareInterface);
+
+	if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ClockStretcher);
+
+	/* Initializes DPM default values*/
+	tonga_initialize_dpm_defaults(hwmgr);
+
+	/* Get leakage voltage based on leakage ID.*/
+	PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
+		"Get EVV Voltage Failed.  Abort Driver loading!", return -1);
+
+	tonga_complete_dependency_tables(hwmgr);
+
+	/* Parse pptable data read from VBIOS*/
+	tonga_set_private_var_based_on_pptale(hwmgr);
+
+	/* ULV Support*/
+	ulv = &(data->ulv);
+	ulv->ulv_supported = 0;
+
+	/* Initalize Dynamic State Adjustment Rule Settings*/
+	result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
+	data->uvd_enabled = 0;
+
+	table = &(data->smc_state_table);
+
+	/*
+	* if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
+	* Peak Current Control feature is enabled and we should program PCC HW register
+	*/
+	if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
+		uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
+										CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
+
+		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
+		case 0:
+			temp_reg = PHM_SET_FIELD(temp_reg,
+				CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
+			break;
+		case 1:
+			temp_reg = PHM_SET_FIELD(temp_reg,
+				CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
+			break;
+		case 2:
+			temp_reg = PHM_SET_FIELD(temp_reg,
+				CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
+			break;
+		case 3:
+			temp_reg = PHM_SET_FIELD(temp_reg,
+				CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
+			break;
+		case 4:
+			temp_reg = PHM_SET_FIELD(temp_reg,
+				CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
+			break;
+		default:
+			printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register!	\
+				Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
+			break;
+		}
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+			ixCNB_PWRMGT_CNTL, temp_reg);
+	}
+
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_EnableSMU7ThermalManagement);
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_SMU7);
+
+	data->vddc_phase_shed_control = 0;
+
+	if (0 == result) {
+		data->is_tlu_enabled = 0;
+		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
+			TONGA_MAX_HARDWARE_POWERLEVELS;
+		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
+		hwmgr->platform_descriptor.minimumClocksReductionPercentage  = 50;
+
+		data->pcie_gen_cap = 0x30007;
+		data->pcie_lane_cap = 0x2f0000;
+	} else {
+		/* Ignore return value in here, we are cleaning up a mess. */
+		tonga_hwmgr_backend_fini(hwmgr);
+	}
+
+	return result;
+}
+
+static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
+		enum amd_dpm_forced_level level)
+{
+	int ret = 0;
+
+	switch (level) {
+	case AMD_DPM_FORCED_LEVEL_HIGH:
+		ret = tonga_force_dpm_highest(hwmgr);
+		if (ret)
+			return ret;
+		break;
+	case AMD_DPM_FORCED_LEVEL_LOW:
+		ret = tonga_force_dpm_lowest(hwmgr);
+		if (ret)
+			return ret;
+		break;
+	case AMD_DPM_FORCED_LEVEL_AUTO:
+		ret = tonga_unforce_dpm_levels(hwmgr);
+		if (ret)
+			return ret;
+		break;
+	default:
+		break;
+	}
+
+	hwmgr->dpm_level = level;
+	return ret;
+}
+
+static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
+				struct pp_power_state  *prequest_ps,
+			const struct pp_power_state *pcurrent_ps)
+{
+	struct tonga_power_state *tonga_ps =
+				cast_phw_tonga_power_state(&prequest_ps->hardware);
+
+	uint32_t sclk;
+	uint32_t mclk;
+	struct PP_Clocks minimum_clocks = {0};
+	bool disable_mclk_switching;
+	bool disable_mclk_switching_for_frame_lock;
+	struct cgs_display_info info = {0};
+	const struct phm_clock_and_voltage_limits *max_limits;
+	uint32_t i;
+	tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	int32_t count;
+	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
+
+	data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
+
+	PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
+				 "VI should always have 2 performance levels",
+				 );
+
+	max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
+			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
+			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
+
+	if (PP_PowerSource_DC == hwmgr->power_source) {
+		for (i = 0; i < tonga_ps->performance_level_count; i++) {
+			if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
+				tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
+			if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
+				tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
+		}
+	}
+
+	tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
+	tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
+
+	tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
+
+	cgs_get_active_displays_info(hwmgr->device, &info);
+
+	/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
+
+	/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
+
+		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
+		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
+
+		for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
+			if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
+				stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
+				break;
+			}
+		}
+
+		if (count < 0)
+			stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
+
+		stable_pstate_mclk = max_limits->mclk;
+
+		minimum_clocks.engineClock = stable_pstate_sclk;
+		minimum_clocks.memoryClock = stable_pstate_mclk;
+	}
+
+	if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
+		minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
+
+	if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
+		minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
+
+	tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
+
+	if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
+		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
+					"Overdrive sclk exceeds limit",
+					hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
+
+		if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
+			tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
+	}
+
+	if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
+		PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
+			"Overdrive mclk exceeds limit",
+			hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
+
+		if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
+			tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
+	}
+
+	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
+				    hwmgr->platform_descriptor.platformCaps,
+				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
+
+	disable_mclk_switching = (1 < info.display_count) ||
+				    disable_mclk_switching_for_frame_lock;
+
+	sclk  = tonga_ps->performance_levels[0].engine_clock;
+	mclk  = tonga_ps->performance_levels[0].memory_clock;
+
+	if (disable_mclk_switching)
+		mclk  = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
+
+	if (sclk < minimum_clocks.engineClock)
+		sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
+
+	if (mclk < minimum_clocks.memoryClock)
+		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
+
+	tonga_ps->performance_levels[0].engine_clock = sclk;
+	tonga_ps->performance_levels[0].memory_clock = mclk;
+
+	tonga_ps->performance_levels[1].engine_clock =
+		(tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
+			      tonga_ps->performance_levels[1].engine_clock :
+			      tonga_ps->performance_levels[0].engine_clock;
+
+	if (disable_mclk_switching) {
+		if (mclk < tonga_ps->performance_levels[1].memory_clock)
+			mclk = tonga_ps->performance_levels[1].memory_clock;
+
+		tonga_ps->performance_levels[0].memory_clock = mclk;
+		tonga_ps->performance_levels[1].memory_clock = mclk;
+	} else {
+		if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
+			tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
+	}
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
+		for (i=0; i < tonga_ps->performance_level_count; i++) {
+			tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
+			tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
+			tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
+			tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
+		}
+	}
+
+	return 0;
+}
+
+int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
+{
+	return sizeof(struct tonga_power_state);
+}
+
+static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
+{
+	struct pp_power_state  *ps;
+	struct tonga_power_state  *tonga_ps;
+
+	if (hwmgr == NULL)
+		return -EINVAL;
+
+	ps = hwmgr->request_ps;
+
+	if (ps == NULL)
+		return -EINVAL;
+
+	tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
+
+	if (low)
+		return tonga_ps->performance_levels[0].memory_clock;
+	else
+		return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
+}
+
+static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
+{
+	struct pp_power_state  *ps;
+	struct tonga_power_state  *tonga_ps;
+
+	if (hwmgr == NULL)
+		return -EINVAL;
+
+	ps = hwmgr->request_ps;
+
+	if (ps == NULL)
+		return -EINVAL;
+
+	tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
+
+	if (low)
+		return tonga_ps->performance_levels[0].engine_clock;
+	else
+		return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
+}
+
+static uint16_t tonga_get_current_pcie_speed(
+						   struct pp_hwmgr *hwmgr)
+{
+	uint32_t speed_cntl = 0;
+
+	speed_cntl = cgs_read_ind_register(hwmgr->device,
+						   CGS_IND_REG__PCIE,
+						   ixPCIE_LC_SPEED_CNTL);
+	return((uint16_t)PHM_GET_FIELD(speed_cntl,
+			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
+}
+
+static int tonga_get_current_pcie_lane_number(
+						   struct pp_hwmgr *hwmgr)
+{
+	uint32_t link_width;
+
+	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
+							CGS_IND_REG__PCIE,
+						  PCIE_LC_LINK_WIDTH_CNTL,
+							LC_LINK_WIDTH_RD);
+
+	PP_ASSERT_WITH_CODE((7 >= link_width),
+			"Invalid PCIe lane width!", return 0);
+
+	return decode_pcie_lane_width(link_width);
+}
+
+static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
+					struct pp_hw_power_state *hw_ps)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
+	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
+	uint16_t size;
+	uint8_t frev, crev;
+	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
+
+	/* First retrieve the Boot clocks and VDDC from the firmware info table.
+	 * We assume here that fw_info is unchanged if this call fails.
+	 */
+	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
+			hwmgr->device, index,
+			&size, &frev, &crev);
+	if (!fw_info)
+		/* During a test, there is no firmware info table. */
+		return 0;
+
+	/* Patch the state. */
+	data->vbios_boot_state.sclk_bootup_value  = le32_to_cpu(fw_info->ulDefaultEngineClock);
+	data->vbios_boot_state.mclk_bootup_value  = le32_to_cpu(fw_info->ulDefaultMemoryClock);
+	data->vbios_boot_state.mvdd_bootup_value  = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
+	data->vbios_boot_state.vddc_bootup_value  = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
+	data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
+	data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
+	data->vbios_boot_state.pcie_lane_bootup_value =
+			(uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
+
+	/* set boot power state */
+	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
+	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
+	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
+	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
+
+	return 0;
+}
+
+static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
+		void *state, struct pp_power_state *power_state,
+		void *pp_table, uint32_t classification_flag)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	struct tonga_power_state  *tonga_ps =
+			(struct tonga_power_state *)(&(power_state->hardware));
+
+	struct tonga_performance_level *performance_level;
+
+	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
+
+	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
+			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
+
+	ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
+			(ATOM_Tonga_SCLK_Dependency_Table *)
+			(((uint64_t)powerplay_table) +
+			le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
+
+	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
+			(ATOM_Tonga_MCLK_Dependency_Table *)
+			(((uint64_t)powerplay_table) +
+			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
+
+	/* The following fields are not initialized here: id orderedList allStatesList */
+	power_state->classification.ui_label =
+			(le16_to_cpu(state_entry->usClassification) &
+			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
+			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
+	power_state->classification.flags = classification_flag;
+	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
+
+	power_state->classification.temporary_state = false;
+	power_state->classification.to_be_deleted = false;
+
+	power_state->validation.disallowOnDC =
+			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
+
+	power_state->pcie.lanes = 0;
+
+	power_state->display.disableFrameModulation = false;
+	power_state->display.limitRefreshrate = false;
+	power_state->display.enableVariBright =
+			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
+
+	power_state->validation.supportedPowerLevels = 0;
+	power_state->uvd_clocks.VCLK = 0;
+	power_state->uvd_clocks.DCLK = 0;
+	power_state->temperatures.min = 0;
+	power_state->temperatures.max = 0;
+
+	performance_level = &(tonga_ps->performance_levels
+			[tonga_ps->performance_level_count++]);
+
+	PP_ASSERT_WITH_CODE(
+			(tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
+			"Performance levels exceeds SMC limit!",
+			return -1);
+
+	PP_ASSERT_WITH_CODE(
+			(tonga_ps->performance_level_count <=
+					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
+			"Performance levels exceeds Driver limit!",
+			return -1);
+
+	/* Performance levels are arranged from low to high. */
+	performance_level->memory_clock =
+				le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
+
+	performance_level->engine_clock =
+				le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
+
+	performance_level->pcie_gen = get_pcie_gen_support(
+							data->pcie_gen_cap,
+					     state_entry->ucPCIEGenLow);
+
+	performance_level->pcie_lane = get_pcie_lane_support(
+						    data->pcie_lane_cap,
+					   state_entry->ucPCIELaneHigh);
+
+	performance_level =
+			&(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
+
+	performance_level->memory_clock =
+				le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
+
+	performance_level->engine_clock =
+				le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
+
+	performance_level->pcie_gen = get_pcie_gen_support(
+							data->pcie_gen_cap,
+					    state_entry->ucPCIEGenHigh);
+
+	performance_level->pcie_lane = get_pcie_lane_support(
+						    data->pcie_lane_cap,
+					   state_entry->ucPCIELaneHigh);
+
+	return 0;
+}
+
+static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
+		    unsigned long entry_index, struct pp_power_state *ps)
+{
+	int result;
+	struct tonga_power_state *tonga_ps;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	struct phm_ppt_v1_information *table_info =
+			(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
+					   table_info->vdd_dep_on_mclk;
+
+	ps->hardware.magic = PhwTonga_Magic;
+
+	tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
+
+	result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
+			tonga_get_pp_table_entry_callback_func);
+
+	/* This is the earliest time we have all the dependency table and the VBIOS boot state
+	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
+	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
+	 */
+	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
+		if (dep_mclk_table->entries[0].clk !=
+				data->vbios_boot_state.mclk_bootup_value)
+			printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
+					"does not match VBIOS boot MCLK level");
+		if (dep_mclk_table->entries[0].vddci !=
+				data->vbios_boot_state.vddci_bootup_value)
+			printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
+					"does not match VBIOS boot VDDCI level");
+	}
+
+	/* set DC compatible flag if this state supports DC */
+	if (!ps->validation.disallowOnDC)
+		tonga_ps->dc_compatible = true;
+
+	if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
+		data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
+	else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
+		if (data->bacos.best_match == 0xffff) {
+			/* For V.I. use boot state as base BACO state */
+			data->bacos.best_match = PP_StateClassificationFlag_Boot;
+			data->bacos.performance_level = tonga_ps->performance_levels[0];
+		}
+	}
+
+	tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
+	tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
+
+	if (!result) {
+		uint32_t i;
+
+		switch (ps->classification.ui_label) {
+		case PP_StateUILabel_Performance:
+			data->use_pcie_performance_levels = true;
+
+			for (i = 0; i < tonga_ps->performance_level_count; i++) {
+				if (data->pcie_gen_performance.max <
+						tonga_ps->performance_levels[i].pcie_gen)
+					data->pcie_gen_performance.max =
+							tonga_ps->performance_levels[i].pcie_gen;
+
+				if (data->pcie_gen_performance.min >
+						tonga_ps->performance_levels[i].pcie_gen)
+					data->pcie_gen_performance.min =
+							tonga_ps->performance_levels[i].pcie_gen;
+
+				if (data->pcie_lane_performance.max <
+						tonga_ps->performance_levels[i].pcie_lane)
+					data->pcie_lane_performance.max =
+							tonga_ps->performance_levels[i].pcie_lane;
+
+				if (data->pcie_lane_performance.min >
+						tonga_ps->performance_levels[i].pcie_lane)
+					data->pcie_lane_performance.min =
+							tonga_ps->performance_levels[i].pcie_lane;
+			}
+			break;
+		case PP_StateUILabel_Battery:
+			data->use_pcie_power_saving_levels = true;
+
+			for (i = 0; i < tonga_ps->performance_level_count; i++) {
+				if (data->pcie_gen_power_saving.max <
+						tonga_ps->performance_levels[i].pcie_gen)
+					data->pcie_gen_power_saving.max =
+							tonga_ps->performance_levels[i].pcie_gen;
+
+				if (data->pcie_gen_power_saving.min >
+						tonga_ps->performance_levels[i].pcie_gen)
+					data->pcie_gen_power_saving.min =
+							tonga_ps->performance_levels[i].pcie_gen;
+
+				if (data->pcie_lane_power_saving.max <
+						tonga_ps->performance_levels[i].pcie_lane)
+					data->pcie_lane_power_saving.max =
+							tonga_ps->performance_levels[i].pcie_lane;
+
+				if (data->pcie_lane_power_saving.min >
+						tonga_ps->performance_levels[i].pcie_lane)
+					data->pcie_lane_power_saving.min =
+							tonga_ps->performance_levels[i].pcie_lane;
+			}
+			break;
+		default:
+			break;
+		}
+	}
+	return 0;
+}
+
+static void
+tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
+{
+	uint32_t sclk, mclk;
+
+	smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
+
+	sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
+
+	smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
+
+	mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
+	seq_printf(m, "\n [  mclk  ]: %u MHz\n\n [  sclk  ]: %u MHz\n", mclk/100, sclk/100);
+}
+
+static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
+{
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
+	uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
+	struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
+	uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
+	struct PP_Clocks min_clocks = {0};
+	uint32_t i;
+	struct cgs_display_info info = {0};
+
+	data->need_update_smu7_dpm_table = 0;
+
+	for (i = 0; i < psclk_table->count; i++) {
+		if (sclk == psclk_table->dpm_levels[i].value)
+			break;
+	}
+
+	if (i >= psclk_table->count)
+		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
+	else {
+	/* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
+		if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
+			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
+	}
+
+	for (i=0; i < pmclk_table->count; i++) {
+		if (mclk == pmclk_table->dpm_levels[i].value)
+			break;
+	}
+
+	if (i >= pmclk_table->count)
+		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
+
+	cgs_get_active_displays_info(hwmgr->device, &info);
+
+	if (data->display_timing.num_existing_displays != info.display_count)
+		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
+
+	return 0;
+}
+
+static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
+{
+	uint32_t i;
+	uint32_t sclk, max_sclk = 0;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	struct tonga_dpm_table *pdpm_table = &data->dpm_table;
+
+	for (i = 0; i < hw_ps->performance_level_count; i++) {
+		sclk = hw_ps->performance_levels[i].engine_clock;
+		if (max_sclk < sclk)
+			max_sclk = sclk;
+	}
+
+	for (i = 0; i < pdpm_table->sclk_table.count; i++) {
+		if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
+			return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
+					pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
+					pdpm_table->pcie_speed_table.dpm_levels[i].value);
+	}
+
+	return 0;
+}
+
+static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
+{
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
+	const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
+
+	uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
+	uint16_t current_link_speed;
+
+	if (data->force_pcie_gen == PP_PCIEGenInvalid)
+		current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
+	else
+		current_link_speed = data->force_pcie_gen;
+
+	data->force_pcie_gen = PP_PCIEGenInvalid;
+	data->pspp_notify_required = false;
+	if (target_link_speed > current_link_speed) {
+		switch(target_link_speed) {
+		case PP_PCIEGen3:
+			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
+				break;
+			data->force_pcie_gen = PP_PCIEGen2;
+			if (current_link_speed == PP_PCIEGen2)
+				break;
+		case PP_PCIEGen2:
+			if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
+				break;
+		default:
+			data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
+			break;
+		}
+	} else {
+		if (target_link_speed < current_link_speed)
+			data->pspp_notify_required = true;
+	}
+
+	return 0;
+}
+
+static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	if (0 == data->need_update_smu7_dpm_table)
+		return 0;
+
+	if ((0 == data->sclk_dpm_key_disabled) &&
+		(data->need_update_smu7_dpm_table &
+		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
+		PP_ASSERT_WITH_CODE(
+			true == tonga_is_dpm_running(hwmgr),
+			"Trying to freeze SCLK DPM when DPM is disabled",
+			);
+		PP_ASSERT_WITH_CODE(
+			0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					  PPSMC_MSG_SCLKDPM_FreezeLevel),
+			"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
+			return -1);
+	}
+
+	if ((0 == data->mclk_dpm_key_disabled) &&
+		(data->need_update_smu7_dpm_table &
+		 DPMTABLE_OD_UPDATE_MCLK)) {
+		PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
+			"Trying to freeze MCLK DPM when DPM is disabled",
+			);
+		PP_ASSERT_WITH_CODE(
+			0 == smum_send_msg_to_smc(hwmgr->smumgr,
+							PPSMC_MSG_MCLKDPM_FreezeLevel),
+			"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
+			return -1);
+	}
+
+	return 0;
+}
+
+static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
+{
+	int result = 0;
+
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
+	uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
+	struct tonga_dpm_table *pdpm_table = &data->dpm_table;
+
+	struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
+	uint32_t dpm_count, clock_percent;
+	uint32_t i;
+
+	if (0 == data->need_update_smu7_dpm_table)
+		return 0;
+
+	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
+		pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
+
+		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
+		    phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
+		/* Need to do calculation based on the golden DPM table
+		 * as the Heatmap GPU Clock axis is also based on the default values
+		 */
+			PP_ASSERT_WITH_CODE(
+				(pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
+				"Divide by 0!",
+				return -1);
+			dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
+			for (i = dpm_count; i > 1; i--) {
+				if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
+					clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
+							pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
+
+					pdpm_table->sclk_table.dpm_levels[i].value =
+							pgolden_dpm_table->sclk_table.dpm_levels[i].value +
+							(pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
+
+				} else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
+					clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
+								pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
+
+					pdpm_table->sclk_table.dpm_levels[i].value =
+							pgolden_dpm_table->sclk_table.dpm_levels[i].value -
+							(pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
+				} else
+					pdpm_table->sclk_table.dpm_levels[i].value =
+							pgolden_dpm_table->sclk_table.dpm_levels[i].value;
+			}
+		}
+	}
+
+	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
+		pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
+
+		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
+			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
+
+			PP_ASSERT_WITH_CODE(
+					(pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
+					"Divide by 0!",
+					return -1);
+			dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
+			for (i = dpm_count; i > 1; i--) {
+				if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
+						clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
+								    pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
+
+						pdpm_table->mclk_table.dpm_levels[i].value =
+										pgolden_dpm_table->mclk_table.dpm_levels[i].value +
+										(pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
+
+				} else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
+						clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
+								    pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
+
+						pdpm_table->mclk_table.dpm_levels[i].value =
+									pgolden_dpm_table->mclk_table.dpm_levels[i].value -
+									(pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
+				} else
+					pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
+			}
+		}
+	}
+
+	if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
+		result = tonga_populate_all_memory_levels(hwmgr);
+		PP_ASSERT_WITH_CODE((0 == result),
+			"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
+			return result);
+	}
+
+	if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
+		/*populate MCLK dpm table to SMU7 */
+		result = tonga_populate_all_memory_levels(hwmgr);
+		PP_ASSERT_WITH_CODE((0 == result),
+				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
+				return result);
+	}
+
+	return result;
+}
+
+static	int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
+			  struct tonga_single_dpm_table * pdpm_table,
+			     uint32_t low_limit, uint32_t high_limit)
+{
+	uint32_t i;
+
+	for (i = 0; i < pdpm_table->count; i++) {
+		if ((pdpm_table->dpm_levels[i].value < low_limit) ||
+		    (pdpm_table->dpm_levels[i].value > high_limit))
+			pdpm_table->dpm_levels[i].enabled = false;
+		else
+			pdpm_table->dpm_levels[i].enabled = true;
+	}
+	return 0;
+}
+
+static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
+{
+	int result = 0;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	uint32_t high_limit_count;
+
+	PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
+				"power state did not have any performance level",
+				 return -1);
+
+	high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
+
+	tonga_trim_single_dpm_states(hwmgr,
+					&(data->dpm_table.sclk_table),
+					hw_state->performance_levels[0].engine_clock,
+					hw_state->performance_levels[high_limit_count].engine_clock);
+
+	tonga_trim_single_dpm_states(hwmgr,
+						&(data->dpm_table.mclk_table),
+						hw_state->performance_levels[0].memory_clock,
+						hw_state->performance_levels[high_limit_count].memory_clock);
+
+	return result;
+}
+
+static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
+{
+	int result;
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
+
+
+	result = tonga_trim_dpm_states(hwmgr, tonga_ps);
+	if (0 != result)
+		return result;
+
+	data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
+	data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
+	data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
+	if (data->uvd_enabled)
+		data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
+
+	data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
+
+	return 0;
+}
+
+static int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
+{
+	return smum_send_msg_to_smc(hwmgr->smumgr, enable?
+				  (PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
+				  (PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
+}
+
+static int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
+{
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
+	const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
+
+	uint32_t mm_boot_level_offset, mm_boot_level_value;
+	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	if(tonga_nps->vce_clocks.EVCLK >0 &&
+	(tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
+		data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
+
+		mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
+		mm_boot_level_offset /= 4;
+		mm_boot_level_offset *= 4;
+		mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
+		mm_boot_level_value &= 0xFF00FFFF;
+		mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
+		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
+				smum_send_msg_to_smc_with_parameter(
+							   hwmgr->smumgr,
+			(PPSMC_Msg)(PPSMC_MSG_VCEDPM_SetEnabledMask),
+			(uint32_t)1 << data->smc_state_table.VceBootLevel);
+
+			tonga_enable_disable_vce_dpm(hwmgr, true);
+		} else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
+			tonga_enable_disable_vce_dpm(hwmgr, false);
+	}
+
+	return 0;
+}
+
+static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	uint32_t address;
+	int32_t result;
+
+	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
+		return 0;
+
+
+	memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
+
+	result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
+
+	if(result != 0)
+		return result;
+
+
+	address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
+
+	return  tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
+				 (uint8_t *)&data->mc_reg_table.data[0],
+				sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
+				data->sram_end);
+}
+
+static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	if (data->need_update_smu7_dpm_table &
+		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
+		return tonga_program_memory_timing_parameters(hwmgr);
+
+	return 0;
+}
+
+static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
+{
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+
+	if (0 == data->need_update_smu7_dpm_table)
+		return 0;
+
+	if ((0 == data->sclk_dpm_key_disabled) &&
+		(data->need_update_smu7_dpm_table &
+		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
+
+		PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
+			"Trying to Unfreeze SCLK DPM when DPM is disabled",
+			);
+		PP_ASSERT_WITH_CODE(
+			 0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
+			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
+			return -1);
+	}
+
+	if ((0 == data->mclk_dpm_key_disabled) &&
+		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
+
+		PP_ASSERT_WITH_CODE(
+				true == tonga_is_dpm_running(hwmgr),
+				"Trying to Unfreeze MCLK DPM when DPM is disabled",
+				);
+		PP_ASSERT_WITH_CODE(
+			 0 == smum_send_msg_to_smc(hwmgr->smumgr,
+					 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
+		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
+		    return -1);
+	}
+
+	data->need_update_smu7_dpm_table = 0;
+
+	return 0;
+}
+
+static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
+{
+	const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
+	struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
+	const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
+	uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
+	uint8_t  request;
+
+	if (data->pspp_notify_required  ||
+	    data->pcie_performance_request) {
+		if (target_link_speed == PP_PCIEGen3)
+			request = PCIE_PERF_REQ_GEN3;
+		else if (target_link_speed == PP_PCIEGen2)
+			request = PCIE_PERF_REQ_GEN2;
+		else
+			request = PCIE_PERF_REQ_GEN1;
+
+		if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
+			data->pcie_performance_request = false;
+			return 0;
+		}
+
+		if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
+			if (PP_PCIEGen2 == target_link_speed)
+				printk("PSPP request to switch to Gen2 from Gen3 Failed!");
+			else
+				printk("PSPP request to switch to Gen1 from Gen2 Failed!");
+		}
+	}
+
+	data->pcie_performance_request = false;
+	return 0;
+}
+
+static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
+{
+	int tmp_result, result = 0;
+
+	tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
+		tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
+		PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
+	}
+
+	tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
+
+	tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
+
+	tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
+
+	tmp_result = tonga_update_vce_dpm(hwmgr, input);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
+
+	tmp_result = tonga_update_sclk_threshold(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
+
+	tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
+
+	tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
+
+	tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
+
+	tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
+	PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
+
+	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
+		tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
+		PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
+	}
+
+	return result;
+}
+
+static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
+	.backend_init = &tonga_hwmgr_backend_init,
+	.backend_fini = &tonga_hwmgr_backend_fini,
+	.asic_setup = &tonga_setup_asic_task,
+	.dynamic_state_management_enable = &tonga_enable_dpm_tasks,
+	.apply_state_adjust_rules = tonga_apply_state_adjust_rules,
+	.force_dpm_level = &tonga_force_dpm_level,
+	.power_state_set = tonga_set_power_state_tasks,
+	.get_power_state_size = tonga_get_power_state_size,
+	.get_mclk = tonga_dpm_get_mclk,
+	.get_sclk = tonga_dpm_get_sclk,
+	.patch_boot_state = tonga_dpm_patch_boot_state,
+	.get_pp_table_entry = tonga_get_pp_table_entry,
+	.get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
+	.print_current_perforce_level = tonga_print_current_perforce_level,
+};
+
+int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
+{
+	tonga_hwmgr  *data;
+
+	data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
+	if (data == NULL)
+		return -ENOMEM;
+	memset(data, 0x00, sizeof(tonga_hwmgr));
+
+	hwmgr->backend = data;
+	hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
+	hwmgr->pptable_func = &tonga_pptable_funcs;
+
+	return 0;
+}
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
new file mode 100644
index 0000000..d007706
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.h
@@ -0,0 +1,427 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#ifndef TONGA_HWMGR_H
+#define TONGA_HWMGR_H
+
+#include "hwmgr.h"
+#include "smu72_discrete.h"
+#include "ppatomctrl.h"
+#include "ppinterrupt.h"
+#include "tonga_powertune.h"
+
+#define TONGA_MAX_HARDWARE_POWERLEVELS 2
+#define TONGA_DYNCLK_NUMBER_OF_TREND_COEFFICIENTS 15
+
+struct tonga_performance_level {
+	uint32_t	memory_clock;
+	uint32_t	engine_clock;
+	uint16_t    pcie_gen;
+	uint16_t    pcie_lane;
+};
+
+struct _phw_tonga_bacos {
+	uint32_t                          best_match;
+	uint32_t                          baco_flags;
+	struct tonga_performance_level		  performance_level;
+};
+typedef struct _phw_tonga_bacos phw_tonga_bacos;
+
+struct _phw_tonga_uvd_clocks {
+	uint32_t   VCLK;
+	uint32_t   DCLK;
+};
+
+typedef struct _phw_tonga_uvd_clocks phw_tonga_uvd_clocks;
+
+struct _phw_tonga_vce_clocks {
+	uint32_t   EVCLK;
+	uint32_t   ECCLK;
+};
+
+typedef struct _phw_tonga_vce_clocks phw_tonga_vce_clocks;
+
+struct tonga_power_state {
+	uint32_t                    magic;
+	phw_tonga_uvd_clocks        uvd_clocks;
+	phw_tonga_vce_clocks        vce_clocks;
+	uint32_t                    sam_clk;
+	uint32_t                    acp_clk;
+	uint16_t                    performance_level_count;
+	bool                        dc_compatible;
+	uint32_t                    sclk_threshold;
+	struct tonga_performance_level performance_levels[TONGA_MAX_HARDWARE_POWERLEVELS];
+};
+
+struct _phw_tonga_dpm_level {
+	bool  		enabled;
+	uint32_t    value;
+	uint32_t    param1;
+};
+typedef struct _phw_tonga_dpm_level phw_tonga_dpm_level;
+
+#define TONGA_MAX_DEEPSLEEP_DIVIDER_ID 5
+#define MAX_REGULAR_DPM_NUMBER 8
+#define TONGA_MINIMUM_ENGINE_CLOCK 2500
+
+struct tonga_single_dpm_table {
+	uint32_t count;
+	phw_tonga_dpm_level dpm_levels[MAX_REGULAR_DPM_NUMBER];
+};
+
+struct tonga_dpm_table {
+	struct tonga_single_dpm_table  sclk_table;
+	struct tonga_single_dpm_table  mclk_table;
+	struct tonga_single_dpm_table  pcie_speed_table;
+	struct tonga_single_dpm_table  vddc_table;
+	struct tonga_single_dpm_table  vdd_gfx_table;
+	struct tonga_single_dpm_table  vdd_ci_table;
+	struct tonga_single_dpm_table  mvdd_table;
+};
+typedef struct _phw_tonga_dpm_table phw_tonga_dpm_table;
+
+
+struct _phw_tonga_clock_regisiters {
+	uint32_t  vCG_SPLL_FUNC_CNTL;
+	uint32_t  vCG_SPLL_FUNC_CNTL_2;
+	uint32_t  vCG_SPLL_FUNC_CNTL_3;
+	uint32_t  vCG_SPLL_FUNC_CNTL_4;
+	uint32_t  vCG_SPLL_SPREAD_SPECTRUM;
+	uint32_t  vCG_SPLL_SPREAD_SPECTRUM_2;
+	uint32_t  vDLL_CNTL;
+	uint32_t  vMCLK_PWRMGT_CNTL;
+	uint32_t  vMPLL_AD_FUNC_CNTL;
+	uint32_t  vMPLL_DQ_FUNC_CNTL;
+	uint32_t  vMPLL_FUNC_CNTL;
+	uint32_t  vMPLL_FUNC_CNTL_1;
+	uint32_t  vMPLL_FUNC_CNTL_2;
+	uint32_t  vMPLL_SS1;
+	uint32_t  vMPLL_SS2;
+};
+typedef struct _phw_tonga_clock_regisiters phw_tonga_clock_registers;
+
+struct _phw_tonga_voltage_smio_registers {
+	uint32_t vs0_vid_lower_smio_cntl;
+};
+typedef struct _phw_tonga_voltage_smio_registers phw_tonga_voltage_smio_registers;
+
+
+struct _phw_tonga_mc_reg_entry {
+	uint32_t mclk_max;
+	uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
+};
+typedef struct _phw_tonga_mc_reg_entry phw_tonga_mc_reg_entry;
+
+struct _phw_tonga_mc_reg_table {
+	uint8_t   last;               /* number of registers*/
+	uint8_t   num_entries;        /* number of entries in mc_reg_table_entry used*/
+	uint16_t  validflag;          /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/
+	phw_tonga_mc_reg_entry    mc_reg_table_entry[MAX_AC_TIMING_ENTRIES];
+	SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
+};
+typedef struct _phw_tonga_mc_reg_table phw_tonga_mc_reg_table;
+
+#define DISABLE_MC_LOADMICROCODE   1
+#define DISABLE_MC_CFGPROGRAMMING  2
+
+/*Ultra Low Voltage parameter structure */
+struct _phw_tonga_ulv_parm{
+	bool	ulv_supported;
+	uint32_t   ch_ulv_parameter;
+	uint32_t   ulv_volt_change_delay;
+	struct tonga_performance_level   ulv_power_level;
+};
+typedef struct _phw_tonga_ulv_parm phw_tonga_ulv_parm;
+
+#define TONGA_MAX_LEAKAGE_COUNT  8
+
+struct _phw_tonga_leakage_voltage {
+	uint16_t  count;
+	uint16_t  leakage_id[TONGA_MAX_LEAKAGE_COUNT];
+	uint16_t  actual_voltage[TONGA_MAX_LEAKAGE_COUNT];
+};
+typedef struct _phw_tonga_leakage_voltage phw_tonga_leakage_voltage;
+
+struct _phw_tonga_display_timing {
+	uint32_t min_clock_insr;
+	uint32_t num_existing_displays;
+};
+typedef struct _phw_tonga_display_timing phw_tonga_display_timing;
+
+struct _phw_tonga_dpmlevel_enable_mask {
+	uint32_t uvd_dpm_enable_mask;
+	uint32_t vce_dpm_enable_mask;
+	uint32_t acp_dpm_enable_mask;
+	uint32_t samu_dpm_enable_mask;
+	uint32_t sclk_dpm_enable_mask;
+	uint32_t mclk_dpm_enable_mask;
+	uint32_t pcie_dpm_enable_mask;
+};
+typedef struct _phw_tonga_dpmlevel_enable_mask phw_tonga_dpmlevel_enable_mask;
+
+struct _phw_tonga_pcie_perf_range {
+	uint16_t max;
+	uint16_t min;
+};
+typedef struct _phw_tonga_pcie_perf_range phw_tonga_pcie_perf_range;
+
+struct _phw_tonga_vbios_boot_state {
+	uint16_t					mvdd_bootup_value;
+	uint16_t					vddc_bootup_value;
+	uint16_t					vddci_bootup_value;
+	uint16_t					vddgfx_bootup_value;
+	uint32_t					sclk_bootup_value;
+	uint32_t					mclk_bootup_value;
+	uint16_t					pcie_gen_bootup_value;
+	uint16_t					pcie_lane_bootup_value;
+};
+typedef struct _phw_tonga_vbios_boot_state phw_tonga_vbios_boot_state;
+
+#define DPMTABLE_OD_UPDATE_SCLK     0x00000001
+#define DPMTABLE_OD_UPDATE_MCLK     0x00000002
+#define DPMTABLE_UPDATE_SCLK        0x00000004
+#define DPMTABLE_UPDATE_MCLK        0x00000008
+
+/* We need to review which fields are needed. */
+/* This is mostly a copy of the RV7xx/Evergreen structure which is close, but not identical to the N.Islands one. */
+struct tonga_hwmgr {
+	struct tonga_dpm_table               dpm_table;
+	struct tonga_dpm_table               golden_dpm_table;
+
+	uint32_t                           voting_rights_clients0;
+	uint32_t                           voting_rights_clients1;
+	uint32_t                           voting_rights_clients2;
+	uint32_t                           voting_rights_clients3;
+	uint32_t                           voting_rights_clients4;
+	uint32_t                           voting_rights_clients5;
+	uint32_t                           voting_rights_clients6;
+	uint32_t                           voting_rights_clients7;
+	uint32_t                           static_screen_threshold_unit;
+	uint32_t                           static_screen_threshold;
+	uint32_t                           voltage_control;
+	uint32_t                           vdd_gfx_control;
+
+	uint32_t                           vddc_vddci_delta;
+	uint32_t                           vddc_vddgfx_delta;
+
+	pp_interrupt_registration_info    internal_high_thermal_interrupt_info;
+	pp_interrupt_registration_info    internal_low_thermal_interrupt_info;
+	pp_interrupt_registration_info    smc_to_host_interrupt_info;
+	uint32_t                          active_auto_throttle_sources;
+
+	pp_interrupt_registration_info    external_throttle_interrupt;
+	pp_interrupt_callback             external_throttle_callback;
+	void                             *external_throttle_context;
+
+	pp_interrupt_registration_info    ctf_interrupt_info;
+	pp_interrupt_callback             ctf_callback;
+	void                             *ctf_context;
+
+	phw_tonga_clock_registers      	  clock_registers;
+	phw_tonga_voltage_smio_registers  voltage_smio_registers;
+
+	bool                         	is_memory_GDDR5;
+	uint16_t                          acpi_vddc;
+	bool                         	pspp_notify_required;        /* Flag to indicate if PSPP notification to SBIOS is required */
+	uint16_t                          force_pcie_gen;            /* The forced PCI-E speed if not 0xffff */
+	uint16_t                          acpi_pcie_gen;             /* The PCI-E speed at ACPI time */
+	uint32_t                           pcie_gen_cap;             /* The PCI-E speed capabilities bitmap from CAIL */
+	uint32_t                           pcie_lane_cap;            /* The PCI-E lane capabilities bitmap from CAIL */
+	uint32_t                           pcie_spc_cap;             /* Symbol Per Clock Capabilities from registry */
+	phw_tonga_leakage_voltage       	vddc_leakage;            /* The Leakage VDDC supported (based on leakage ID).*/
+	phw_tonga_leakage_voltage       	vddcgfx_leakage;         /* The Leakage VDDC supported (based on leakage ID). */
+	phw_tonga_leakage_voltage       	vddci_leakage;           /* The Leakage VDDCI supported (based on leakage ID). */
+
+	uint32_t                           mvdd_control;
+	uint32_t                           vddc_mask_low;
+	uint32_t                           mvdd_mask_low;
+	uint16_t                          max_vddc_in_pp_table;        /* the maximum VDDC value in the powerplay table*/
+	uint16_t                          min_vddc_in_pp_table;
+	uint16_t                          max_vddci_in_pp_table;       /* the maximum VDDCI value in the powerplay table */
+	uint16_t                          min_vddci_in_pp_table;
+	uint32_t                           mclk_strobe_mode_threshold;
+	uint32_t                           mclk_stutter_mode_threshold;
+	uint32_t                           mclk_edc_enable_threshold;
+	uint32_t                           mclk_edc_wr_enable_threshold;
+	bool                         	is_uvd_enabled;
+	bool                         	is_xdma_enabled;
+	phw_tonga_vbios_boot_state      vbios_boot_state;
+
+	bool                         battery_state;
+	bool                         is_tlu_enabled;
+	bool                         pcie_performance_request;
+
+	/* -------------- SMC SRAM Address of firmware header tables ----------------*/
+	uint32_t                           sram_end;                 /* The first address after the SMC SRAM. */
+	uint32_t                           dpm_table_start;          /* The start of the dpm table in the SMC SRAM. */
+	uint32_t                           soft_regs_start;          /* The start of the soft registers in the SMC SRAM. */
+	uint32_t                           mc_reg_table_start;       /* The start of the mc register table in the SMC SRAM. */
+	uint32_t                           fan_table_start;          /* The start of the fan table in the SMC SRAM. */
+	uint32_t                           arb_table_start;          /* The start of the ARB setting table in the SMC SRAM. */
+	SMU72_Discrete_DpmTable         smc_state_table;             /* The carbon copy of the SMC state table. */
+	SMU72_Discrete_MCRegisters      mc_reg_table;
+	SMU72_Discrete_Ulv              ulv_setting;                 /* The carbon copy of ULV setting. */
+	/* -------------- Stuff originally coming from Evergreen --------------------*/
+	phw_tonga_mc_reg_table			tonga_mc_reg_table;
+	uint32_t                         vdd_ci_control;
+	pp_atomctrl_voltage_table        vddc_voltage_table;
+	pp_atomctrl_voltage_table        vddci_voltage_table;
+	pp_atomctrl_voltage_table        vddgfx_voltage_table;
+	pp_atomctrl_voltage_table        mvdd_voltage_table;
+
+	uint32_t                           mgcg_cgtt_local2;
+	uint32_t                           mgcg_cgtt_local3;
+	uint32_t                           gpio_debug;
+	uint32_t							mc_micro_code_feature;
+	uint32_t							highest_mclk;
+	uint16_t                          acpi_vdd_ci;
+	uint8_t                           mvdd_high_index;
+	uint8_t                           mvdd_low_index;
+	bool                         dll_defaule_on;
+	bool                         performance_request_registered;
+
+	/* ----------------- Low Power Features ---------------------*/
+	phw_tonga_bacos					bacos;
+	phw_tonga_ulv_parm              ulv;
+	/* ----------------- CAC Stuff ---------------------*/
+	uint32_t					cac_table_start;
+	bool                         cac_configuration_required;    /* TRUE if PP_CACConfigurationRequired == 1 */
+	bool                         driver_calculate_cac_leakage;  /* TRUE if PP_DriverCalculateCACLeakage == 1 */
+	bool                         cac_enabled;
+	/* ----------------- DPM2 Parameters ---------------------*/
+	uint32_t					power_containment_features;
+	bool                         enable_bapm_feature;
+	bool                         enable_tdc_limit_feature;
+	bool                         enable_pkg_pwr_tracking_feature;
+	bool                         disable_uvd_power_tune_feature;
+	phw_tonga_pt_defaults           *power_tune_defaults;
+	SMU72_Discrete_PmFuses           power_tune_table;
+	uint32_t                           ul_dte_tj_offset;             /* Fudge factor in DPM table to correct HW DTE errors */
+	uint32_t                           fast_watemark_threshold;      /* use fast watermark if clock is equal or above this. In percentage of the target high sclk. */
+
+	/* ----------------- Phase Shedding ---------------------*/
+	bool                         vddc_phase_shed_control;
+	/* --------------------- DI/DT --------------------------*/
+	phw_tonga_display_timing       display_timing;
+	/* --------- ReadRegistry data for memory and engine clock margins ---- */
+	uint32_t                           engine_clock_data;
+	uint32_t                           memory_clock_data;
+	/* -------- Thermal Temperature Setting --------------*/
+	phw_tonga_dpmlevel_enable_mask     dpm_level_enable_mask;
+	uint32_t                           need_update_smu7_dpm_table;
+	uint32_t                           sclk_dpm_key_disabled;
+	uint32_t                           mclk_dpm_key_disabled;
+	uint32_t                           pcie_dpm_key_disabled;
+	uint32_t                           min_engine_clocks; /* used to store the previous dal min sclock */
+	phw_tonga_pcie_perf_range       pcie_gen_performance;
+	phw_tonga_pcie_perf_range       pcie_lane_performance;
+	phw_tonga_pcie_perf_range       pcie_gen_power_saving;
+	phw_tonga_pcie_perf_range       pcie_lane_power_saving;
+	bool                            use_pcie_performance_levels;
+	bool                            use_pcie_power_saving_levels;
+	uint32_t                           activity_target[SMU72_MAX_LEVELS_GRAPHICS]; /* percentage value from 0-100, default 50 */
+	uint32_t                           mclk_activity_target;
+	uint32_t                           low_sclk_interrupt_threshold;
+	uint32_t                           last_mclk_dpm_enable_mask;
+	bool								uvd_enabled;
+	uint32_t                           pcc_monitor_enabled;
+
+	/* --------- Power Gating States ------------*/
+	bool                           uvd_power_gated;  /* 1: gated, 0:not gated */
+	bool                           vce_power_gated;  /* 1: gated, 0:not gated */
+	bool                           samu_power_gated; /* 1: gated, 0:not gated */
+	bool                           acp_power_gated;  /* 1: gated, 0:not gated */
+	bool                           pg_acp_init;
+
+};
+
+typedef struct tonga_hwmgr tonga_hwmgr;
+
+#define TONGA_DPM2_NEAR_TDP_DEC          10
+#define TONGA_DPM2_ABOVE_SAFE_INC        5
+#define TONGA_DPM2_BELOW_SAFE_INC        20
+
+#define TONGA_DPM2_LTA_WINDOW_SIZE       7  /* Log2 of the LTA window size (l2numWin_TDP). Eg. If LTA windows size is 128, then this value should be Log2(128) = 7. */
+
+#define TONGA_DPM2_LTS_TRUNCATE          0
+
+#define TONGA_DPM2_TDP_SAFE_LIMIT_PERCENT            80  /* Maximum 100 */
+
+#define TONGA_DPM2_MAXPS_PERCENT_H                   90  /* Maximum 0xFF */
+#define TONGA_DPM2_MAXPS_PERCENT_M                   90  /* Maximum 0xFF */
+
+#define TONGA_DPM2_PWREFFICIENCYRATIO_MARGIN         50
+
+#define TONGA_DPM2_SQ_RAMP_MAX_POWER                 0x3FFF
+#define TONGA_DPM2_SQ_RAMP_MIN_POWER                 0x12
+#define TONGA_DPM2_SQ_RAMP_MAX_POWER_DELTA           0x15
+#define TONGA_DPM2_SQ_RAMP_SHORT_TERM_INTERVAL_SIZE  0x1E
+#define TONGA_DPM2_SQ_RAMP_LONG_TERM_INTERVAL_RATIO  0xF
+
+#define TONGA_VOLTAGE_CONTROL_NONE                   0x0
+#define TONGA_VOLTAGE_CONTROL_BY_GPIO                0x1
+#define TONGA_VOLTAGE_CONTROL_BY_SVID2               0x2
+#define TONGA_VOLTAGE_CONTROL_MERGED                 0x3
+
+#define TONGA_Q88_FORMAT_CONVERSION_UNIT             256 /*To convert to Q8.8 format for firmware */
+
+#define TONGA_UNUSED_GPIO_PIN                        0x7F
+
+/* Following flags shows PCIe link speed supported in driver which are decided by chipset and ASIC */
+#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1        0x00010000
+#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2        0x00020000
+#define CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3        0x00040000
+#define CAIL_PCIE_LINK_SPEED_SUPPORT_MASK        0xFFFF0000
+#define CAIL_PCIE_LINK_SPEED_SUPPORT_SHIFT       16
+
+/* Following flags shows PCIe link speed supported by ASIC H/W.*/
+#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1   0x00000001
+#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2   0x00000002
+#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3   0x00000004
+#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_MASK   0x0000FFFF
+#define CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_SHIFT  0
+
+/* Following flags shows PCIe lane width switch supported in driver which are decided by chipset and ASIC */
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X1          0x00010000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X2          0x00020000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X4          0x00040000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X8          0x00080000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X12         0x00100000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X16         0x00200000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_X32         0x00400000
+#define CAIL_PCIE_LINK_WIDTH_SUPPORT_SHIFT       16
+
+#define PP_HOST_TO_SMC_UL(X) cpu_to_be32(X)
+#define PP_SMC_TO_HOST_UL(X) be32_to_cpu(X)
+
+#define PP_HOST_TO_SMC_US(X) cpu_to_be16(X)
+#define PP_SMC_TO_HOST_US(X) be16_to_cpu(X)
+
+#define CONVERT_FROM_HOST_TO_SMC_UL(X) ((X) = PP_HOST_TO_SMC_UL(X))
+#define CONVERT_FROM_SMC_TO_HOST_UL(X) ((X) = PP_SMC_TO_HOST_UL(X))
+
+#define CONVERT_FROM_HOST_TO_SMC_US(X) ((X) = PP_HOST_TO_SMC_US(X))
+
+int tonga_hwmgr_init(struct pp_hwmgr *hwmgr);
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
new file mode 100644
index 0000000..8e6670b
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_powertune.h
@@ -0,0 +1,66 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef TONGA_POWERTUNE_H
+#define TONGA_POWERTUNE_H
+
+enum _phw_tonga_ptc_config_reg_type {
+	TONGA_CONFIGREG_MMR = 0,
+	TONGA_CONFIGREG_SMC_IND,
+	TONGA_CONFIGREG_DIDT_IND,
+	TONGA_CONFIGREG_CACHE,
+
+	TONGA_CONFIGREG_MAX
+};
+typedef enum _phw_tonga_ptc_config_reg_type phw_tonga_ptc_config_reg_type;
+
+/* PowerContainment Features */
+#define POWERCONTAINMENT_FEATURE_BAPM            0x00000001
+#define POWERCONTAINMENT_FEATURE_TDCLimit        0x00000002
+#define POWERCONTAINMENT_FEATURE_PkgPwrLimit     0x00000004
+
+struct _phw_tonga_pt_config_reg {
+	uint32_t                           Offset;
+	uint32_t                           Mask;
+	uint32_t                           Shift;
+	uint32_t                           Value;
+	phw_tonga_ptc_config_reg_type     Type;
+};
+typedef struct _phw_tonga_pt_config_reg phw_tonga_pt_config_reg;
+
+struct _phw_tonga_pt_defaults {
+	uint8_t   svi_load_line_en;
+	uint8_t   svi_load_line_vddC;
+	uint8_t   tdc_vddc_throttle_release_limit_perc;
+	uint8_t   tdc_mawt;
+	uint8_t   tdc_waterfall_ctl;
+	uint8_t   dte_ambient_temp_base;
+	uint32_t  display_cac;
+	uint32_t  bamp_temp_gradient;
+	uint16_t  bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
+	uint16_t  bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
+};
+typedef struct _phw_tonga_pt_defaults phw_tonga_pt_defaults;
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
new file mode 100644
index 0000000..9a4456e
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_pptable.h
@@ -0,0 +1,406 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef TONGA_PPTABLE_H
+#define TONGA_PPTABLE_H
+
+/** \file
+ * This is a PowerPlay table header file
+ */
+#pragma pack(push, 1)
+
+#include "hwmgr.h"
+
+#define ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK 0x0f
+#define ATOM_TONGA_PP_FANPARAMETERS_NOFAN                                 0x80    /* No fan is connected to this controller. */
+
+#define ATOM_TONGA_PP_THERMALCONTROLLER_NONE      0
+#define ATOM_TONGA_PP_THERMALCONTROLLER_LM96163   17
+#define ATOM_TONGA_PP_THERMALCONTROLLER_TONGA     21
+#define ATOM_TONGA_PP_THERMALCONTROLLER_FIJI      22
+
+/*
+ * Thermal controller 'combo type' to use an external controller for Fan control and an internal controller for thermal.
+ * We probably should reserve the bit 0x80 for this use.
+ * To keep the number of these types low we should also use the same code for all ASICs (i.e. do not distinguish RV6xx and RV7xx Internal here).
+ * The driver can pick the correct internal controller based on the ASIC.
+ */
+
+#define ATOM_TONGA_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL   0x89    /* ADT7473 Fan Control + Internal Thermal Controller */
+#define ATOM_TONGA_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL   0x8D    /* EMC2103 Fan Control + Internal Thermal Controller */
+
+/*/* ATOM_TONGA_POWERPLAYTABLE::ulPlatformCaps */
+#define ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL              0x1            /* This cap indicates whether vddgfx will be a separated power rail. */
+#define ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY                   0x2            /* This cap indicates whether this is a mobile part and CCC need to show Powerplay page. */
+#define ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE            0x4            /* This cap indicates whether power source notificaiton is done by SBIOS directly. */
+#define ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND      0x8            /* Enable the option to overwrite voltage island feature to be disabled, regardless of VddGfx power rail support. */
+#define ____RETIRE16____                                0x10
+#define ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC                 0x20            /* This cap indicates whether power source notificaiton is done by GPIO directly. */
+#define ____RETIRE64____                                0x40
+#define ____RETIRE128____                               0x80
+#define ____RETIRE256____                              0x100
+#define ____RETIRE512____                              0x200
+#define ____RETIRE1024____                             0x400
+#define ____RETIRE2048____                             0x800
+#define ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL             0x1000            /* This cap indicates dynamic MVDD is required. Uncheck to disable it. */
+#define ____RETIRE2000____                            0x2000
+#define ____RETIRE4000____                            0x4000
+#define ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL            0x8000            /* This cap indicates dynamic VDDCI is required. Uncheck to disable it. */
+#define ____RETIRE10000____                          0x10000
+#define ATOM_TONGA_PP_PLATFORM_CAP_BACO                    0x20000            /* Enable to indicate the driver supports BACO state. */
+
+#define ATOM_TONGA_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17         0x100000     /* Enable to indicate the driver supports thermal2GPIO17. */
+#define ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL  0x1000000     /* Enable to indicate if thermal and PCC are sharing the same GPIO */
+#define ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE       0x2000000
+
+/* ATOM_PPLIB_NONCLOCK_INFO::usClassification */
+#define ATOM_PPLIB_CLASSIFICATION_UI_MASK               0x0007
+#define ATOM_PPLIB_CLASSIFICATION_UI_SHIFT              0
+#define ATOM_PPLIB_CLASSIFICATION_UI_NONE               0
+#define ATOM_PPLIB_CLASSIFICATION_UI_BATTERY            1
+#define ATOM_PPLIB_CLASSIFICATION_UI_BALANCED           3
+#define ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE        5
+/* 2, 4, 6, 7 are reserved */
+
+#define ATOM_PPLIB_CLASSIFICATION_BOOT                  0x0008
+#define ATOM_PPLIB_CLASSIFICATION_THERMAL               0x0010
+#define ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE    0x0020
+#define ATOM_PPLIB_CLASSIFICATION_REST                  0x0040
+#define ATOM_PPLIB_CLASSIFICATION_FORCED                0x0080
+#define ATOM_PPLIB_CLASSIFICATION_ACPI                  0x1000
+
+/* ATOM_PPLIB_NONCLOCK_INFO::usClassification2 */
+#define ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2 0x0001
+
+#define ATOM_Tonga_DISALLOW_ON_DC                       0x00004000
+#define ATOM_Tonga_ENABLE_VARIBRIGHT                    0x00008000
+
+#define ATOM_Tonga_TABLE_REVISION_TONGA                 7
+
+typedef struct _ATOM_Tonga_POWERPLAYTABLE {
+	ATOM_COMMON_TABLE_HEADER sHeader;
+
+	UCHAR  ucTableRevision;
+	USHORT usTableSize;						/*the size of header structure */
+
+	ULONG	ulGoldenPPID;
+	ULONG	ulGoldenRevision;
+	USHORT	usFormatID;
+
+	USHORT	usVoltageTime;					 /*in microseconds */
+	ULONG	ulPlatformCaps;					  /*See ATOM_Tonga_CAPS_* */
+
+	ULONG	ulMaxODEngineClock; 			   /*For Overdrive.  */
+	ULONG	ulMaxODMemoryClock; 			   /*For Overdrive. */
+
+	USHORT	usPowerControlLimit;
+	USHORT	usUlvVoltageOffset;				  /*in mv units */
+
+	USHORT	usStateArrayOffset;				  /*points to ATOM_Tonga_State_Array */
+	USHORT	usFanTableOffset;				  /*points to ATOM_Tonga_Fan_Table */
+	USHORT	usThermalControllerOffset;		   /*points to ATOM_Tonga_Thermal_Controller */
+	USHORT	usReserv;						   /*CustomThermalPolicy removed for Tonga. Keep this filed as reserved. */
+
+	USHORT	usMclkDependencyTableOffset;	   /*points to ATOM_Tonga_MCLK_Dependency_Table */
+	USHORT	usSclkDependencyTableOffset;	   /*points to ATOM_Tonga_SCLK_Dependency_Table */
+	USHORT	usVddcLookupTableOffset;		   /*points to ATOM_Tonga_Voltage_Lookup_Table */
+	USHORT	usVddgfxLookupTableOffset; 		/*points to ATOM_Tonga_Voltage_Lookup_Table */
+
+	USHORT	usMMDependencyTableOffset;		  /*points to ATOM_Tonga_MM_Dependency_Table */
+
+	USHORT	usVCEStateTableOffset;			   /*points to ATOM_Tonga_VCE_State_Table; */
+
+	USHORT	usPPMTableOffset;				  /*points to ATOM_Tonga_PPM_Table */
+	USHORT	usPowerTuneTableOffset;			  /*points to ATOM_PowerTune_Table */
+
+	USHORT	usHardLimitTableOffset; 		   /*points to ATOM_Tonga_Hard_Limit_Table */
+
+	USHORT	usPCIETableOffset;				  /*points to ATOM_Tonga_PCIE_Table */
+
+	USHORT	usGPIOTableOffset;				  /*points to ATOM_Tonga_GPIO_Table */
+
+	USHORT	usReserved[6];					   /*TODO: modify reserved size to fit structure aligning */
+} ATOM_Tonga_POWERPLAYTABLE;
+
+typedef struct _ATOM_Tonga_State {
+	UCHAR  ucEngineClockIndexHigh;
+	UCHAR  ucEngineClockIndexLow;
+
+	UCHAR  ucMemoryClockIndexHigh;
+	UCHAR  ucMemoryClockIndexLow;
+
+	UCHAR  ucPCIEGenLow;
+	UCHAR  ucPCIEGenHigh;
+
+	UCHAR  ucPCIELaneLow;
+	UCHAR  ucPCIELaneHigh;
+
+	USHORT usClassification;
+	ULONG ulCapsAndSettings;
+	USHORT usClassification2;
+	UCHAR  ucUnused[4];
+} ATOM_Tonga_State;
+
+typedef struct _ATOM_Tonga_State_Array {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries;		/* Number of entries. */
+	ATOM_Tonga_State states[1];	/* Dynamically allocate entries. */
+} ATOM_Tonga_State_Array;
+
+typedef struct _ATOM_Tonga_MCLK_Dependency_Record {
+	UCHAR  ucVddcInd;	/* Vddc voltage */
+	USHORT usVddci;
+	USHORT usVddgfxOffset;	/* Offset relative to Vddc voltage */
+	USHORT usMvdd;
+	ULONG ulMclk;
+	USHORT usReserved;
+} ATOM_Tonga_MCLK_Dependency_Record;
+
+typedef struct _ATOM_Tonga_MCLK_Dependency_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries; 										/* Number of entries. */
+	ATOM_Tonga_MCLK_Dependency_Record entries[1];				/* Dynamically allocate entries. */
+} ATOM_Tonga_MCLK_Dependency_Table;
+
+typedef struct _ATOM_Tonga_SCLK_Dependency_Record {
+	UCHAR  ucVddInd;											/* Base voltage */
+	USHORT usVddcOffset;										/* Offset relative to base voltage */
+	ULONG ulSclk;
+	USHORT usEdcCurrent;
+	UCHAR  ucReliabilityTemperature;
+	UCHAR  ucCKSVOffsetandDisable;							  /* Bits 0~6: Voltage offset for CKS, Bit 7: Disable/enable for the SCLK level. */
+} ATOM_Tonga_SCLK_Dependency_Record;
+
+typedef struct _ATOM_Tonga_SCLK_Dependency_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries; 										/* Number of entries. */
+	ATOM_Tonga_SCLK_Dependency_Record entries[1];				 /* Dynamically allocate entries. */
+} ATOM_Tonga_SCLK_Dependency_Table;
+
+typedef struct _ATOM_Tonga_PCIE_Record {
+	UCHAR ucPCIEGenSpeed;
+	UCHAR usPCIELaneWidth;
+	UCHAR ucReserved[2];
+} ATOM_Tonga_PCIE_Record;
+
+typedef struct _ATOM_Tonga_PCIE_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries; 										/* Number of entries. */
+	ATOM_Tonga_PCIE_Record entries[1];							/* Dynamically allocate entries. */
+} ATOM_Tonga_PCIE_Table;
+
+typedef struct _ATOM_Tonga_MM_Dependency_Record {
+	UCHAR   ucVddcInd;											 /* VDDC voltage */
+	USHORT  usVddgfxOffset;									  /* Offset relative to VDDC voltage */
+	ULONG  ulDClk;												/* UVD D-clock */
+	ULONG  ulVClk;												/* UVD V-clock */
+	ULONG  ulEClk;												/* VCE clock */
+	ULONG  ulAClk;												/* ACP clock */
+	ULONG  ulSAMUClk;											/* SAMU clock */
+} ATOM_Tonga_MM_Dependency_Record;
+
+typedef struct _ATOM_Tonga_MM_Dependency_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries; 										/* Number of entries. */
+	ATOM_Tonga_MM_Dependency_Record entries[1]; 			   /* Dynamically allocate entries. */
+} ATOM_Tonga_MM_Dependency_Table;
+
+typedef struct _ATOM_Tonga_Voltage_Lookup_Record {
+	USHORT usVdd;											   /* Base voltage */
+	USHORT usCACLow;
+	USHORT usCACMid;
+	USHORT usCACHigh;
+} ATOM_Tonga_Voltage_Lookup_Record;
+
+typedef struct _ATOM_Tonga_Voltage_Lookup_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries; 										/* Number of entries. */
+	ATOM_Tonga_Voltage_Lookup_Record entries[1];				/* Dynamically allocate entries. */
+} ATOM_Tonga_Voltage_Lookup_Table;
+
+typedef struct _ATOM_Tonga_Fan_Table {
+	UCHAR   ucRevId;						 /* Change this if the table format changes or version changes so that the other fields are not the same. */
+	UCHAR   ucTHyst;						 /* Temperature hysteresis. Integer. */
+	USHORT  usTMin; 						 /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
+	USHORT  usTMed; 						 /* The middle temperature where we change slopes. */
+	USHORT  usTHigh;						 /* The high point above TMed for adjusting the second slope. */
+	USHORT  usPWMMin;						 /* The minimum PWM value in percent (0.01% increments). */
+	USHORT  usPWMMed;						 /* The PWM value (in percent) at TMed. */
+	USHORT  usPWMHigh;						 /* The PWM value at THigh. */
+	USHORT  usTMax; 						 /* The max temperature */
+	UCHAR   ucFanControlMode;				  /* Legacy or Fuzzy Fan mode */
+	USHORT  usFanPWMMax;					  /* Maximum allowed fan power in percent */
+	USHORT  usFanOutputSensitivity;		  /* Sensitivity of fan reaction to temepature changes */
+	USHORT  usFanRPMMax;					  /* The default value in RPM */
+	ULONG  ulMinFanSCLKAcousticLimit;	   /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
+	UCHAR   ucTargetTemperature;			 /* Advanced fan controller target temperature. */
+	UCHAR   ucMinimumPWMLimit; 			  /* The minimum PWM that the advanced fan controller can set.	This should be set to the highest PWM that will run the fan at its lowest RPM. */
+	USHORT  usReserved;
+} ATOM_Tonga_Fan_Table;
+
+typedef struct _ATOM_Fiji_Fan_Table {
+	UCHAR   ucRevId;						 /* Change this if the table format changes or version changes so that the other fields are not the same. */
+	UCHAR   ucTHyst;						 /* Temperature hysteresis. Integer. */
+	USHORT  usTMin; 						 /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
+	USHORT  usTMed; 						 /* The middle temperature where we change slopes. */
+	USHORT  usTHigh;						 /* The high point above TMed for adjusting the second slope. */
+	USHORT  usPWMMin;						 /* The minimum PWM value in percent (0.01% increments). */
+	USHORT  usPWMMed;						 /* The PWM value (in percent) at TMed. */
+	USHORT  usPWMHigh;						 /* The PWM value at THigh. */
+	USHORT  usTMax; 						 /* The max temperature */
+	UCHAR   ucFanControlMode;				  /* Legacy or Fuzzy Fan mode */
+	USHORT  usFanPWMMax;					  /* Maximum allowed fan power in percent */
+	USHORT  usFanOutputSensitivity;		  /* Sensitivity of fan reaction to temepature changes */
+	USHORT  usFanRPMMax;					  /* The default value in RPM */
+	ULONG  ulMinFanSCLKAcousticLimit;		/* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
+	UCHAR   ucTargetTemperature;			 /* Advanced fan controller target temperature. */
+	UCHAR   ucMinimumPWMLimit; 			  /* The minimum PWM that the advanced fan controller can set.	This should be set to the highest PWM that will run the fan at its lowest RPM. */
+	USHORT  usFanGainEdge;
+	USHORT  usFanGainHotspot;
+	USHORT  usFanGainLiquid;
+	USHORT  usFanGainVrVddc;
+	USHORT  usFanGainVrMvdd;
+	USHORT  usFanGainPlx;
+	USHORT  usFanGainHbm;
+	USHORT  usReserved;
+} ATOM_Fiji_Fan_Table;
+
+typedef struct _ATOM_Tonga_Thermal_Controller {
+	UCHAR ucRevId;
+	UCHAR ucType;		   /* one of ATOM_TONGA_PP_THERMALCONTROLLER_* */
+	UCHAR ucI2cLine;		/* as interpreted by DAL I2C */
+	UCHAR ucI2cAddress;
+	UCHAR ucFanParameters;	/* Fan Control Parameters. */
+	UCHAR ucFanMinRPM; 	 /* Fan Minimum RPM (hundreds) -- for display purposes only. */
+	UCHAR ucFanMaxRPM; 	 /* Fan Maximum RPM (hundreds) -- for display purposes only. */
+	UCHAR ucReserved;
+	UCHAR ucFlags;		   /* to be defined */
+} ATOM_Tonga_Thermal_Controller;
+
+typedef struct _ATOM_Tonga_VCE_State_Record {
+	UCHAR  ucVCEClockIndex;	/*index into usVCEDependencyTableOffset of 'ATOM_Tonga_MM_Dependency_Table' type */
+	UCHAR  ucFlag;		/* 2 bits indicates memory p-states */
+	UCHAR  ucSCLKIndex;		/*index into ATOM_Tonga_SCLK_Dependency_Table */
+	UCHAR  ucMCLKIndex;		/*index into ATOM_Tonga_MCLK_Dependency_Table */
+} ATOM_Tonga_VCE_State_Record;
+
+typedef struct _ATOM_Tonga_VCE_State_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries;
+	ATOM_Tonga_VCE_State_Record entries[1];
+} ATOM_Tonga_VCE_State_Table;
+
+typedef struct _ATOM_Tonga_PowerTune_Table {
+	UCHAR  ucRevId;
+	USHORT usTDP;
+	USHORT usConfigurableTDP;
+	USHORT usTDC;
+	USHORT usBatteryPowerLimit;
+	USHORT usSmallPowerLimit;
+	USHORT usLowCACLeakage;
+	USHORT usHighCACLeakage;
+	USHORT usMaximumPowerDeliveryLimit;
+	USHORT usTjMax;
+	USHORT usPowerTuneDataSetID;
+	USHORT usEDCLimit;
+	USHORT usSoftwareShutdownTemp;
+	USHORT usClockStretchAmount;
+	USHORT usReserve[2];
+} ATOM_Tonga_PowerTune_Table;
+
+typedef struct _ATOM_Fiji_PowerTune_Table {
+	UCHAR  ucRevId;
+	USHORT usTDP;
+	USHORT usConfigurableTDP;
+	USHORT usTDC;
+	USHORT usBatteryPowerLimit;
+	USHORT usSmallPowerLimit;
+	USHORT usLowCACLeakage;
+	USHORT usHighCACLeakage;
+	USHORT usMaximumPowerDeliveryLimit;
+	USHORT usTjMax;  /* For Fiji, this is also usTemperatureLimitEdge; */
+	USHORT usPowerTuneDataSetID;
+	USHORT usEDCLimit;
+	USHORT usSoftwareShutdownTemp;
+	USHORT usClockStretchAmount;
+	USHORT usTemperatureLimitHotspot;  /*The following are added for Fiji */
+	USHORT usTemperatureLimitLiquid1;
+	USHORT usTemperatureLimitLiquid2;
+	USHORT usTemperatureLimitVrVddc;
+	USHORT usTemperatureLimitVrMvdd;
+	USHORT usTemperatureLimitPlx;
+	UCHAR  ucLiquid1_I2C_address;  /*Liquid */
+	UCHAR  ucLiquid2_I2C_address;
+	UCHAR  ucLiquid_I2C_Line;
+	UCHAR  ucVr_I2C_address;	/*VR */
+	UCHAR  ucVr_I2C_Line;
+	UCHAR  ucPlx_I2C_address;  /*PLX */
+	UCHAR  ucPlx_I2C_Line;
+	USHORT usReserved;
+} ATOM_Fiji_PowerTune_Table;
+
+#define ATOM_PPM_A_A    1
+#define ATOM_PPM_A_I    2
+typedef struct _ATOM_Tonga_PPM_Table {
+	UCHAR   ucRevId;
+	UCHAR   ucPpmDesign;		  /*A+I or A+A */
+	USHORT  usCpuCoreNumber;
+	ULONG  ulPlatformTDP;
+	ULONG  ulSmallACPlatformTDP;
+	ULONG  ulPlatformTDC;
+	ULONG  ulSmallACPlatformTDC;
+	ULONG  ulApuTDP;
+	ULONG  ulDGpuTDP;
+	ULONG  ulDGpuUlvPower;
+	ULONG  ulTjmax;
+} ATOM_Tonga_PPM_Table;
+
+typedef struct _ATOM_Tonga_Hard_Limit_Record {
+	ULONG  ulSCLKLimit;
+	ULONG  ulMCLKLimit;
+	USHORT  usVddcLimit;
+	USHORT  usVddciLimit;
+	USHORT  usVddgfxLimit;
+} ATOM_Tonga_Hard_Limit_Record;
+
+typedef struct _ATOM_Tonga_Hard_Limit_Table {
+	UCHAR ucRevId;
+	UCHAR ucNumEntries;
+	ATOM_Tonga_Hard_Limit_Record entries[1];
+} ATOM_Tonga_Hard_Limit_Table;
+
+typedef struct _ATOM_Tonga_GPIO_Table {
+	UCHAR  ucRevId;
+	UCHAR  ucVRHotTriggeredSclkDpmIndex;		/* If VRHot signal is triggered SCLK will be limited to this DPM level */
+	UCHAR  ucReserve[5];
+} ATOM_Tonga_GPIO_Table;
+
+typedef struct _PPTable_Generic_SubTable_Header {
+	UCHAR  ucRevId;
+} PPTable_Generic_SubTable_Header;
+
+
+#pragma pack(pop)
+
+
+#endif
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
new file mode 100644
index 0000000..ddb03a0
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.c
@@ -0,0 +1,1129 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/fb.h>
+
+#include "tonga_processpptables.h"
+#include "ppatomctrl.h"
+#include "atombios.h"
+#include "pp_debug.h"
+#include "hwmgr.h"
+#include "cgs_common.h"
+#include "tonga_pptable.h"
+
+/**
+ * Private Function used during initialization.
+ * @param hwmgr Pointer to the hardware manager.
+ * @param setIt A flag indication if the capability should be set (TRUE) or reset (FALSE).
+ * @param cap Which capability to set/reset.
+ */
+static void set_hw_cap(struct pp_hwmgr *hwmgr, bool setIt, enum phm_platform_caps cap)
+{
+	if (setIt)
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap);
+	else
+		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap);
+}
+
+
+/**
+ * Private Function used during initialization.
+ * @param hwmgr Pointer to the hardware manager.
+ * @param powerplay_caps the bit array (from BIOS) of capability bits.
+ * @exception the current implementation always returns 1.
+ */
+static int set_platform_caps(struct pp_hwmgr *hwmgr, uint32_t powerplay_caps)
+{
+	PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE16____),
+		"ATOM_PP_PLATFORM_CAP_ASPM_L1 is not supported!", continue);
+	PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE64____),
+		"ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY is not supported!", continue);
+	PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE512____),
+		"ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL is not supported!", continue);
+	PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE1024____),
+		"ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1 is not supported!", continue);
+	PP_ASSERT_WITH_CODE((~powerplay_caps & ____RETIRE2048____),
+		"ATOM_PP_PLATFORM_CAP_HTLINKCONTROL is not supported!", continue);
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_POWERPLAY),
+			PHM_PlatformCaps_PowerPlaySupport
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_SBIOSPOWERSOURCE),
+			PHM_PlatformCaps_BiosPowerSourceControl
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_HARDWAREDC),
+			PHM_PlatformCaps_AutomaticDCTransition
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_MVDD_CONTROL),
+			PHM_PlatformCaps_EnableMVDDControl
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDCI_CONTROL),
+			PHM_PlatformCaps_ControlVDDCI
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_VDDGFX_CONTROL),
+			PHM_PlatformCaps_ControlVDDGFX
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_BACO),
+			PHM_PlatformCaps_BACO
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_CAP_DISABLE_VOLTAGE_ISLAND),
+			PHM_PlatformCaps_DisableVoltageIsland
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL),
+			PHM_PlatformCaps_CombinePCCWithThermalSignal
+		  );
+
+	set_hw_cap(
+			hwmgr,
+			0 != (powerplay_caps & ATOM_TONGA_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE),
+			PHM_PlatformCaps_LoadPostProductionFirmware
+		  );
+
+	return 0;
+}
+
+/**
+ * Private Function to get the PowerPlay Table Address.
+ */
+const void *get_powerplay_table(struct pp_hwmgr *hwmgr)
+{
+	int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
+
+	u16 size;
+	u8 frev, crev;
+	void *table_address;
+
+	table_address = (ATOM_Tonga_POWERPLAYTABLE *)
+		cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev);
+
+	hwmgr->soft_pp_table = table_address;	/*Cache the result in RAM.*/
+
+	return table_address;
+}
+
+static int get_vddc_lookup_table(
+		struct pp_hwmgr	*hwmgr,
+		phm_ppt_v1_voltage_lookup_table	**lookup_table,
+		const ATOM_Tonga_Voltage_Lookup_Table	*vddc_lookup_pp_tables,
+		uint32_t	max_levels
+		)
+{
+	uint32_t table_size, i;
+	phm_ppt_v1_voltage_lookup_table *table;
+
+	PP_ASSERT_WITH_CODE((0 != vddc_lookup_pp_tables->ucNumEntries),
+		"Invalid CAC Leakage PowerPlay Table!", return 1);
+
+	table_size = sizeof(uint32_t) +
+		sizeof(phm_ppt_v1_voltage_lookup_record) * max_levels;
+
+	table = (phm_ppt_v1_voltage_lookup_table *)
+		kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == table)
+		return -1;
+
+	memset(table, 0x00, table_size);
+
+	table->count = vddc_lookup_pp_tables->ucNumEntries;
+
+	for (i = 0; i < vddc_lookup_pp_tables->ucNumEntries; i++) {
+		table->entries[i].us_calculated = 0;
+		table->entries[i].us_vdd =
+			vddc_lookup_pp_tables->entries[i].usVdd;
+		table->entries[i].us_cac_low =
+			vddc_lookup_pp_tables->entries[i].usCACLow;
+		table->entries[i].us_cac_mid =
+			vddc_lookup_pp_tables->entries[i].usCACMid;
+		table->entries[i].us_cac_high =
+			vddc_lookup_pp_tables->entries[i].usCACHigh;
+	}
+
+	*lookup_table = table;
+
+	return 0;
+}
+
+/**
+ * Private Function used during initialization.
+ * Initialize Platform Power Management Parameter table
+ * @param hwmgr Pointer to the hardware manager.
+ * @param atom_ppm_table Pointer to PPM table in VBIOS
+ */
+static int get_platform_power_management_table(
+		struct pp_hwmgr *hwmgr,
+		ATOM_Tonga_PPM_Table *atom_ppm_table)
+{
+	struct phm_ppm_table *ptr = kzalloc(sizeof(ATOM_Tonga_PPM_Table), GFP_KERNEL);
+	struct phm_ppt_v1_information *pp_table_information =
+		(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	if (NULL == ptr)
+		return -1;
+
+	ptr->ppm_design
+		= atom_ppm_table->ucPpmDesign;
+	ptr->cpu_core_number
+		= atom_ppm_table->usCpuCoreNumber;
+	ptr->platform_tdp
+		= atom_ppm_table->ulPlatformTDP;
+	ptr->small_ac_platform_tdp
+		= atom_ppm_table->ulSmallACPlatformTDP;
+	ptr->platform_tdc
+		= atom_ppm_table->ulPlatformTDC;
+	ptr->small_ac_platform_tdc
+		= atom_ppm_table->ulSmallACPlatformTDC;
+	ptr->apu_tdp
+		= atom_ppm_table->ulApuTDP;
+	ptr->dgpu_tdp
+		= atom_ppm_table->ulDGpuTDP;
+	ptr->dgpu_ulv_power
+		= atom_ppm_table->ulDGpuUlvPower;
+	ptr->tj_max
+		= atom_ppm_table->ulTjmax;
+
+	pp_table_information->ppm_parameter_table = ptr;
+
+	return 0;
+}
+
+/**
+ * Private Function used during initialization.
+ * Initialize TDP limits for DPM2
+ * @param hwmgr Pointer to the hardware manager.
+ * @param powerplay_table Pointer to the PowerPlay Table.
+ */
+static int init_dpm_2_parameters(
+		struct pp_hwmgr *hwmgr,
+		const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
+		)
+{
+	int result = 0;
+	struct phm_ppt_v1_information *pp_table_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+	ATOM_Tonga_PPM_Table *atom_ppm_table;
+	uint32_t disable_ppm = 0;
+	uint32_t disable_power_control = 0;
+
+	pp_table_information->us_ulv_voltage_offset =
+		le16_to_cpu(powerplay_table->usUlvVoltageOffset);
+
+	pp_table_information->ppm_parameter_table = NULL;
+	pp_table_information->vddc_lookup_table = NULL;
+	pp_table_information->vddgfx_lookup_table = NULL;
+	/* TDP limits */
+	hwmgr->platform_descriptor.TDPODLimit =
+		le16_to_cpu(powerplay_table->usPowerControlLimit);
+	hwmgr->platform_descriptor.TDPAdjustment = 0;
+	hwmgr->platform_descriptor.VidAdjustment = 0;
+	hwmgr->platform_descriptor.VidAdjustmentPolarity = 0;
+	hwmgr->platform_descriptor.VidMinLimit = 0;
+	hwmgr->platform_descriptor.VidMaxLimit = 1500000;
+	hwmgr->platform_descriptor.VidStep = 6250;
+
+	disable_power_control = 0;
+	if (0 == disable_power_control) {
+		/* enable TDP overdrive (PowerControl) feature as well if supported */
+		if (hwmgr->platform_descriptor.TDPODLimit != 0)
+			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_PowerControl);
+	}
+
+	if (0 != powerplay_table->usVddcLookupTableOffset) {
+		const ATOM_Tonga_Voltage_Lookup_Table *pVddcCACTable =
+			(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
+			le16_to_cpu(powerplay_table->usVddcLookupTableOffset));
+
+		result = get_vddc_lookup_table(hwmgr,
+			&pp_table_information->vddc_lookup_table, pVddcCACTable, 16);
+	}
+
+	if (0 != powerplay_table->usVddgfxLookupTableOffset) {
+		const ATOM_Tonga_Voltage_Lookup_Table *pVddgfxCACTable =
+			(ATOM_Tonga_Voltage_Lookup_Table *)(((unsigned long)powerplay_table) +
+			le16_to_cpu(powerplay_table->usVddgfxLookupTableOffset));
+
+		result = get_vddc_lookup_table(hwmgr,
+			&pp_table_information->vddgfx_lookup_table, pVddgfxCACTable, 16);
+	}
+
+	disable_ppm = 0;
+	if (0 == disable_ppm) {
+		atom_ppm_table = (ATOM_Tonga_PPM_Table *)
+			(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usPPMTableOffset));
+
+		if (0 != powerplay_table->usPPMTableOffset) {
+			if (1 == get_platform_power_management_table(hwmgr, atom_ppm_table)) {
+				phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+					PHM_PlatformCaps_EnablePlatformPowerManagement);
+			}
+		}
+	}
+
+	return result;
+}
+
+static int get_valid_clk(
+		struct pp_hwmgr *hwmgr,
+		struct phm_clock_array **clk_table,
+		const phm_ppt_v1_clock_voltage_dependency_table  * clk_volt_pp_table
+		)
+{
+	uint32_t table_size, i;
+	struct phm_clock_array *table;
+
+	PP_ASSERT_WITH_CODE((0 != clk_volt_pp_table->count),
+		"Invalid PowerPlay Table!", return -1);
+
+	table_size = sizeof(uint32_t) +
+		sizeof(uint32_t) * clk_volt_pp_table->count;
+
+	table = (struct phm_clock_array *)kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == table)
+		return -1;
+
+	memset(table, 0x00, table_size);
+
+	table->count = (uint32_t)clk_volt_pp_table->count;
+
+	for (i = 0; i < table->count; i++)
+		table->values[i] = (uint32_t)clk_volt_pp_table->entries[i].clk;
+
+	*clk_table = table;
+
+	return 0;
+}
+
+static int get_hard_limits(
+		struct pp_hwmgr *hwmgr,
+		struct phm_clock_and_voltage_limits *limits,
+		const ATOM_Tonga_Hard_Limit_Table * limitable
+		)
+{
+	PP_ASSERT_WITH_CODE((0 != limitable->ucNumEntries), "Invalid PowerPlay Table!", return -1);
+
+	/* currently we always take entries[0] parameters */
+	limits->sclk = (uint32_t)limitable->entries[0].ulSCLKLimit;
+	limits->mclk = (uint32_t)limitable->entries[0].ulMCLKLimit;
+	limits->vddc = (uint16_t)limitable->entries[0].usVddcLimit;
+	limits->vddci = (uint16_t)limitable->entries[0].usVddciLimit;
+	limits->vddgfx = (uint16_t)limitable->entries[0].usVddgfxLimit;
+
+	return 0;
+}
+
+static int get_mclk_voltage_dependency_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_mclk_dep_table,
+		const ATOM_Tonga_MCLK_Dependency_Table * mclk_dep_table
+		)
+{
+	uint32_t table_size, i;
+	phm_ppt_v1_clock_voltage_dependency_table *mclk_table;
+
+	PP_ASSERT_WITH_CODE((0 != mclk_dep_table->ucNumEntries),
+		"Invalid PowerPlay Table!", return -1);
+
+	table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
+		* mclk_dep_table->ucNumEntries;
+
+	mclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
+		kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == mclk_table)
+		return -1;
+
+	memset(mclk_table, 0x00, table_size);
+
+	mclk_table->count = (uint32_t)mclk_dep_table->ucNumEntries;
+
+	for (i = 0; i < mclk_dep_table->ucNumEntries; i++) {
+		mclk_table->entries[i].vddInd =
+			mclk_dep_table->entries[i].ucVddcInd;
+		mclk_table->entries[i].vdd_offset =
+			mclk_dep_table->entries[i].usVddgfxOffset;
+		mclk_table->entries[i].vddci =
+			mclk_dep_table->entries[i].usVddci;
+		mclk_table->entries[i].mvdd =
+			mclk_dep_table->entries[i].usMvdd;
+		mclk_table->entries[i].clk =
+			mclk_dep_table->entries[i].ulMclk;
+	}
+
+	*pp_tonga_mclk_dep_table = mclk_table;
+
+	return 0;
+}
+
+static int get_sclk_voltage_dependency_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_clock_voltage_dependency_table **pp_tonga_sclk_dep_table,
+		const ATOM_Tonga_SCLK_Dependency_Table * sclk_dep_table
+		)
+{
+	uint32_t table_size, i;
+	phm_ppt_v1_clock_voltage_dependency_table *sclk_table;
+
+	PP_ASSERT_WITH_CODE((0 != sclk_dep_table->ucNumEntries),
+		"Invalid PowerPlay Table!", return -1);
+
+	table_size = sizeof(uint32_t) + sizeof(phm_ppt_v1_clock_voltage_dependency_record)
+		* sclk_dep_table->ucNumEntries;
+
+	sclk_table = (phm_ppt_v1_clock_voltage_dependency_table *)
+		kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == sclk_table)
+		return -1;
+
+	memset(sclk_table, 0x00, table_size);
+
+	sclk_table->count = (uint32_t)sclk_dep_table->ucNumEntries;
+
+	for (i = 0; i < sclk_dep_table->ucNumEntries; i++) {
+		sclk_table->entries[i].vddInd =
+			sclk_dep_table->entries[i].ucVddInd;
+		sclk_table->entries[i].vdd_offset =
+			sclk_dep_table->entries[i].usVddcOffset;
+		sclk_table->entries[i].clk =
+			sclk_dep_table->entries[i].ulSclk;
+		sclk_table->entries[i].cks_enable =
+			(((sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x80) >> 7) == 0) ? 1 : 0;
+		sclk_table->entries[i].cks_voffset =
+			(sclk_dep_table->entries[i].ucCKSVOffsetandDisable & 0x7F);
+	}
+
+	*pp_tonga_sclk_dep_table = sclk_table;
+
+	return 0;
+}
+
+static int get_pcie_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_pcie_table **pp_tonga_pcie_table,
+		const ATOM_Tonga_PCIE_Table * atom_pcie_table
+		)
+{
+	uint32_t table_size, i, pcie_count;
+	phm_ppt_v1_pcie_table *pcie_table;
+	struct phm_ppt_v1_information *pp_table_information =
+		(struct phm_ppt_v1_information *)(hwmgr->pptable);
+	PP_ASSERT_WITH_CODE((0 != atom_pcie_table->ucNumEntries),
+		"Invalid PowerPlay Table!", return -1);
+
+	table_size = sizeof(uint32_t) +
+		sizeof(phm_ppt_v1_pcie_record) * atom_pcie_table->ucNumEntries;
+
+	pcie_table = (phm_ppt_v1_pcie_table *)kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == pcie_table)
+		return -1;
+
+	memset(pcie_table, 0x00, table_size);
+
+	/*
+	* Make sure the number of pcie entries are less than or equal to sclk dpm levels.
+	* Since first PCIE entry is for ULV, #pcie has to be <= SclkLevel + 1.
+	*/
+	pcie_count = (pp_table_information->vdd_dep_on_sclk->count) + 1;
+	if ((uint32_t)atom_pcie_table->ucNumEntries <= pcie_count)
+		pcie_count = (uint32_t)atom_pcie_table->ucNumEntries;
+	else
+		printk(KERN_ERR "[ powerplay ] Number of Pcie Entries exceed the number of SCLK Dpm Levels! \
+		Disregarding the excess entries... \n");
+
+	pcie_table->count = pcie_count;
+
+	for (i = 0; i < pcie_count; i++) {
+		pcie_table->entries[i].gen_speed =
+			atom_pcie_table->entries[i].ucPCIEGenSpeed;
+		pcie_table->entries[i].lane_width =
+			atom_pcie_table->entries[i].usPCIELaneWidth;
+	}
+
+	*pp_tonga_pcie_table = pcie_table;
+
+	return 0;
+}
+
+static int get_cac_tdp_table(
+		struct pp_hwmgr *hwmgr,
+		struct phm_cac_tdp_table **cac_tdp_table,
+		const PPTable_Generic_SubTable_Header * table
+		)
+{
+	uint32_t table_size;
+	struct phm_cac_tdp_table *tdp_table;
+
+	table_size = sizeof(uint32_t) + sizeof(struct phm_cac_tdp_table);
+	tdp_table = kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == tdp_table)
+		return -1;
+
+	memset(tdp_table, 0x00, table_size);
+
+	hwmgr->dyn_state.cac_dtp_table = kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == hwmgr->dyn_state.cac_dtp_table)
+		return -1;
+
+	memset(hwmgr->dyn_state.cac_dtp_table, 0x00, table_size);
+
+	if (table->ucRevId < 3) {
+		const ATOM_Tonga_PowerTune_Table *tonga_table =
+			(ATOM_Tonga_PowerTune_Table *)table;
+		tdp_table->usTDP = tonga_table->usTDP;
+		tdp_table->usConfigurableTDP =
+			tonga_table->usConfigurableTDP;
+		tdp_table->usTDC = tonga_table->usTDC;
+		tdp_table->usBatteryPowerLimit =
+			tonga_table->usBatteryPowerLimit;
+		tdp_table->usSmallPowerLimit =
+			tonga_table->usSmallPowerLimit;
+		tdp_table->usLowCACLeakage =
+			tonga_table->usLowCACLeakage;
+		tdp_table->usHighCACLeakage =
+			tonga_table->usHighCACLeakage;
+		tdp_table->usMaximumPowerDeliveryLimit =
+			tonga_table->usMaximumPowerDeliveryLimit;
+		tdp_table->usDefaultTargetOperatingTemp =
+			tonga_table->usTjMax;
+		tdp_table->usTargetOperatingTemp =
+			tonga_table->usTjMax; /*Set the initial temp to the same as default */
+		tdp_table->usPowerTuneDataSetID =
+			tonga_table->usPowerTuneDataSetID;
+		tdp_table->usSoftwareShutdownTemp =
+			tonga_table->usSoftwareShutdownTemp;
+		tdp_table->usClockStretchAmount =
+			tonga_table->usClockStretchAmount;
+	} else {   /* Fiji and newer */
+		const ATOM_Fiji_PowerTune_Table *fijitable =
+			(ATOM_Fiji_PowerTune_Table *)table;
+		tdp_table->usTDP = fijitable->usTDP;
+		tdp_table->usConfigurableTDP = fijitable->usConfigurableTDP;
+		tdp_table->usTDC = fijitable->usTDC;
+		tdp_table->usBatteryPowerLimit = fijitable->usBatteryPowerLimit;
+		tdp_table->usSmallPowerLimit = fijitable->usSmallPowerLimit;
+		tdp_table->usLowCACLeakage = fijitable->usLowCACLeakage;
+		tdp_table->usHighCACLeakage = fijitable->usHighCACLeakage;
+		tdp_table->usMaximumPowerDeliveryLimit =
+			fijitable->usMaximumPowerDeliveryLimit;
+		tdp_table->usDefaultTargetOperatingTemp =
+			fijitable->usTjMax;
+		tdp_table->usTargetOperatingTemp =
+			fijitable->usTjMax; /*Set the initial temp to the same as default */
+		tdp_table->usPowerTuneDataSetID =
+			fijitable->usPowerTuneDataSetID;
+		tdp_table->usSoftwareShutdownTemp =
+			fijitable->usSoftwareShutdownTemp;
+		tdp_table->usClockStretchAmount =
+			fijitable->usClockStretchAmount;
+		tdp_table->usTemperatureLimitHotspot =
+			fijitable->usTemperatureLimitHotspot;
+		tdp_table->usTemperatureLimitLiquid1 =
+			fijitable->usTemperatureLimitLiquid1;
+		tdp_table->usTemperatureLimitLiquid2 =
+			fijitable->usTemperatureLimitLiquid2;
+		tdp_table->usTemperatureLimitVrVddc =
+			fijitable->usTemperatureLimitVrVddc;
+		tdp_table->usTemperatureLimitVrMvdd =
+			fijitable->usTemperatureLimitVrMvdd;
+		tdp_table->usTemperatureLimitPlx =
+			fijitable->usTemperatureLimitPlx;
+		tdp_table->ucLiquid1_I2C_address =
+			fijitable->ucLiquid1_I2C_address;
+		tdp_table->ucLiquid2_I2C_address =
+			fijitable->ucLiquid2_I2C_address;
+		tdp_table->ucLiquid_I2C_Line =
+			fijitable->ucLiquid_I2C_Line;
+		tdp_table->ucVr_I2C_address = fijitable->ucVr_I2C_address;
+		tdp_table->ucVr_I2C_Line = fijitable->ucVr_I2C_Line;
+		tdp_table->ucPlx_I2C_address = fijitable->ucPlx_I2C_address;
+		tdp_table->ucPlx_I2C_Line = fijitable->ucPlx_I2C_Line;
+	}
+
+	*cac_tdp_table = tdp_table;
+
+	return 0;
+}
+
+static int get_mm_clock_voltage_table(
+		struct pp_hwmgr *hwmgr,
+		phm_ppt_v1_mm_clock_voltage_dependency_table **tonga_mm_table,
+		const ATOM_Tonga_MM_Dependency_Table * mm_dependency_table
+		)
+{
+	uint32_t table_size, i;
+	const ATOM_Tonga_MM_Dependency_Record *mm_dependency_record;
+	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table;
+
+	PP_ASSERT_WITH_CODE((0 != mm_dependency_table->ucNumEntries),
+		"Invalid PowerPlay Table!", return -1);
+	table_size = sizeof(uint32_t) +
+		sizeof(phm_ppt_v1_mm_clock_voltage_dependency_record)
+		* mm_dependency_table->ucNumEntries;
+	mm_table = (phm_ppt_v1_mm_clock_voltage_dependency_table *)
+		kzalloc(table_size, GFP_KERNEL);
+
+	if (NULL == mm_table)
+		return -1;
+
+	memset(mm_table, 0x00, table_size);
+
+	mm_table->count = mm_dependency_table->ucNumEntries;
+
+	for (i = 0; i < mm_dependency_table->ucNumEntries; i++) {
+		mm_dependency_record = &mm_dependency_table->entries[i];
+		mm_table->entries[i].vddcInd = mm_dependency_record->ucVddcInd;
+		mm_table->entries[i].vddgfx_offset = mm_dependency_record->usVddgfxOffset;
+		mm_table->entries[i].aclk = mm_dependency_record->ulAClk;
+		mm_table->entries[i].samclock = mm_dependency_record->ulSAMUClk;
+		mm_table->entries[i].eclk = mm_dependency_record->ulEClk;
+		mm_table->entries[i].vclk = mm_dependency_record->ulVClk;
+		mm_table->entries[i].dclk = mm_dependency_record->ulDClk;
+	}
+
+	*tonga_mm_table = mm_table;
+
+	return 0;
+}
+
+/**
+ * Private Function used during initialization.
+ * Initialize clock voltage dependency
+ * @param hwmgr Pointer to the hardware manager.
+ * @param powerplay_table Pointer to the PowerPlay Table.
+ */
+static int init_clock_voltage_dependency(
+		struct pp_hwmgr *hwmgr,
+		const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
+		)
+{
+	int result = 0;
+	struct phm_ppt_v1_information *pp_table_information =
+		(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	const ATOM_Tonga_MM_Dependency_Table *mm_dependency_table =
+		(const ATOM_Tonga_MM_Dependency_Table *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usMMDependencyTableOffset));
+	const PPTable_Generic_SubTable_Header *pPowerTuneTable =
+		(const PPTable_Generic_SubTable_Header *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usPowerTuneTableOffset));
+	const ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
+		(const ATOM_Tonga_MCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
+	const ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
+		(const ATOM_Tonga_SCLK_Dependency_Table *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
+	const ATOM_Tonga_Hard_Limit_Table *pHardLimits =
+		(const ATOM_Tonga_Hard_Limit_Table *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usHardLimitTableOffset));
+	const ATOM_Tonga_PCIE_Table *pcie_table =
+		(const ATOM_Tonga_PCIE_Table *)(((unsigned long) powerplay_table) +
+		le16_to_cpu(powerplay_table->usPCIETableOffset));
+
+	pp_table_information->vdd_dep_on_sclk = NULL;
+	pp_table_information->vdd_dep_on_mclk = NULL;
+	pp_table_information->mm_dep_table = NULL;
+	pp_table_information->pcie_table = NULL;
+
+	if (powerplay_table->usMMDependencyTableOffset != 0)
+		result = get_mm_clock_voltage_table(hwmgr,
+		&pp_table_information->mm_dep_table, mm_dependency_table);
+
+	if (result == 0 && powerplay_table->usPowerTuneTableOffset != 0)
+		result = get_cac_tdp_table(hwmgr,
+		&pp_table_information->cac_dtp_table, pPowerTuneTable);
+
+	if (result == 0 && powerplay_table->usSclkDependencyTableOffset != 0)
+		result = get_sclk_voltage_dependency_table(hwmgr,
+		&pp_table_information->vdd_dep_on_sclk, sclk_dep_table);
+
+	if (result == 0 && powerplay_table->usMclkDependencyTableOffset != 0)
+		result = get_mclk_voltage_dependency_table(hwmgr,
+		&pp_table_information->vdd_dep_on_mclk, mclk_dep_table);
+
+	if (result == 0 && powerplay_table->usPCIETableOffset != 0)
+		result = get_pcie_table(hwmgr,
+		&pp_table_information->pcie_table, pcie_table);
+
+	if (result == 0 && powerplay_table->usHardLimitTableOffset != 0)
+		result = get_hard_limits(hwmgr,
+		&pp_table_information->max_clock_voltage_on_dc, pHardLimits);
+
+	hwmgr->dyn_state.max_clock_voltage_on_dc.sclk =
+		pp_table_information->max_clock_voltage_on_dc.sclk;
+	hwmgr->dyn_state.max_clock_voltage_on_dc.mclk =
+		pp_table_information->max_clock_voltage_on_dc.mclk;
+	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
+		pp_table_information->max_clock_voltage_on_dc.vddc;
+	hwmgr->dyn_state.max_clock_voltage_on_dc.vddci =
+		pp_table_information->max_clock_voltage_on_dc.vddci;
+
+	if (result == 0 && (NULL != pp_table_information->vdd_dep_on_mclk)
+		&& (0 != pp_table_information->vdd_dep_on_mclk->count))
+		result = get_valid_clk(hwmgr, &pp_table_information->valid_mclk_values,
+		pp_table_information->vdd_dep_on_mclk);
+
+	if (result == 0 && (NULL != pp_table_information->vdd_dep_on_sclk)
+		&& (0 != pp_table_information->vdd_dep_on_sclk->count))
+		result = get_valid_clk(hwmgr, &pp_table_information->valid_sclk_values,
+		pp_table_information->vdd_dep_on_sclk);
+
+	return result;
+}
+
+/** Retrieves the (signed) Overdrive limits from VBIOS.
+ * The max engine clock, memory clock and max temperature come from the firmware info table.
+ *
+ * The information is placed into the platform descriptor.
+ *
+ * @param hwmgr source of the VBIOS table and owner of the platform descriptor to be updated.
+ * @param powerplay_table the address of the PowerPlay table.
+ *
+ * @return 1 as long as the firmware info table was present and of a supported version.
+ */
+static int init_over_drive_limits(
+		struct pp_hwmgr *hwmgr,
+		const ATOM_Tonga_POWERPLAYTABLE *powerplay_table)
+{
+	hwmgr->platform_descriptor.overdriveLimit.engineClock =
+		le16_to_cpu(powerplay_table->ulMaxODEngineClock);
+	hwmgr->platform_descriptor.overdriveLimit.memoryClock =
+		le16_to_cpu(powerplay_table->ulMaxODMemoryClock);
+
+	hwmgr->platform_descriptor.minOverdriveVDDC = 0;
+	hwmgr->platform_descriptor.maxOverdriveVDDC = 0;
+	hwmgr->platform_descriptor.overdriveVDDCStep = 0;
+
+	if (hwmgr->platform_descriptor.overdriveLimit.engineClock > 0 \
+		&& hwmgr->platform_descriptor.overdriveLimit.memoryClock > 0) {
+		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+			PHM_PlatformCaps_ACOverdriveSupport);
+	}
+
+	return 0;
+}
+
+/**
+ * Private Function used during initialization.
+ * Inspect the PowerPlay table for obvious signs of corruption.
+ * @param hwmgr Pointer to the hardware manager.
+ * @param powerplay_table Pointer to the PowerPlay Table.
+ * @exception This implementation always returns 1.
+ */
+static int init_thermal_controller(
+		struct pp_hwmgr *hwmgr,
+		const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
+		)
+{
+	const PPTable_Generic_SubTable_Header *fan_table;
+	ATOM_Tonga_Thermal_Controller *thermal_controller;
+
+	thermal_controller = (ATOM_Tonga_Thermal_Controller *)
+		(((unsigned long)powerplay_table) +
+		le16_to_cpu(powerplay_table->usThermalControllerOffset));
+	PP_ASSERT_WITH_CODE((0 != powerplay_table->usThermalControllerOffset),
+		"Thermal controller table not set!", return -1);
+
+	hwmgr->thermal_controller.ucType = thermal_controller->ucType;
+	hwmgr->thermal_controller.ucI2cLine = thermal_controller->ucI2cLine;
+	hwmgr->thermal_controller.ucI2cAddress = thermal_controller->ucI2cAddress;
+
+	hwmgr->thermal_controller.fanInfo.bNoFan =
+		(0 != (thermal_controller->ucFanParameters & ATOM_TONGA_PP_FANPARAMETERS_NOFAN));
+
+	hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution =
+		thermal_controller->ucFanParameters &
+		ATOM_TONGA_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
+
+	hwmgr->thermal_controller.fanInfo.ulMinRPM
+		= thermal_controller->ucFanMinRPM * 100UL;
+	hwmgr->thermal_controller.fanInfo.ulMaxRPM
+		= thermal_controller->ucFanMaxRPM * 100UL;
+
+	set_hw_cap(
+			hwmgr,
+			ATOM_TONGA_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType,
+			PHM_PlatformCaps_ThermalController
+		  );
+
+	if (0 == powerplay_table->usFanTableOffset)
+		return -1;
+
+	fan_table = (const PPTable_Generic_SubTable_Header *)
+		(((unsigned long)powerplay_table) +
+		le16_to_cpu(powerplay_table->usFanTableOffset));
+
+	PP_ASSERT_WITH_CODE((0 != powerplay_table->usFanTableOffset),
+		"Fan table not set!", return -1);
+	PP_ASSERT_WITH_CODE((0 < fan_table->ucRevId),
+		"Unsupported fan table format!", return -1);
+
+	hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay
+		= 100000;
+	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+		PHM_PlatformCaps_MicrocodeFanControl);
+
+	if (fan_table->ucRevId < 8) {
+		const ATOM_Tonga_Fan_Table *tonga_fan_table =
+			(ATOM_Tonga_Fan_Table *)fan_table;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
+			= tonga_fan_table->ucTHyst;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMin
+			= tonga_fan_table->usTMin;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMed
+			= tonga_fan_table->usTMed;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
+			= tonga_fan_table->usTHigh;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
+			= tonga_fan_table->usPWMMin;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
+			= tonga_fan_table->usPWMMed;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
+			= tonga_fan_table->usPWMHigh;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMax
+			= 10900;                  /* hard coded */
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMax
+			= tonga_fan_table->usTMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
+			= tonga_fan_table->ucFanControlMode;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
+			= tonga_fan_table->usFanPWMMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
+			= 4836;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
+			= tonga_fan_table->usFanOutputSensitivity;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
+			= tonga_fan_table->usFanRPMMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
+			= (tonga_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places.  SMC wants MHz. */
+		hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
+			= tonga_fan_table->ucTargetTemperature;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
+			= tonga_fan_table->ucMinimumPWMLimit;
+	} else {
+		const ATOM_Fiji_Fan_Table *fiji_fan_table =
+			(ATOM_Fiji_Fan_Table *)fan_table;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst
+			= fiji_fan_table->ucTHyst;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMin
+			= fiji_fan_table->usTMin;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMed
+			= fiji_fan_table->usTMed;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTHigh
+			= fiji_fan_table->usTHigh;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin
+			= fiji_fan_table->usPWMMin;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed
+			= fiji_fan_table->usPWMMed;
+		hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh
+			= fiji_fan_table->usPWMHigh;
+		hwmgr->thermal_controller.advanceFanControlParameters.usTMax
+			= fiji_fan_table->usTMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode
+			= fiji_fan_table->ucFanControlMode;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM
+			= fiji_fan_table->usFanPWMMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity
+			= 4836;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity
+			= fiji_fan_table->usFanOutputSensitivity;
+		hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM
+			= fiji_fan_table->usFanRPMMax;
+		hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit
+			= (fiji_fan_table->ulMinFanSCLKAcousticLimit / 100); /* PPTable stores it in 10Khz unit for 2 decimal places.  SMC wants MHz. */
+		hwmgr->thermal_controller.advanceFanControlParameters.ucTargetTemperature
+			= fiji_fan_table->ucTargetTemperature;
+		hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit
+			= fiji_fan_table->ucMinimumPWMLimit;
+
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainEdge
+			= fiji_fan_table->usFanGainEdge;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHotspot
+			= fiji_fan_table->usFanGainHotspot;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainLiquid
+			= fiji_fan_table->usFanGainLiquid;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrVddc
+			= fiji_fan_table->usFanGainVrVddc;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainVrMvdd
+			= fiji_fan_table->usFanGainVrMvdd;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainPlx
+			= fiji_fan_table->usFanGainPlx;
+		hwmgr->thermal_controller.advanceFanControlParameters.usFanGainHbm
+			= fiji_fan_table->usFanGainHbm;
+	}
+
+	return 0;
+}
+
+/**
+ * Private Function used during initialization.
+ * Inspect the PowerPlay table for obvious signs of corruption.
+ * @param hwmgr Pointer to the hardware manager.
+ * @param powerplay_table Pointer to the PowerPlay Table.
+ * @exception 2 if the powerplay table is incorrect.
+ */
+static int check_powerplay_tables(
+		struct pp_hwmgr *hwmgr,
+		const ATOM_Tonga_POWERPLAYTABLE *powerplay_table
+		)
+{
+	const ATOM_Tonga_State_Array *state_arrays;
+
+	state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)powerplay_table) +
+		le16_to_cpu(powerplay_table->usStateArrayOffset));
+
+	PP_ASSERT_WITH_CODE((ATOM_Tonga_TABLE_REVISION_TONGA <=
+		powerplay_table->sHeader.ucTableFormatRevision),
+		"Unsupported PPTable format!", return -1);
+	PP_ASSERT_WITH_CODE((0 != powerplay_table->usStateArrayOffset),
+		"State table is not set!", return -1);
+	PP_ASSERT_WITH_CODE((0 < powerplay_table->sHeader.usStructureSize),
+		"Invalid PowerPlay Table!", return -1);
+	PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
+		"Invalid PowerPlay Table!", return -1);
+
+	return 0;
+}
+
+int tonga_pp_tables_initialize(struct pp_hwmgr *hwmgr)
+{
+	int result = 0;
+	const ATOM_Tonga_POWERPLAYTABLE *powerplay_table;
+
+	hwmgr->pptable = kzalloc(sizeof(struct phm_ppt_v1_information), GFP_KERNEL);
+
+	if (NULL == hwmgr->pptable)
+		return -1;
+
+	memset(hwmgr->pptable, 0x00, sizeof(struct phm_ppt_v1_information));
+
+	powerplay_table = get_powerplay_table(hwmgr);
+
+	PP_ASSERT_WITH_CODE((NULL != powerplay_table),
+		"Missing PowerPlay Table!", return -1);
+
+	result = check_powerplay_tables(hwmgr, powerplay_table);
+
+	if (0 == result)
+		result = set_platform_caps(hwmgr,
+			le32_to_cpu(powerplay_table->ulPlatformCaps));
+
+	if (0 == result)
+		result = init_thermal_controller(hwmgr, powerplay_table);
+
+	if (0 == result)
+		result = init_over_drive_limits(hwmgr, powerplay_table);
+
+	if (0 == result)
+		result = init_clock_voltage_dependency(hwmgr, powerplay_table);
+
+	if (0 == result)
+		result = init_dpm_2_parameters(hwmgr, powerplay_table);
+
+	return result;
+}
+
+int tonga_pp_tables_uninitialize(struct pp_hwmgr *hwmgr)
+{
+	int result = 0;
+	struct phm_ppt_v1_information *pp_table_information =
+		(struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+	if (NULL != hwmgr->soft_pp_table) {
+		kfree(hwmgr->soft_pp_table);
+		hwmgr->soft_pp_table = NULL;
+	}
+
+	if (NULL != pp_table_information->vdd_dep_on_sclk)
+		pp_table_information->vdd_dep_on_sclk = NULL;
+
+	if (NULL != pp_table_information->vdd_dep_on_mclk)
+		pp_table_information->vdd_dep_on_mclk = NULL;
+
+	if (NULL != pp_table_information->valid_mclk_values)
+		pp_table_information->valid_mclk_values = NULL;
+
+	if (NULL != pp_table_information->valid_sclk_values)
+		pp_table_information->valid_sclk_values = NULL;
+
+	if (NULL != pp_table_information->vddc_lookup_table)
+		pp_table_information->vddc_lookup_table = NULL;
+
+	if (NULL != pp_table_information->vddgfx_lookup_table)
+		pp_table_information->vddgfx_lookup_table = NULL;
+
+	if (NULL != pp_table_information->mm_dep_table)
+		pp_table_information->mm_dep_table = NULL;
+
+	if (NULL != pp_table_information->cac_dtp_table)
+		pp_table_information->cac_dtp_table = NULL;
+
+	if (NULL != hwmgr->dyn_state.cac_dtp_table)
+		hwmgr->dyn_state.cac_dtp_table = NULL;
+
+	if (NULL != pp_table_information->ppm_parameter_table)
+		pp_table_information->ppm_parameter_table = NULL;
+
+	if (NULL != pp_table_information->pcie_table)
+		pp_table_information->pcie_table = NULL;
+
+	if (NULL != hwmgr->pptable) {
+		kfree(hwmgr->pptable);
+		hwmgr->pptable = NULL;
+	}
+
+	return result;
+}
+
+const struct pp_table_func tonga_pptable_funcs = {
+	.pptable_init = tonga_pp_tables_initialize,
+	.pptable_fini = tonga_pp_tables_uninitialize,
+};
+
+int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
+{
+	const ATOM_Tonga_State_Array * state_arrays;
+	const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
+
+	PP_ASSERT_WITH_CODE((NULL != pp_table),
+			"Missing PowerPlay Table!", return -1);
+	PP_ASSERT_WITH_CODE((pp_table->sHeader.ucTableFormatRevision >=
+			ATOM_Tonga_TABLE_REVISION_TONGA),
+			"Incorrect PowerPlay table revision!", return -1);
+
+	state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
+			le16_to_cpu(pp_table->usStateArrayOffset));
+
+	return (uint32_t)(state_arrays->ucNumEntries);
+}
+
+/**
+* Private function to convert flags stored in the BIOS to software flags in PowerPlay.
+*/
+static uint32_t make_classification_flags(struct pp_hwmgr *hwmgr,
+		uint16_t classification, uint16_t classification2)
+{
+	uint32_t result = 0;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT)
+		result |= PP_StateClassificationFlag_Boot;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL)
+		result |= PP_StateClassificationFlag_Thermal;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
+		result |= PP_StateClassificationFlag_LimitedPowerSource;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_REST)
+		result |= PP_StateClassificationFlag_Rest;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED)
+		result |= PP_StateClassificationFlag_Forced;
+
+	if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI)
+		result |= PP_StateClassificationFlag_ACPI;
+
+	if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
+		result |= PP_StateClassificationFlag_LimitedPowerSource_2;
+
+	return result;
+}
+
+/**
+* Create a Power State out of an entry in the PowerPlay table.
+* This function is called by the hardware back-end.
+* @param hwmgr Pointer to the hardware manager.
+* @param entry_index The index of the entry to be extracted from the table.
+* @param power_state The address of the PowerState instance being created.
+* @return -1 if the entry cannot be retrieved.
+*/
+int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr,
+		uint32_t entry_index, struct pp_power_state *power_state,
+		int (*call_back_func)(struct pp_hwmgr *, void *,
+				struct pp_power_state *, void *, uint32_t))
+{
+	int result = 0;
+	const ATOM_Tonga_State_Array * state_arrays;
+	const ATOM_Tonga_State *state_entry;
+	const ATOM_Tonga_POWERPLAYTABLE *pp_table = get_powerplay_table(hwmgr);
+
+	PP_ASSERT_WITH_CODE((NULL != pp_table), "Missing PowerPlay Table!", return -1;);
+	power_state->classification.bios_index = entry_index;
+
+	if (pp_table->sHeader.ucTableFormatRevision >=
+			ATOM_Tonga_TABLE_REVISION_TONGA) {
+		state_arrays = (ATOM_Tonga_State_Array *)(((unsigned long)pp_table) +
+				le16_to_cpu(pp_table->usStateArrayOffset));
+
+		PP_ASSERT_WITH_CODE((0 < pp_table->usStateArrayOffset),
+				"Invalid PowerPlay Table State Array Offset.", return -1);
+		PP_ASSERT_WITH_CODE((0 < state_arrays->ucNumEntries),
+				"Invalid PowerPlay Table State Array.", return -1);
+		PP_ASSERT_WITH_CODE((entry_index <= state_arrays->ucNumEntries),
+				"Invalid PowerPlay Table State Array Entry.", return -1);
+
+		state_entry = &(state_arrays->states[entry_index]);
+
+		result = call_back_func(hwmgr, (void *)state_entry, power_state,
+				(void *)pp_table,
+				make_classification_flags(hwmgr,
+					le16_to_cpu(state_entry->usClassification),
+					le16_to_cpu(state_entry->usClassification2)));
+	}
+
+	if (!result && (power_state->classification.flags &
+			PP_StateClassificationFlag_Boot))
+		result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(power_state->hardware));
+
+	return result;
+}
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
new file mode 100644
index 0000000..d24b888
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_processpptables.h
@@ -0,0 +1,35 @@
+/*
+ * Copyright 2015 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+#ifndef TONGA_PROCESSPPTABLES_H
+#define TONGA_PROCESSPPTABLES_H
+
+#include "hwmgr.h"
+
+extern const struct pp_table_func tonga_pptable_funcs;
+extern int tonga_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr);
+extern int tonga_get_powerplay_table_entry(struct pp_hwmgr *hwmgr, uint32_t entry_index,
+		struct pp_power_state *power_state, int (*call_back_func)(struct pp_hwmgr *, void *,
+				struct pp_power_state *, void *, uint32_t));
+
+#endif
+
diff --git a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
index a69b379..9795b9a 100644
--- a/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
+++ b/drivers/gpu/drm/amd/powerplay/inc/hardwaremanager.h
@@ -219,12 +219,12 @@ enum PHM_PerformanceLevelDesignation {
 typedef enum PHM_PerformanceLevelDesignation PHM_PerformanceLevelDesignation;
 
 struct PHM_PerformanceLevel {
-	uint32_t    coreClock;
-	uint32_t    memory_clock;
-	uint32_t  vddc;
-	uint32_t  vddci;
-	uint32_t    nonLocalMemoryFreq;
-	uint32_t nonLocalMemoryWidth;
+    uint32_t    coreClock;
+    uint32_t    memory_clock;
+    uint32_t  vddc;
+    uint32_t  vddci;
+    uint32_t    nonLocalMemoryFreq;
+    uint32_t nonLocalMemoryWidth;
 };
 
 typedef struct PHM_PerformanceLevel PHM_PerformanceLevel;
@@ -251,9 +251,9 @@ static inline bool phm_cap_enabled(const uint32_t *caps, enum phm_platform_caps
 
 #define PP_PCIEGenInvalid  0xffff
 enum PP_PCIEGen {
-	PP_PCIEGen1 = 0,                /* PCIE 1.0 - Transfer rate of 2.5 GT/s */
-	PP_PCIEGen2,                    /*PCIE 2.0 - Transfer rate of 5.0 GT/s */
-	PP_PCIEGen3                     /*PCIE 3.0 - Transfer rate of 8.0 GT/s */
+    PP_PCIEGen1 = 0,                /* PCIE 1.0 - Transfer rate of 2.5 GT/s */
+    PP_PCIEGen2,                    /*PCIE 2.0 - Transfer rate of 5.0 GT/s */
+    PP_PCIEGen3                     /*PCIE 3.0 - Transfer rate of 8.0 GT/s */
 };
 
 typedef enum PP_PCIEGen PP_PCIEGen;
diff --git a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
index 18b5ab1..ca513a1 100644
--- a/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
+++ b/drivers/gpu/drm/amd/powerplay/inc/hwmgr.h
@@ -28,6 +28,7 @@
 #include "pp_instance.h"
 #include "hardwaremanager.h"
 #include "pp_power_source.h"
+#include "hwmgr_ppt.h"
 
 struct pp_instance;
 struct pp_hwmgr;
@@ -400,7 +401,24 @@ struct phm_clock_and_voltage_limits {
 	uint16_t vddgfx;
 };
 
+/* Structure to hold PPTable information */
 
+struct phm_ppt_v1_information {
+	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk;
+	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_mclk;
+	struct phm_clock_array *valid_sclk_values;
+	struct phm_clock_array *valid_mclk_values;
+	struct phm_clock_and_voltage_limits max_clock_voltage_on_dc;
+	struct phm_clock_and_voltage_limits max_clock_voltage_on_ac;
+	struct phm_clock_voltage_dependency_table *vddc_dep_on_dal_pwrl;
+	struct phm_ppm_table *ppm_parameter_table;
+	struct phm_cac_tdp_table *cac_dtp_table;
+	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_dep_table;
+	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
+	struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table;
+	struct phm_ppt_v1_pcie_table *pcie_table;
+	uint16_t us_ulv_voltage_offset;
+};
 
 struct phm_dynamic_state_info {
 	struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk;
@@ -434,6 +452,70 @@ struct phm_dynamic_state_info {
 	struct phm_vq_budgeting_table		  		  *vq_budgeting_table;
 };
 
+struct pp_fan_info {
+	bool bNoFan;
+	uint8_t   ucTachometerPulsesPerRevolution;
+	uint32_t   ulMinRPM;
+	uint32_t   ulMaxRPM;
+};
+
+struct pp_advance_fan_control_parameters {
+	uint16_t  usTMin;                          /* The temperature, in 0.01 centigrades, below which we just run at a minimal PWM. */
+	uint16_t  usTMed;                          /* The middle temperature where we change slopes. */
+	uint16_t  usTHigh;                         /* The high temperature for setting the second slope. */
+	uint16_t  usPWMMin;                        /* The minimum PWM value in percent (0.01% increments). */
+	uint16_t  usPWMMed;                        /* The PWM value (in percent) at TMed. */
+	uint16_t  usPWMHigh;                       /* The PWM value at THigh. */
+	uint8_t   ucTHyst;                         /* Temperature hysteresis. Integer. */
+	uint32_t   ulCycleDelay;                   /* The time between two invocations of the fan control routine in microseconds. */
+	uint16_t  usTMax;                          /* The max temperature */
+	uint8_t   ucFanControlMode;
+	uint16_t  usFanPWMMinLimit;
+	uint16_t  usFanPWMMaxLimit;
+	uint16_t  usFanPWMStep;
+	uint16_t  usDefaultMaxFanPWM;
+	uint16_t  usFanOutputSensitivity;
+	uint16_t  usDefaultFanOutputSensitivity;
+	uint16_t  usMaxFanPWM;                     /* The max Fan PWM value for Fuzzy Fan Control feature */
+	uint16_t  usFanRPMMinLimit;                /* Minimum limit range in percentage, need to calculate based on minRPM/MaxRpm */
+	uint16_t  usFanRPMMaxLimit;                /* Maximum limit range in percentage, usually set to 100% by default */
+	uint16_t  usFanRPMStep;                    /* Step increments/decerements, in percent */
+	uint16_t  usDefaultMaxFanRPM;              /* The max Fan RPM value for Fuzzy Fan Control feature, default from PPTable */
+	uint16_t  usMaxFanRPM;                     /* The max Fan RPM value for Fuzzy Fan Control feature, user defined */
+	uint16_t  usFanCurrentLow;                 /* Low current */
+	uint16_t  usFanCurrentHigh;                /* High current */
+	uint16_t  usFanRPMLow;                     /* Low RPM */
+	uint16_t  usFanRPMHigh;                    /* High RPM */
+	uint32_t   ulMinFanSCLKAcousticLimit;      /* Minimum Fan Controller SCLK Frequency Acoustic Limit. */
+	uint8_t   ucTargetTemperature;             /* Advanced fan controller target temperature. */
+	uint8_t   ucMinimumPWMLimit;               /* The minimum PWM that the advanced fan controller can set.  This should be set to the highest PWM that will run the fan at its lowest RPM. */
+	uint16_t  usFanGainEdge;                   /* The following is added for Fiji */
+	uint16_t  usFanGainHotspot;
+	uint16_t  usFanGainLiquid;
+	uint16_t  usFanGainVrVddc;
+	uint16_t  usFanGainVrMvdd;
+	uint16_t  usFanGainPlx;
+	uint16_t  usFanGainHbm;
+};
+
+struct pp_thermal_controller_info {
+	uint8_t ucType;
+	uint8_t ucI2cLine;
+	uint8_t ucI2cAddress;
+	struct pp_fan_info fanInfo;
+	struct pp_advance_fan_control_parameters advanceFanControlParameters;
+};
+
+struct phm_microcode_version_info {
+	uint32_t SMC;
+	uint32_t DMCU;
+	uint32_t MC;
+	uint32_t NB;
+};
+
+/**
+ * The main hardware manager structure.
+ */
 struct pp_hwmgr {
 	uint32_t chip_family;
 	uint32_t chip_id;
@@ -466,6 +548,8 @@ struct pp_hwmgr {
 	struct pp_power_state    *ps;
         enum pp_power_source  power_source;
 	uint32_t num_ps;
+	struct pp_thermal_controller_info thermal_controller;
+	struct phm_microcode_version_info microcode_version_info;
 	uint32_t ps_size;
 	struct pp_power_state    *current_ps;
 	struct pp_power_state    *request_ps;
@@ -487,7 +571,13 @@ extern int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
 extern int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
 				uint32_t index, uint32_t value, uint32_t mask);
 
+extern uint32_t phm_read_indirect_register(struct pp_hwmgr *hwmgr,
+		uint32_t indirect_port, uint32_t index);
 
+extern void phm_write_indirect_register(struct pp_hwmgr *hwmgr,
+		uint32_t indirect_port,
+		uint32_t index,
+		uint32_t value);
 
 extern void phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
 				uint32_t indirect_port,
diff --git a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
index 65ef547..3df3ded 100644
--- a/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
+++ b/drivers/gpu/drm/amd/powerplay/inc/pp_debug.h
@@ -31,7 +31,7 @@
 #define PP_ASSERT_WITH_CODE(cond, msg, code)	\
 	do {					\
 		if (!(cond)) {			\
-			printk(msg);	\
+			printk("%s\n", msg);	\
 			code;			\
 		}				\
 	} while (0)
diff --git a/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h
new file mode 100644
index 0000000..c24a81e
--- /dev/null
+++ b/drivers/gpu/drm/amd/powerplay/inc/smu_ucode_xfer_vi.h
@@ -0,0 +1,100 @@
+/*
+ * Copyright 2014 Advanced Micro Devices, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef SMU_UCODE_XFER_VI_H
+#define SMU_UCODE_XFER_VI_H
+
+#define SMU_DRAMData_TOC_VERSION  1
+#define MAX_IH_REGISTER_COUNT     65535
+#define SMU_DIGEST_SIZE_BYTES     20
+#define SMU_FB_SIZE_BYTES         1048576
+#define SMU_MAX_ENTRIES           12
+
+#define UCODE_ID_SMU              0
+#define UCODE_ID_SDMA0            1
+#define UCODE_ID_SDMA1            2
+#define UCODE_ID_CP_CE            3
+#define UCODE_ID_CP_PFP           4
+#define UCODE_ID_CP_ME            5
+#define UCODE_ID_CP_MEC           6
+#define UCODE_ID_CP_MEC_JT1       7
+#define UCODE_ID_CP_MEC_JT2       8
+#define UCODE_ID_GMCON_RENG       9
+#define UCODE_ID_RLC_G            10
+#define UCODE_ID_IH_REG_RESTORE   11
+#define UCODE_ID_VBIOS            12
+#define UCODE_ID_MISC_METADATA    13
+#define UCODE_ID_RLC_SCRATCH      32
+#define UCODE_ID_RLC_SRM_ARAM     33
+#define UCODE_ID_RLC_SRM_DRAM     34
+#define UCODE_ID_MEC_STORAGE      35
+#define UCODE_ID_VBIOS_PARAMETERS 36
+#define UCODE_META_DATA           0xFF
+
+#define UCODE_ID_SMU_MASK             0x00000001
+#define UCODE_ID_SDMA0_MASK           0x00000002
+#define UCODE_ID_SDMA1_MASK           0x00000004
+#define UCODE_ID_CP_CE_MASK           0x00000008
+#define UCODE_ID_CP_PFP_MASK          0x00000010
+#define UCODE_ID_CP_ME_MASK           0x00000020
+#define UCODE_ID_CP_MEC_MASK          0x00000040
+#define UCODE_ID_CP_MEC_JT1_MASK      0x00000080
+#define UCODE_ID_CP_MEC_JT2_MASK      0x00000100
+#define UCODE_ID_GMCON_RENG_MASK      0x00000200
+#define UCODE_ID_RLC_G_MASK           0x00000400
+#define UCODE_ID_IH_REG_RESTORE_MASK  0x00000800
+#define UCODE_ID_VBIOS_MASK           0x00001000
+
+#define UCODE_FLAG_UNHALT_MASK   0x1
+
+struct SMU_Entry {
+#ifndef __BIG_ENDIAN
+	uint16_t id;
+	uint16_t version;
+	uint32_t image_addr_high;
+	uint32_t image_addr_low;
+	uint32_t meta_data_addr_high;
+	uint32_t meta_data_addr_low;
+	uint32_t data_size_byte;
+	uint16_t flags;
+	uint16_t num_register_entries;
+#else
+	uint16_t version;
+	uint16_t id;
+	uint32_t image_addr_high;
+	uint32_t image_addr_low;
+	uint32_t meta_data_addr_high;
+	uint32_t meta_data_addr_low;
+	uint32_t data_size_byte;
+	uint16_t num_register_entries;
+	uint16_t flags;
+#endif
+};
+
+struct SMU_DRAMData_TOC {
+	uint32_t structure_version;
+	uint32_t num_entries;
+	struct SMU_Entry entry[SMU_MAX_ENTRIES];
+};
+
+#endif
-- 
1.8.3.1



More information about the dri-devel mailing list