[PATCH v3 2/2] drm/bridge: ti-sn65dsi86: Implement the pwm_chip

Uwe Kleine-König u.kleine-koenig at pengutronix.de
Tue Jun 22 20:29:35 UTC 2021


On Mon, Jun 21, 2021 at 10:09:48PM -0500, Bjorn Andersson wrote:
> The SN65DSI86 provides the ability to supply a PWM signal on GPIO 4,
> with the primary purpose of controlling the backlight of the attached
> panel. Add an implementation that exposes this using the standard PWM
> framework, to allow e.g. pwm-backlight to expose this to the user.
> 
> Signed-off-by: Bjorn Andersson <bjorn.andersson at linaro.org>
> ---
> 
> Changes since v2:
> - Corrected calculation of scale, to include a 1 instead of 1/NSEC_TO_SEC and
>   rounded the period up in get_state, to make sure its idempotent
> - Changed duty_cycle calculation to make sure it idempotent over my tested period
> - Documented "Limitations"
> - Documented muxing operation after pm_runtime_get_sync()
> 
>  drivers/gpu/drm/bridge/ti-sn65dsi86.c | 335 +++++++++++++++++++++++++-
>  1 file changed, 334 insertions(+), 1 deletion(-)
> 
> diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> index 5d712c8c3c3b..0eabbdad1830 100644
> --- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> +++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c
> @@ -4,6 +4,7 @@
>   * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
>   */
>  
> +#include <linux/atomic.h>
>  #include <linux/auxiliary_bus.h>
>  #include <linux/bits.h>
>  #include <linux/clk.h>
> @@ -15,6 +16,7 @@
>  #include <linux/module.h>
>  #include <linux/of_graph.h>
>  #include <linux/pm_runtime.h>
> +#include <linux/pwm.h>
>  #include <linux/regmap.h>
>  #include <linux/regulator/consumer.h>
>  
> @@ -91,6 +93,13 @@
>  #define SN_ML_TX_MODE_REG			0x96
>  #define  ML_TX_MAIN_LINK_OFF			0
>  #define  ML_TX_NORMAL_MODE			BIT(0)
> +#define SN_PWM_PRE_DIV_REG			0xA0
> +#define SN_BACKLIGHT_SCALE_REG			0xA1
> +#define  BACKLIGHT_SCALE_MAX			0xFFFF
> +#define SN_BACKLIGHT_REG			0xA3
> +#define SN_PWM_EN_INV_REG			0xA5
> +#define  SN_PWM_INV_MASK			BIT(0)
> +#define  SN_PWM_EN_MASK				BIT(1)
>  #define SN_AUX_CMD_STATUS_REG			0xF4
>  #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
>  #define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
> @@ -113,11 +122,14 @@
>  
>  #define SN_LINK_TRAINING_TRIES		10
>  
> +#define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
> +
>  /**
>   * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
>   * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
>   * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
>   * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
> + * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
>   *
>   * @dev:          Pointer to the top level (i2c) device.
>   * @regmap:       Regmap for accessing i2c.
> @@ -145,11 +157,17 @@
>   *                bitmap so we can do atomic ops on it without an extra
>   *                lock so concurrent users of our 4 GPIOs don't stomp on
>   *                each other's read-modify-write.
> + *
> + * @pchip:        pwm_chip if the PWM is exposed.
> + * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
> + * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
> + * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
>   */
>  struct ti_sn65dsi86 {
>  	struct auxiliary_device		bridge_aux;
>  	struct auxiliary_device		gpio_aux;
>  	struct auxiliary_device		aux_aux;
> +	struct auxiliary_device		pwm_aux;
>  
>  	struct device			*dev;
>  	struct regmap			*regmap;
> @@ -172,6 +190,12 @@ struct ti_sn65dsi86 {
>  	struct gpio_chip		gchip;
>  	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
>  #endif
> +#if defined(CONFIG_PWM)
> +	struct pwm_chip			pchip;
> +	bool				pwm_enabled;
> +	unsigned int			pwm_refclk_freq;
> +	atomic_t			pwm_pin_busy;
> +#endif
>  };
>  
>  static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
> @@ -190,6 +214,25 @@ static const struct regmap_config ti_sn65dsi86_regmap_config = {
>  	.cache_type = REGCACHE_NONE,
>  };
>  
> +static int ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
> +				 unsigned int reg, u16 *val)
> +{
> +	unsigned int tmp;
> +	int ret;
> +
> +	ret = regmap_read(pdata->regmap, reg, &tmp);
> +	if (ret)
> +		return ret;
> +	*val = tmp;
> +
> +	ret = regmap_read(pdata->regmap, reg + 1, &tmp);
> +	if (ret)
> +		return ret;
> +	*val |= tmp << 8;
> +
> +	return 0;
> +}
> +
>  static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
>  				   unsigned int reg, u16 val)
>  {
> @@ -253,6 +296,14 @@ static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
>  
>  	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
>  			   REFCLK_FREQ(i));
> +
> +#if defined(CONFIG_PWM)
> +	/*
> +	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
> +	 * regardless of its actual sourcing.
> +	 */
> +	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
> +#endif
>  }
>  
>  static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
> @@ -1044,6 +1095,258 @@ static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
>  	return 0;
>  }
>  
> +#if defined(CONFIG_PWM)
> +static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
> +{
> +	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
> +}
> +
> +static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
> +{
> +	atomic_set(&pdata->pwm_pin_busy, 0);
> +}
> +
> +static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
> +{
> +	return container_of(chip, struct ti_sn65dsi86, pchip);
> +}
> +
> +static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
> +{
> +	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> +
> +	return ti_sn_pwm_pin_request(pdata);
> +}
> +
> +static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
> +{
> +	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> +
> +	ti_sn_pwm_pin_release(pdata);
> +}
> +
> +/*
> + * Limitations:
> + * - The PWM signal is not driven when the chip is powered down, or in its
> + *   reset state and the driver does not implement the "suspend state"
> + *   described in the documentation. In order to save power, state->enabled is
> + *   interpreted as denoting if the signal is expected to be valid, and is used to keep
> + *   the determine if the chip needs to be kept powered.
> + * - Changing both period and duty_cycle is not done atomically, so the output
> + *   might briefly be a mix of the two settings.
> + */
> +static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
> +			   const struct pwm_state *state)
> +{
> +	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> +	unsigned int pwm_en_inv;
> +	unsigned int backlight;
> +	unsigned int pre_div;
> +	unsigned int scale;
> +	u64 tick;
> +	int ret;
> +
> +	if (!pdata->pwm_enabled) {
> +		ret = pm_runtime_get_sync(pdata->dev);
> +		if (ret < 0)
> +			return ret;
> +
> +		/*
> +		 * The chip might have been powered down while we didn't hold a
> +		 * PM runtime reference, so mux in the PWM function on the GPIO
> +		 * pin again.
> +		 */
> +		ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
> +				SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
> +				SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
> +		if (ret) {
> +			dev_err(pdata->dev, "failed to mux in PWM function\n");
> +			goto out;
> +		}

In reply to your v2 I requested to short-cut the case !pdata->pwm_enabled
&& !state->enabled without enabling stuff.

> +	}
> +
> +	if (state->enabled) {
> +		/*
> +		 * Per the datasheet the PWM frequency is given by:
> +		 *
> +		 *   PWM_FREQ = REFCLK_FREQ / (PWM_PRE_DIV * BACKLIGHT_SCALE + 1)
> +		 *
> +		 * which can be rewritten:
> +		 *
> +		 *   T_pwm * REFCLK_FREQ - 1 = PWM_PRE_DIV * BACKLIGHT_SCALE
> +		 *
> +		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
> +		 * PWM_PRE_DIV must be:
> +		 *
> +		 *   PWM_PRE_DIV >= (T_pwm * REFCLK_FREQ - 1) / BACKLIGHT_SCALE_MAX;
> +		 *
> +		 * To simplify the search and optimize the resolution of the
> +		 * PWM, the lowest possible PWM_PRE_DIV is used. Finally the
> +		 * scale is calculated as:
> +		 *
> +		 *   BACKLIGHT_SCALE = (T_pwm * REFCLK_FREQ - 1) / PWM_PRE_DIV
> +		 *
> +		 * Here T_pwm is represented in seconds, so appropriate scaling
> +		 * to nanoseconds is necessary.
> +		 */
> +
> +		/* Minimum T_pwm is (1 * 1 + 1) / REFCLK_FREQ */
> +		if (state->period * pdata->pwm_refclk_freq <= 2 * NSEC_PER_SEC) {
> +			ret = -EINVAL;
> +			goto out;
> +		}
> +
> +		pre_div = DIV_ROUND_UP((state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC),
> +				       (NSEC_PER_SEC * BACKLIGHT_SCALE_MAX));
> +		if (pre_div > 0xff)
> +			pre_div = 0xff;
> +
> +		scale = (state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC) / (NSEC_PER_SEC * pre_div);

Please consider this multiplication to overflow. Something like:

	if (state->period > $someterm)
		period = $someterm;
	else
		period = state->period;

is usually appropriate. Also NSEC_PER_SEC * pre_div might overflow.
Moreover to divide a u64 you must not rely on / but need do_div() or
some variant of it.

> +
> +		/*
> +		 * PWM duty cycle is given as:
> +		 *
> +		 *   duty = BACKLIGHT / (BACKLIGHT_SCALE + 1)
> +		 *
> +		 * The documentation is however inconsistent in its examples,
> +		 * so the interpretation used here is that the duty cycle is
> +		 * the period of BACKLIGHT * PRE_DIV / REFCLK_FREQ.

I don't understand this.

> +		 *
> +		 * The ratio PRE_DIV / REFCLK_FREQ is rounded up to whole
> +		 * nanoseconds in order to ensure that the calculations are
> +		 * idempotent and gives results that are smaller than the
> +		 * requested value.
> +		 */
> +		tick = DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);
> +		backlight = state->duty_cycle / tick;

You're loosing precision here by dividing by the result of a division.

> +		if (backlight > scale)
> +			backlight = scale;
> +
> +		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
> +		if (ret) {
> +			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
> +			goto out;
> +		}
> +
> +		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
> +		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
> +	}
> +
> +	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, !!state->enabled) |
> +		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
> +	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
> +	if (ret) {
> +		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
> +		goto out;
> +	}
> +
> +	pdata->pwm_enabled = !!state->enabled;
> +out:
> +
> +	if (!pdata->pwm_enabled)
> +		pm_runtime_put_sync(pdata->dev);
> +
> +	return ret;
> +}
> +
> +static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
> +				struct pwm_state *state)
> +{
> +	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
> +	unsigned int pwm_en_inv;
> +	unsigned int pre_div;
> +	u16 backlight;
> +	u16 scale;
> +	int ret;
> +
> +	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
> +	if (ret)
> +		return;
> +
> +	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
> +	if (ret)
> +		return;
> +
> +	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
> +	if (ret)
> +		return;
> +
> +	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
> +	if (ret)
> +		return;
> +
> +	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
> +	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
> +		state->polarity = PWM_POLARITY_INVERSED;
> +	else
> +		state->polarity = PWM_POLARITY_NORMAL;
> +
> +	state->period = DIV_ROUND_UP(NSEC_PER_SEC * (pre_div * scale + 1), pdata->pwm_refclk_freq);
> +	state->duty_cycle = backlight * DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);

If you use

	state->duty_cycle = DIV_ROUND_UP(backlight * NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq);

instead (with a cast to u64 to not yield an overflow) the result is more
exact.

I still find this surprising, I'd expect that SCALE also matters for the
duty_cycle. With the assumption implemented here modifying SCALE only
affects the period. This should be easy to verify?! I would expect that
changing SCALE doesn't affect the relative duty_cycle, so the brightness
of an LED is unaffected (unless the period gets too big of course).

I didn't spend much cycles to verify that the logic in .apply() matches
.get_state(). I'd keep that check for the next iteration.

Best regards
Uwe

-- 
Pengutronix e.K.                           | Uwe Kleine-König            |
Industrial Linux Solutions                 | https://www.pengutronix.de/ |
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 488 bytes
Desc: not available
URL: <https://lists.freedesktop.org/archives/dri-devel/attachments/20210622/e99f661a/attachment-0001.sig>


More information about the dri-devel mailing list