[PATCH v4 2/7] accel/ivpu: Add Intel VPU MMU support
Oded Gabbay
oded.gabbay at gmail.com
Sun Dec 18 09:13:16 UTC 2022
On Thu, Dec 8, 2022 at 1:08 PM Jacek Lawrynowicz
<jacek.lawrynowicz at linux.intel.com> wrote:
>
> VPU Memory Management Unit is based on ARM MMU-600.
> It allows the creation of multiple virtual address spaces for
> the device and map noncontinuous host memory (there is no dedicated
> memory on the VPU).
>
> Address space is implemented as a struct ivpu_mmu_context, it has an ID,
> drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that
> holds actual 3-level, 4KB page table.
> Context with ID 0 (global context) is created upon driver initialization
> and it's mainly used for mapping memory required to execute
> the firmware.
> Contexts with non-zero IDs are user contexts allocated each time
> the devices is open()-ed and they map command buffers and other
> workload-related memory.
> Workloads executing in a given contexts have access only
> to the memory mapped in this context.
>
> This patch is has to main files:
This patch has two main files:
> - ivpu_mmu_context.c handles MMU page tables and memory mapping
> - ivpu_mmu.c implements a driver that programs the MMU device
>
> Co-developed-by: Karol Wachowski <karol.wachowski at linux.intel.com>
> Signed-off-by: Karol Wachowski <karol.wachowski at linux.intel.com>
> Co-developed-by: Krystian Pradzynski <krystian.pradzynski at linux.intel.com>
> Signed-off-by: Krystian Pradzynski <krystian.pradzynski at linux.intel.com>
> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz at linux.intel.com>
> ---
> drivers/accel/ivpu/Makefile | 4 +-
> drivers/accel/ivpu/ivpu_drv.c | 83 ++-
> drivers/accel/ivpu/ivpu_drv.h | 6 +
> drivers/accel/ivpu/ivpu_hw_mtl.c | 10 +
> drivers/accel/ivpu/ivpu_mmu.c | 875 ++++++++++++++++++++++++++
> drivers/accel/ivpu/ivpu_mmu.h | 50 ++
> drivers/accel/ivpu/ivpu_mmu_context.c | 385 ++++++++++++
> drivers/accel/ivpu/ivpu_mmu_context.h | 49 ++
> include/uapi/drm/ivpu_drm.h | 4 +
> 9 files changed, 1463 insertions(+), 3 deletions(-)
> create mode 100644 drivers/accel/ivpu/ivpu_mmu.c
> create mode 100644 drivers/accel/ivpu/ivpu_mmu.h
> create mode 100644 drivers/accel/ivpu/ivpu_mmu_context.c
> create mode 100644 drivers/accel/ivpu/ivpu_mmu_context.h
>
> diff --git a/drivers/accel/ivpu/Makefile b/drivers/accel/ivpu/Makefile
> index 28330c04e52f..37b8bf1d3247 100644
> --- a/drivers/accel/ivpu/Makefile
> +++ b/drivers/accel/ivpu/Makefile
> @@ -3,6 +3,8 @@
>
> intel_vpu-y := \
> ivpu_drv.o \
> - ivpu_hw_mtl.o
> + ivpu_hw_mtl.o \
> + ivpu_mmu.o \
> + ivpu_mmu_context.o
>
> obj-$(CONFIG_DRM_ACCEL_IVPU) += intel_vpu.o
> \ No newline at end of file
> diff --git a/drivers/accel/ivpu/ivpu_drv.c b/drivers/accel/ivpu/ivpu_drv.c
> index 8fbccb8d888b..a22d41ca5a4b 100644
> --- a/drivers/accel/ivpu/ivpu_drv.c
> +++ b/drivers/accel/ivpu/ivpu_drv.c
> @@ -15,6 +15,8 @@
>
> #include "ivpu_drv.h"
> #include "ivpu_hw.h"
> +#include "ivpu_mmu.h"
> +#include "ivpu_mmu_context.h"
>
> #ifndef DRIVER_VERSION_STR
> #define DRIVER_VERSION_STR __stringify(DRM_IVPU_DRIVER_MAJOR) "." \
> @@ -37,23 +39,38 @@ MODULE_PARM_DESC(pll_max_ratio, "Maximum PLL ratio used to set VPU frequency");
>
> struct ivpu_file_priv *ivpu_file_priv_get(struct ivpu_file_priv *file_priv)
> {
> + struct ivpu_device *vdev = file_priv->vdev;
> +
> kref_get(&file_priv->ref);
> +
> + ivpu_dbg(vdev, KREF, "file_priv get: ctx %u refcount %u\n",
> + file_priv->ctx.id, kref_read(&file_priv->ref));
> +
> return file_priv;
> }
>
> static void file_priv_release(struct kref *ref)
> {
> struct ivpu_file_priv *file_priv = container_of(ref, struct ivpu_file_priv, ref);
> + struct ivpu_device *vdev = file_priv->vdev;
>
> + ivpu_dbg(vdev, FILE, "file_priv release: ctx %u\n", file_priv->ctx.id);
> +
> + ivpu_mmu_user_context_fini(vdev, &file_priv->ctx);
> + WARN_ON(xa_erase_irq(&vdev->context_xa, file_priv->ctx.id) != file_priv);
> kfree(file_priv);
> }
>
> void ivpu_file_priv_put(struct ivpu_file_priv **link)
> {
> struct ivpu_file_priv *file_priv = *link;
> + struct ivpu_device *vdev = file_priv->vdev;
>
> WARN_ON(!file_priv);
>
> + ivpu_dbg(vdev, KREF, "file_priv put: ctx %u refcount %u\n",
> + file_priv->ctx.id, kref_read(&file_priv->ref));
> +
> *link = NULL;
> kref_put(&file_priv->ref, file_priv_release);
> }
> @@ -88,6 +105,9 @@ static int ivpu_get_param_ioctl(struct drm_device *dev, void *data, struct drm_f
> case DRM_IVPU_PARAM_CONTEXT_PRIORITY:
> args->value = file_priv->priority;
> break;
> + case DRM_IVPU_PARAM_CONTEXT_ID:
> + args->value = file_priv->ctx.id;
Why is this needed ? Why does the user need to know its context ID ?
> + break;
> default:
> ret = -EINVAL;
> break;
> @@ -120,22 +140,59 @@ static int ivpu_open(struct drm_device *dev, struct drm_file *file)
> {
> struct ivpu_device *vdev = to_ivpu_device(dev);
> struct ivpu_file_priv *file_priv;
> + u32 ctx_id;
> + void *old;
> + int ret;
> +
> + ret = xa_alloc_irq(&vdev->context_xa, &ctx_id, NULL, vdev->context_xa_limit, GFP_KERNEL);
> + if (ret) {
> + ivpu_err(vdev, "Failed to allocate context id: %d\n", ret);
> + return ret;
> + }
>
> file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
> - if (!file_priv)
> - return -ENOMEM;
> + if (!file_priv) {
> + ret = -ENOMEM;
> + goto err_xa_erase;
> + }
>
> file_priv->vdev = vdev;
> file_priv->priority = DRM_IVPU_CONTEXT_PRIORITY_NORMAL;
> kref_init(&file_priv->ref);
>
> + ret = ivpu_mmu_user_context_init(vdev, &file_priv->ctx, ctx_id);
> + if (ret)
> + goto err_free_file_priv;
> +
> + old = xa_store_irq(&vdev->context_xa, ctx_id, file_priv, GFP_KERNEL);
> + if (xa_is_err(old)) {
> + ret = xa_err(old);
> + ivpu_err(vdev, "Failed to store context %u: %d\n", ctx_id, ret);
> + goto err_ctx_fini;
> + }
> +
> + ivpu_dbg(vdev, FILE, "file_priv create: ctx %u process %s pid %d\n",
> + ctx_id, current->comm, task_pid_nr(current));
> +
> file->driver_priv = file_priv;
> return 0;
> +
> +err_ctx_fini:
> + ivpu_mmu_user_context_fini(vdev, &file_priv->ctx);
> +err_free_file_priv:
> + kfree(file_priv);
> +err_xa_erase:
> + xa_erase_irq(&vdev->context_xa, ctx_id);
> + return ret;
> }
>
> static void ivpu_postclose(struct drm_device *dev, struct drm_file *file)
> {
> struct ivpu_file_priv *file_priv = file->driver_priv;
> + struct ivpu_device *vdev = to_ivpu_device(dev);
> +
> + ivpu_dbg(vdev, FILE, "file_priv close: ctx %u process %s pid %d\n",
> + file_priv->ctx.id, current->comm, task_pid_nr(current));
>
> ivpu_file_priv_put(&file_priv);
> }
> @@ -150,6 +207,7 @@ int ivpu_shutdown(struct ivpu_device *vdev)
> int ret;
>
> ivpu_hw_irq_disable(vdev);
> + ivpu_mmu_disable(vdev);
>
> ret = ivpu_hw_power_down(vdev);
> if (ret)
> @@ -257,6 +315,10 @@ static int ivpu_dev_init(struct ivpu_device *vdev)
> if (!vdev->hw)
> return -ENOMEM;
>
> + vdev->mmu = drmm_kzalloc(&vdev->drm, sizeof(*vdev->mmu), GFP_KERNEL);
> + if (!vdev->mmu)
> + return -ENOMEM;
> +
> vdev->hw->ops = &ivpu_hw_mtl_ops;
> vdev->platform = IVPU_PLATFORM_INVALID;
> vdev->context_xa_limit.min = IVPU_GLOBAL_CONTEXT_MMU_SSID + 1;
> @@ -289,8 +351,24 @@ static int ivpu_dev_init(struct ivpu_device *vdev)
> goto err_xa_destroy;
> }
>
> + ret = ivpu_mmu_global_context_init(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to initialize global MMU context: %d\n", ret);
> + goto err_power_down;
> + }
> +
> + ret = ivpu_mmu_init(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to initialize MMU device: %d\n", ret);
> + goto err_mmu_gctx_fini;
> + }
> +
> return 0;
>
> +err_mmu_gctx_fini:
> + ivpu_mmu_global_context_fini(vdev);
> +err_power_down:
> + ivpu_hw_power_down(vdev);
> err_xa_destroy:
> xa_destroy(&vdev->context_xa);
> return ret;
> @@ -299,6 +377,7 @@ static int ivpu_dev_init(struct ivpu_device *vdev)
> static void ivpu_dev_fini(struct ivpu_device *vdev)
> {
> ivpu_shutdown(vdev);
> + ivpu_mmu_global_context_fini(vdev);
>
> drm_WARN_ON(&vdev->drm, !xa_empty(&vdev->context_xa));
> xa_destroy(&vdev->context_xa);
> diff --git a/drivers/accel/ivpu/ivpu_drv.h b/drivers/accel/ivpu/ivpu_drv.h
> index 4f859e7ac09e..6e8b88068fc9 100644
> --- a/drivers/accel/ivpu/ivpu_drv.h
> +++ b/drivers/accel/ivpu/ivpu_drv.h
> @@ -15,6 +15,8 @@
> #include <linux/xarray.h>
> #include <uapi/drm/ivpu_drm.h>
>
> +#include "ivpu_mmu_context.h"
> +
> #define DRIVER_NAME "intel_vpu"
> #define DRIVER_DESC "Driver for Intel Versatile Processing Unit (VPU)"
> #define DRIVER_DATE "20221208"
> @@ -71,6 +73,7 @@ struct ivpu_wa_table {
> };
>
> struct ivpu_hw_info;
> +struct ivpu_mmu_info;
>
> struct ivpu_device {
> struct drm_device drm;
> @@ -81,7 +84,9 @@ struct ivpu_device {
>
> struct ivpu_wa_table wa;
> struct ivpu_hw_info *hw;
> + struct ivpu_mmu_info *mmu;
>
> + struct ivpu_mmu_context gctx;
> struct xarray context_xa;
> struct xa_limit context_xa_limit;
>
> @@ -100,6 +105,7 @@ struct ivpu_device {
> struct ivpu_file_priv {
> struct kref ref;
> struct ivpu_device *vdev;
> + struct ivpu_mmu_context ctx;
> u32 priority;
> };
>
> diff --git a/drivers/accel/ivpu/ivpu_hw_mtl.c b/drivers/accel/ivpu/ivpu_hw_mtl.c
> index c84bacd4d0f5..39350203452d 100644
> --- a/drivers/accel/ivpu/ivpu_hw_mtl.c
> +++ b/drivers/accel/ivpu/ivpu_hw_mtl.c
> @@ -7,6 +7,7 @@
> #include "ivpu_hw_mtl_reg.h"
> #include "ivpu_hw_reg_io.h"
> #include "ivpu_hw.h"
> +#include "ivpu_mmu.h"
>
> #define TILE_FUSE_ENABLE_BOTH 0x0
> #define TILE_FUSE_ENABLE_UPPER 0x1
> @@ -930,6 +931,15 @@ static u32 ivpu_hw_mtl_irqv_handler(struct ivpu_device *vdev, int irq)
>
> REGV_WR32(MTL_VPU_HOST_SS_ICB_CLEAR_0, status);
>
> + if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_0_INT, status))
> + ivpu_mmu_irq_evtq_handler(vdev);
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_1_INT, status))
> + ivpu_dbg(vdev, IRQ, "MMU sync complete\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, MMU_IRQ_2_INT, status))
> + ivpu_mmu_irq_gerr_handler(vdev);
> +
> if (REG_TEST_FLD(MTL_VPU_HOST_SS_ICB_STATUS_0, CPU_INT_REDIRECT_0_INT, status))
> ivpu_hw_mtl_irq_wdt_mss_handler(vdev);
>
> diff --git a/drivers/accel/ivpu/ivpu_mmu.c b/drivers/accel/ivpu/ivpu_mmu.c
> new file mode 100644
> index 000000000000..2dd9d2287055
> --- /dev/null
> +++ b/drivers/accel/ivpu/ivpu_mmu.c
> @@ -0,0 +1,875 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2020-2022 Intel Corporation
> + */
> +
> +#include <linux/circ_buf.h>
> +#include <linux/highmem.h>
> +
> +#include "ivpu_drv.h"
> +#include "ivpu_hw_mtl_reg.h"
> +#include "ivpu_hw_reg_io.h"
> +#include "ivpu_mmu.h"
> +#include "ivpu_mmu_context.h"
> +
> +#define IVPU_MMU_IDR0_REF 0x080f3e0f
> +#define IVPU_MMU_IDR0_REF_SIMICS 0x080f3e1f
> +#define IVPU_MMU_IDR1_REF 0x0e739d18
> +#define IVPU_MMU_IDR3_REF 0x0000003c
> +#define IVPU_MMU_IDR5_REF 0x00040070
> +#define IVPU_MMU_IDR5_REF_SIMICS 0x00000075
> +#define IVPU_MMU_IDR5_REF_FPGA 0x00800075
> +
> +#define IVPU_MMU_CDTAB_ENT_SIZE 64
> +#define IVPU_MMU_CDTAB_ENT_COUNT_LOG2 8 /* 256 entries */
> +#define IVPU_MMU_CDTAB_ENT_COUNT ((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2)
> +
> +#define IVPU_MMU_STREAM_ID0 0
> +#define IVPU_MMU_STREAM_ID3 3
> +
> +#define IVPU_MMU_STRTAB_ENT_SIZE 64
> +#define IVPU_MMU_STRTAB_ENT_COUNT 4
> +#define IVPU_MMU_STRTAB_CFG_LOG2SIZE 2
> +#define IVPU_MMU_STRTAB_CFG IVPU_MMU_STRTAB_CFG_LOG2SIZE
> +
> +#define IVPU_MMU_Q_COUNT_LOG2 4 /* 16 entries */
> +#define IVPU_MMU_Q_COUNT ((u32)1 << IVPU_MMU_Q_COUNT_LOG2)
> +#define IVPU_MMU_Q_WRAP_BIT (IVPU_MMU_Q_COUNT << 1)
> +#define IVPU_MMU_Q_WRAP_MASK (IVPU_MMU_Q_WRAP_BIT - 1)
> +#define IVPU_MMU_Q_IDX_MASK (IVPU_MMU_Q_COUNT - 1)
> +#define IVPU_MMU_Q_IDX(val) ((val) & IVPU_MMU_Q_IDX_MASK)
> +
> +#define IVPU_MMU_CMDQ_CMD_SIZE 16
> +#define IVPU_MMU_CMDQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE)
> +
> +#define IVPU_MMU_EVTQ_CMD_SIZE 32
> +#define IVPU_MMU_EVTQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE)
> +
> +#define IVPU_MMU_CMD_OPCODE GENMASK(7, 0)
> +
> +#define IVPU_MMU_CMD_SYNC_0_CS GENMASK(13, 12)
> +#define IVPU_MMU_CMD_SYNC_0_MSH GENMASK(23, 22)
> +#define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
> +#define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24)
> +#define IVPU_MMU_CMD_SYNC_0_MSI_DATA GENMASK(63, 32)
> +
> +#define IVPU_MMU_CMD_CFGI_0_SSEC BIT(10)
> +#define IVPU_MMU_CMD_CFGI_0_SSV BIT(11)
> +#define IVPU_MMU_CMD_CFGI_0_SSID GENMASK(31, 12)
> +#define IVPU_MMU_CMD_CFGI_0_SID GENMASK(63, 32)
> +#define IVPU_MMU_CMD_CFGI_1_RANGE GENMASK(4, 0)
> +
> +#define IVPU_MMU_CMD_TLBI_0_ASID GENMASK(63, 48)
> +#define IVPU_MMU_CMD_TLBI_0_VMID GENMASK(47, 32)
> +
> +#define CMD_PREFETCH_CFG 0x1
> +#define CMD_CFGI_STE 0x3
> +#define CMD_CFGI_ALL 0x4
> +#define CMD_CFGI_CD 0x5
> +#define CMD_CFGI_CD_ALL 0x6
> +#define CMD_TLBI_NH_ASID 0x11
> +#define CMD_TLBI_EL2_ALL 0x20
> +#define CMD_TLBI_NSNH_ALL 0x30
> +#define CMD_SYNC 0x46
> +
> +#define IVPU_MMU_EVT_F_UUT 0x01
> +#define IVPU_MMU_EVT_C_BAD_STREAMID 0x02
> +#define IVPU_MMU_EVT_F_STE_FETCH 0x03
> +#define IVPU_MMU_EVT_C_BAD_STE 0x04
> +#define IVPU_MMU_EVT_F_BAD_ATS_TREQ 0x05
> +#define IVPU_MMU_EVT_F_STREAM_DISABLED 0x06
> +#define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN 0x07
> +#define IVPU_MMU_EVT_C_BAD_SUBSTREAMID 0x08
> +#define IVPU_MMU_EVT_F_CD_FETCH 0x09
> +#define IVPU_MMU_EVT_C_BAD_CD 0x0a
> +#define IVPU_MMU_EVT_F_WALK_EABT 0x0b
> +#define IVPU_MMU_EVT_F_TRANSLATION 0x10
> +#define IVPU_MMU_EVT_F_ADDR_SIZE 0x11
> +#define IVPU_MMU_EVT_F_ACCESS 0x12
> +#define IVPU_MMU_EVT_F_PERMISSION 0x13
> +#define IVPU_MMU_EVT_F_TLB_CONFLICT 0x20
> +#define IVPU_MMU_EVT_F_CFG_CONFLICT 0x21
> +#define IVPU_MMU_EVT_E_PAGE_REQUEST 0x24
> +#define IVPU_MMU_EVT_F_VMS_FETCH 0x25
> +
> +#define IVPU_MMU_EVTS_MAX 8
> +
> +#define IVPU_MMU_EVT_OP_MASK GENMASK_ULL(7, 0)
> +#define IVPU_MMU_EVT_SSID_MASK GENMASK_ULL(31, 12)
> +
> +#define IVPU_MMU_Q_BASE_RWA BIT(62)
> +#define IVPU_MMU_Q_BASE_ADDR_MASK GENMASK_ULL(51, 5)
> +#define IVPU_MMU_STRTAB_BASE_RA BIT(62)
> +#define IVPU_MMU_STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6)
> +
> +#define IVPU_MMU_IRQ_EVTQ_EN BIT(2)
> +#define IVPU_MMU_IRQ_GERROR_EN BIT(0)
> +
> +#define IVPU_MMU_CR0_ATSCHK BIT(4)
> +#define IVPU_MMU_CR0_CMDQEN BIT(3)
> +#define IVPU_MMU_CR0_EVTQEN BIT(2)
> +#define IVPU_MMU_CR0_PRIQEN BIT(1)
> +#define IVPU_MMU_CR0_SMMUEN BIT(0)
> +
> +#define IVPU_MMU_CR1_TABLE_SH GENMASK(11, 10)
> +#define IVPU_MMU_CR1_TABLE_OC GENMASK(9, 8)
> +#define IVPU_MMU_CR1_TABLE_IC GENMASK(7, 6)
> +#define IVPU_MMU_CR1_QUEUE_SH GENMASK(5, 4)
> +#define IVPU_MMU_CR1_QUEUE_OC GENMASK(3, 2)
> +#define IVPU_MMU_CR1_QUEUE_IC GENMASK(1, 0)
> +#define IVPU_MMU_CACHE_NC 0
> +#define IVPU_MMU_CACHE_WB 1
> +#define IVPU_MMU_CACHE_WT 2
> +#define IVPU_MMU_SH_NSH 0
> +#define IVPU_MMU_SH_OSH 2
> +#define IVPU_MMU_SH_ISH 3
> +
> +#define IVPU_MMU_CMDQ_OP GENMASK_ULL(7, 0)
> +
> +#define IVPU_MMU_CD_0_TCR_T0SZ GENMASK_ULL(5, 0)
> +#define IVPU_MMU_CD_0_TCR_TG0 GENMASK_ULL(7, 6)
> +#define IVPU_MMU_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8)
> +#define IVPU_MMU_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10)
> +#define IVPU_MMU_CD_0_TCR_SH0 GENMASK_ULL(13, 12)
> +#define IVPU_MMU_CD_0_TCR_EPD0 BIT_ULL(14)
> +#define IVPU_MMU_CD_0_TCR_EPD1 BIT_ULL(30)
> +#define IVPU_MMU_CD_0_ENDI BIT(15)
> +#define IVPU_MMU_CD_0_V BIT(31)
> +#define IVPU_MMU_CD_0_TCR_IPS GENMASK_ULL(34, 32)
> +#define IVPU_MMU_CD_0_TCR_TBI0 BIT_ULL(38)
> +#define IVPU_MMU_CD_0_AA64 BIT(41)
> +#define IVPU_MMU_CD_0_S BIT(44)
> +#define IVPU_MMU_CD_0_R BIT(45)
> +#define IVPU_MMU_CD_0_A BIT(46)
> +#define IVPU_MMU_CD_0_ASET BIT(47)
> +#define IVPU_MMU_CD_0_ASID GENMASK_ULL(63, 48)
> +
> +#define IVPU_MMU_CD_1_TTB0_MASK GENMASK_ULL(51, 4)
> +
> +#define IVPU_MMU_STE_0_S1CDMAX GENMASK_ULL(63, 59)
> +#define IVPU_MMU_STE_0_S1FMT GENMASK_ULL(5, 4)
> +#define IVPU_MMU_STE_0_S1FMT_LINEAR 0
> +#define IVPU_MMU_STE_DWORDS 8
> +#define IVPU_MMU_STE_0_CFG_S1_TRANS 5
> +#define IVPU_MMU_STE_0_CFG GENMASK_ULL(3, 1)
> +#define IVPU_MMU_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6)
> +#define IVPU_MMU_STE_0_V BIT(0)
> +
> +#define IVPU_MMU_STE_1_STRW_NSEL1 0ul
> +#define IVPU_MMU_STE_1_CONT GENMASK_ULL(16, 13)
> +#define IVPU_MMU_STE_1_STRW GENMASK_ULL(31, 30)
> +#define IVPU_MMU_STE_1_PRIVCFG GENMASK_ULL(49, 48)
> +#define IVPU_MMU_STE_1_PRIVCFG_UNPRIV 2ul
> +#define IVPU_MMU_STE_1_INSTCFG GENMASK_ULL(51, 50)
> +#define IVPU_MMU_STE_1_INSTCFG_DATA 2ul
> +#define IVPU_MMU_STE_1_MEV BIT(19)
> +#define IVPU_MMU_STE_1_S1STALLD BIT(27)
> +#define IVPU_MMU_STE_1_S1C_CACHE_NC 0ul
> +#define IVPU_MMU_STE_1_S1C_CACHE_WBRA 1ul
> +#define IVPU_MMU_STE_1_S1C_CACHE_WT 2ul
> +#define IVPU_MMU_STE_1_S1C_CACHE_WB 3ul
> +#define IVPU_MMU_STE_1_S1CIR GENMASK_ULL(3, 2)
> +#define IVPU_MMU_STE_1_S1COR GENMASK_ULL(5, 4)
> +#define IVPU_MMU_STE_1_S1CSH GENMASK_ULL(7, 6)
> +#define IVPU_MMU_STE_1_S1DSS GENMASK_ULL(1, 0)
> +#define IVPU_MMU_STE_1_S1DSS_TERMINATE 0x0
> +
> +#define IVPU_MMU_REG_TIMEOUT_US (10 * USEC_PER_MSEC)
> +#define IVPU_MMU_QUEUE_TIMEOUT_US (100 * USEC_PER_MSEC)
> +
> +#define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT)) | \
> + (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT)))
> +
> +static char *ivpu_mmu_event_to_str(u32 cmd)
> +{
> + switch (cmd) {
> + case IVPU_MMU_EVT_F_UUT:
> + return "Unsupported Upstream Transaction";
> + case IVPU_MMU_EVT_C_BAD_STREAMID:
> + return "Transaction StreamID out of range";
> + case IVPU_MMU_EVT_F_STE_FETCH:
> + return "Fetch of STE caused external abort";
> + case IVPU_MMU_EVT_C_BAD_STE:
> + return "Used STE invalid";
> + case IVPU_MMU_EVT_F_BAD_ATS_TREQ:
> + return "Address Request disallowed for a StreamID";
> + case IVPU_MMU_EVT_F_STREAM_DISABLED:
> + return "Transaction marks non-substream disabled";
> + case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN:
> + return "MMU bypass is disallowed for this StreamID";
> + case IVPU_MMU_EVT_C_BAD_SUBSTREAMID:
> + return "Invalid StreamID";
> + case IVPU_MMU_EVT_F_CD_FETCH:
> + return "Fetch of CD caused external abort";
> + case IVPU_MMU_EVT_C_BAD_CD:
> + return "Fetched CD invalid";
> + case IVPU_MMU_EVT_F_WALK_EABT:
> + return " An external abort occurred fetching a TLB";
> + case IVPU_MMU_EVT_F_TRANSLATION:
> + return "Translation fault";
> + case IVPU_MMU_EVT_F_ADDR_SIZE:
> + return " Output address caused address size fault";
> + case IVPU_MMU_EVT_F_ACCESS:
> + return "Access flag fault";
> + case IVPU_MMU_EVT_F_PERMISSION:
> + return "Permission fault occurred on page access";
> + case IVPU_MMU_EVT_F_TLB_CONFLICT:
> + return "A TLB conflict";
> + case IVPU_MMU_EVT_F_CFG_CONFLICT:
> + return "A configuration cache conflict";
> + case IVPU_MMU_EVT_E_PAGE_REQUEST:
> + return "Page request hint from a client device";
> + case IVPU_MMU_EVT_F_VMS_FETCH:
> + return "Fetch of VMS caused external abort";
> + default:
> + return "Unknown CMDQ command";
> + }
> +}
> +
> +static int ivpu_mmu_config_check(struct ivpu_device *vdev)
> +{
> + u32 val_ref;
> + u32 val;
> +
> + if (ivpu_is_simics(vdev))
> + val_ref = IVPU_MMU_IDR0_REF_SIMICS;
> + else
> + val_ref = IVPU_MMU_IDR0_REF;
> +
> + val = REGV_RD32(MTL_VPU_HOST_MMU_IDR0);
> + if (val != val_ref)
> + ivpu_err(vdev, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref);
What's the meaning of printing an error if this function always returns 0 ?
Do you count on the user to look at dmesg ?
> +
> + val = REGV_RD32(MTL_VPU_HOST_MMU_IDR1);
> + if (val != IVPU_MMU_IDR1_REF)
> + ivpu_warn(vdev, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF);
> +
> + val = REGV_RD32(MTL_VPU_HOST_MMU_IDR3);
> + if (val != IVPU_MMU_IDR3_REF)
> + ivpu_warn(vdev, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF);
> +
> + if (ivpu_is_simics(vdev))
> + val_ref = IVPU_MMU_IDR5_REF_SIMICS;
> + else if (ivpu_is_fpga(vdev))
> + val_ref = IVPU_MMU_IDR5_REF_FPGA;
> + else
> + val_ref = IVPU_MMU_IDR5_REF;
> +
> + val = REGV_RD32(MTL_VPU_HOST_MMU_IDR5);
> + if (val != val_ref)
> + ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref);
> +
> + return 0;
Why not define this function as void if it always returns 0 ?
> +}
> +
> +static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
> + size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE;
> +
> + cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL);
> + if (!cdtab->base)
> + return -ENOMEM;
> +
> + ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size);
> +
> + return 0;
> +}
> +
> +static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_strtab *strtab = &mmu->strtab;
> + size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE;
> +
> + strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL);
> + if (!strtab->base)
> + return -ENOMEM;
> +
> + strtab->base_cfg = IVPU_MMU_STRTAB_CFG;
> + strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA;
> + strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK;
> +
> + ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n",
> + &strtab->dma, &strtab->dma_q, size);
> +
> + return 0;
> +}
> +
> +static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_queue *q = &mmu->cmdq;
> +
> + q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL);
> + if (!q->base)
> + return -ENOMEM;
> +
> + q->dma_q = IVPU_MMU_Q_BASE_RWA;
> + q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
> + q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
> +
> + ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n",
> + &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE);
> +
> + return 0;
> +}
> +
> +static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_queue *q = &mmu->evtq;
> +
> + q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL);
> + if (!q->base)
> + return -ENOMEM;
> +
> + q->dma_q = IVPU_MMU_Q_BASE_RWA;
> + q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK;
> + q->dma_q |= IVPU_MMU_Q_COUNT_LOG2;
> +
> + ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n",
> + &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE);
> +
> + return 0;
> +}
> +
> +static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev)
> +{
> + int ret;
> +
> + ret = ivpu_mmu_cdtab_alloc(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_strtab_alloc(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_cmdq_alloc(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_evtq_alloc(vdev);
> + if (ret)
> + ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret);
> +
> + return ret;
> +}
> +
> +static int ivpu_mmu_reg_write(struct ivpu_device *vdev, u32 reg, u32 val)
> +{
> + u32 reg_ack = reg + 4; /* ACK register is 4B after base register */
> + u32 val_ack;
> + int ret;
> +
> + REGV_WR32(reg, val);
> +
> + ret = REGV_POLL(reg_ack, val_ack, (val == val_ack), IVPU_MMU_REG_TIMEOUT_US);
> + if (ret)
> + ivpu_err(vdev, "Failed to write register 0x%x\n", reg);
> +
> + return ret;
> +}
> +
> +static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev)
> +{
> + u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN;
> + int ret;
> +
> + ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, 0);
> + if (ret)
> + return ret;
> +
> + return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, irq_ctrl);
> +}
> +
> +static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq;
> +
> + return REGV_POLL(MTL_VPU_HOST_MMU_CMDQ_CONS, cmdq->cons, (cmdq->prod == cmdq->cons),
> + IVPU_MMU_QUEUE_TIMEOUT_US);
> +}
> +
> +static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1)
> +{
> + struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
> + u64 *queue_buffer = q->base;
> + int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer));
> +
> + if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) {
> + ivpu_err(vdev, "Failed to write MMU CMD %s\n", name);
> + return -EBUSY;
> + }
> +
> + queue_buffer[idx] = data0;
> + queue_buffer[idx + 1] = data1;
> + q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK;
> +
> + ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1);
> +
> + return 0;
> +}
> +
> +static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_queue *q = &vdev->mmu->cmdq;
> + u64 val;
> + int ret;
> +
> + val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) |
> + FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) |
> + FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) |
> + FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf);
> +
> + ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0);
> + if (ret)
> + return ret;
> +
> + clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE);
Why do you need this call ? Not just here, in all the places in the driver.
This is not a function call that is commonly seen in PCI drivers...
> + REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, q->prod);
> +
> + ret = ivpu_mmu_cmdq_wait_for_cons(vdev);
> + if (ret)
> + ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret);
> +
> + return ret;
> +}
> +
> +static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev)
> +{
> + u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL);
> + u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f);
> +
> + return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1);
> +}
> +
> +static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid)
> +{
> + u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) |
> + FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid);
> +
> + return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0);
> +}
> +
> +static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev)
> +{
> + u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL);
> +
> + return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0);
> +}
> +
> +static int ivpu_mmu_reset(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + u32 val;
> + int ret;
> +
> + memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE);
> + clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE);
> + mmu->cmdq.prod = 0;
> + mmu->cmdq.cons = 0;
> +
> + memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE);
> + clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE);
> + mmu->evtq.prod = 0;
> + mmu->evtq.cons = 0;
> +
> + ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, 0);
> + if (ret)
> + return ret;
> +
> + val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) |
> + FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) |
> + FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) |
> + FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) |
> + FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) |
> + FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB);
> + REGV_WR32(MTL_VPU_HOST_MMU_CR1, val);
> +
> + REGV_WR64(MTL_VPU_HOST_MMU_STRTAB_BASE, mmu->strtab.dma_q);
> + REGV_WR32(MTL_VPU_HOST_MMU_STRTAB_BASE_CFG, mmu->strtab.base_cfg);
> +
> + REGV_WR64(MTL_VPU_HOST_MMU_CMDQ_BASE, mmu->cmdq.dma_q);
> + REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, 0);
> + REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_CONS, 0);
> +
> + val = IVPU_MMU_CR0_CMDQEN;
> + ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val);
> + if (ret)
> + return ret;
> +
> + ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
> + if (ret)
> + return ret;
> +
> + ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
> + if (ret)
> + return ret;
> +
> + ret = ivpu_mmu_cmdq_sync(vdev);
> + if (ret)
> + return ret;
> +
> + REGV_WR64(MTL_VPU_HOST_MMU_EVTQ_BASE, mmu->evtq.dma_q);
> + REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC, 0);
> + REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, 0);
> +
> + val |= IVPU_MMU_CR0_EVTQEN;
> + ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val);
> + if (ret)
> + return ret;
> +
> + val |= IVPU_MMU_CR0_ATSCHK;
> + ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val);
> + if (ret)
> + return ret;
> +
> + ret = ivpu_mmu_irqs_setup(vdev);
> + if (ret)
> + return ret;
> +
> + val |= IVPU_MMU_CR0_SMMUEN;
> + return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val);
> +}
> +
> +static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_strtab *strtab = &mmu->strtab;
> + struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
> + u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE);
> + u64 str[2];
> +
> + str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) |
> + FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) |
> + FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) |
> + IVPU_MMU_STE_0_V |
> + (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK);
> +
> + str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) |
> + FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
> + FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) |
> + FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) |
> + FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) |
> + FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) |
> + FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) |
> + FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) |
> + IVPU_MMU_STE_1_MEV |
> + IVPU_MMU_STE_1_S1STALLD;
> +
> + WRITE_ONCE(entry[1], str[1]);
> + WRITE_ONCE(entry[0], str[0]);
> +
> + clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE);
> +
> + ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]);
> +}
> +
> +static int ivpu_mmu_strtab_init(struct ivpu_device *vdev)
> +{
> + ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0);
> + ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3);
> +
> + return 0;
> +}
> +
> +int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + int ret;
> +
> + ret = mutex_lock_interruptible(&mmu->lock);
> + if (ret)
> + return ret;
> +
> + if (!mmu->on) {
> + ret = 0;
> + goto unlock;
> + }
Is this check really necessary ? Or is it for debug/bringup cases ?
Excluding debug/bringup, I would imagine that the code should never
reach tlb invalidation if MMU is not enabled.
Also, from using mutex_lock_interruptible I infer that we only get to
this function within a process context.
And afaics, mmu enable/disable happens on device init/fini, where no
user process exists...
> +
> + ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid);
> + if (ret)
> + goto unlock;
> +
> + ret = ivpu_mmu_cmdq_sync(vdev);
> +unlock:
> + mutex_unlock(&mmu->lock);
> + return ret;
> +}
> +
> +static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab;
> + u64 *entry;
> + u64 cd[4];
> + int ret;
> +
> + if (ssid > IVPU_MMU_CDTAB_ENT_COUNT)
> + return -EINVAL;
> +
> + ret = mutex_lock_interruptible(&mmu->lock);
Why is this entire function protected by mmu lock ?
afaics, you prepare a context descriptor in system memory, and that
descriptor is single per context and every context has its own
location inside the cdtab->base (based on ssid).
Which concurrency are you protecting against ?
And if there is no concurrency, I would expect to get the lock only
before calling ivpu_mmu_cmdq_write_cfgi_all()
> + if (ret)
> + return ret;
> +
> + entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE);
> +
> + if (cd_dma != 0) {
> + cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, 26) |
> + FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) |
> + FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) |
> + FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) |
> + FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) |
> + FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, 3) |
> + FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) |
> + IVPU_MMU_CD_0_TCR_EPD1 |
> + IVPU_MMU_CD_0_AA64 |
> + IVPU_MMU_CD_0_R |
> + IVPU_MMU_CD_0_A |
> + IVPU_MMU_CD_0_ASET |
> + IVPU_MMU_CD_0_V;
> + cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK;
> + cd[2] = 0;
> + cd[3] = 0x0000000000007444;
> + } else {
> + memset(cd, 0, sizeof(cd));
> + }
> +
> + WRITE_ONCE(entry[1], cd[1]);
> + WRITE_ONCE(entry[2], cd[2]);
> + WRITE_ONCE(entry[3], cd[3]);
> + WRITE_ONCE(entry[0], cd[0]);
> +
> + clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE);
> +
> + ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n",
> + cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]);
> +
> + if (!mmu->on) {
> + ret = 0;
> + goto unlock;
> + }
> +
> + ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
> + if (ret)
> + goto unlock;
> +
> + ret = ivpu_mmu_cmdq_sync(vdev);
> +unlock:
> + mutex_unlock(&mmu->lock);
> + return ret;
> +}
> +
> +static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev)
> +{
> + int ret;
> +
> + ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma);
> + if (ret)
> + ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret);
> +
> + return ret;
> +}
> +
> +static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma)
> +{
> + int ret;
> +
> + if (ssid == 0) {
> + ivpu_err(vdev, "Invalid SSID: %u\n", ssid);
> + return -EINVAL;
> + }
> +
> + ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma);
> + if (ret)
> + ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret);
> +
> + return ret;
> +}
> +
> +int ivpu_mmu_init(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + int ret;
> +
> + ivpu_dbg(vdev, MMU, "Init..\n");
> +
> + drmm_mutex_init(&vdev->drm, &mmu->lock);
> +
> + ret = ivpu_mmu_config_check(vdev);
> + if (ret)
> + return ret;
See my comments in ivpu_mmu_config_check(). This check is useless
> +
> + ret = ivpu_mmu_structs_alloc(vdev);
> + if (ret)
> + return ret;
> +
> + ret = ivpu_mmu_strtab_init(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_cd_add_gbl(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_enable(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to resume MMU: %d\n", ret);
> + return ret;
> + }
> +
> + ivpu_dbg(vdev, MMU, "Init done\n");
> +
> + return 0;
> +}
> +
> +int ivpu_mmu_enable(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> + int ret;
> +
> + mutex_lock(&mmu->lock);
> +
> + mmu->on = true;
> +
> + ret = ivpu_mmu_reset(vdev);
> + if (ret) {
> + ivpu_err(vdev, "Failed to reset MMU: %d\n", ret);
> + goto err;
> + }
> +
> + ret = ivpu_mmu_cmdq_write_cfgi_all(vdev);
> + if (ret)
> + goto err;
> +
> + ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev);
> + if (ret)
> + goto err;
> +
> + ret = ivpu_mmu_cmdq_sync(vdev);
> + if (ret)
> + goto err;
> +
> + mutex_unlock(&mmu->lock);
> +
> + return 0;
> +err:
> + mmu->on = false;
> + mutex_unlock(&mmu->lock);
> + return ret;
> +}
> +
> +void ivpu_mmu_disable(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_info *mmu = vdev->mmu;
> +
> + mutex_lock(&mmu->lock);
> + mmu->on = false;
> + mutex_unlock(&mmu->lock);
> +}
> +
> +static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event)
> +{
> + u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]);
> + u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]);
> + u64 fetch_addr = ((u64)event[7]) << 32 | event[6];
> + u64 in_addr = ((u64)event[5]) << 32 | event[4];
> + u32 sid = event[1];
> +
> + ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n",
> + op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr);
> +}
> +
> +static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev)
> +{
> + struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq;
> + u32 idx = IVPU_MMU_Q_IDX(evtq->cons);
> + u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE);
> +
> + evtq->prod = REGV_RD32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC);
> + if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT))
> + return NULL;
> +
> + clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE);
> +
> + evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK;
> + REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, evtq->cons);
> +
> + return evt;
> +}
> +
> +void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev)
> +{
> + u32 *event;
> + u32 ssid;
> +
> + ivpu_dbg(vdev, IRQ, "MMU event queue\n");
> +
> + while ((event = ivpu_mmu_get_event(vdev)) != NULL)
> + ivpu_mmu_dump_event(vdev, event);
This is done in irq context, correct ? Is there some protection
against endless (or very large number) stream of events (can be real
thing or just f/w bug) ?
> +}
> +
> +void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev)
> +{
> + u32 gerror_val, gerrorn_val, active;
> +
> + ivpu_dbg(vdev, IRQ, "MMU error\n");
> +
> + gerror_val = REGV_RD32(MTL_VPU_HOST_MMU_GERROR);
> + gerrorn_val = REGV_RD32(MTL_VPU_HOST_MMU_GERRORN);
> +
> + active = gerror_val ^ gerrorn_val;
> + if (!(active & IVPU_MMU_GERROR_ERR_MASK))
> + return;
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT, active))
> + ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT, active))
> + ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT, active))
> + ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT, active))
> + ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT, active))
> + ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT, active))
> + ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n");
> +
> + if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ, active))
> + ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n");
> +
> + REGV_WR32(MTL_VPU_HOST_MMU_GERRORN, gerror_val);
> +}
> +
> +int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable)
> +{
> + return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma);
> +}
> +
> +void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid)
> +{
> + ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */
> +}
> diff --git a/drivers/accel/ivpu/ivpu_mmu.h b/drivers/accel/ivpu/ivpu_mmu.h
> new file mode 100644
> index 000000000000..466d698c7142
> --- /dev/null
> +++ b/drivers/accel/ivpu/ivpu_mmu.h
> @@ -0,0 +1,50 @@
> +/* SPDX-License-Identifier: GPL-2.0-only */
> +/*
> + * Copyright (C) 2020-2022 Intel Corporation
> + */
> +
> +#ifndef __IVPU_MMU_H__
> +#define __IVPU_MMU_H__
> +
> +struct ivpu_device;
> +
> +struct ivpu_mmu_cdtab {
> + void *base;
> + dma_addr_t dma;
> +};
> +
> +struct ivpu_mmu_strtab {
> + void *base;
> + dma_addr_t dma;
> + u64 dma_q;
> + u32 base_cfg;
> +};
> +
> +struct ivpu_mmu_queue {
> + void *base;
> + dma_addr_t dma;
> + u64 dma_q;
> + u32 prod;
> + u32 cons;
> +};
> +
> +struct ivpu_mmu_info {
> + struct mutex lock; /* Protects cdtab, strtab, cmdq, on */
> + struct ivpu_mmu_cdtab cdtab;
> + struct ivpu_mmu_strtab strtab;
> + struct ivpu_mmu_queue cmdq;
> + struct ivpu_mmu_queue evtq;
> + bool on;
> +};
> +
> +int ivpu_mmu_init(struct ivpu_device *vdev);
> +void ivpu_mmu_disable(struct ivpu_device *vdev);
> +int ivpu_mmu_enable(struct ivpu_device *vdev);
> +int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable);
> +void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid);
> +int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid);
> +
> +void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev);
> +void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev);
> +
> +#endif /* __IVPU_MMU_H__ */
> diff --git a/drivers/accel/ivpu/ivpu_mmu_context.c b/drivers/accel/ivpu/ivpu_mmu_context.c
> new file mode 100644
> index 000000000000..eb25e613bb90
> --- /dev/null
> +++ b/drivers/accel/ivpu/ivpu_mmu_context.c
> @@ -0,0 +1,385 @@
> +// SPDX-License-Identifier: GPL-2.0-only
> +/*
> + * Copyright (C) 2020-2022 Intel Corporation
> + */
> +
> +#include <linux/bitfield.h>
> +#include <linux/highmem.h>
> +
> +#include "ivpu_drv.h"
> +#include "ivpu_hw.h"
> +#include "ivpu_mmu.h"
> +#include "ivpu_mmu_context.h"
> +
> +#define IVPU_MMU_PGD_INDEX_MASK GENMASK(38, 30)
> +#define IVPU_MMU_PMD_INDEX_MASK GENMASK(29, 21)
> +#define IVPU_MMU_PTE_INDEX_MASK GENMASK(20, 12)
> +#define IVPU_MMU_ENTRY_FLAGS_MASK GENMASK(11, 0)
> +#define IVPU_MMU_ENTRY_FLAG_NG BIT(11)
> +#define IVPU_MMU_ENTRY_FLAG_AF BIT(10)
> +#define IVPU_MMU_ENTRY_FLAG_USER BIT(6)
> +#define IVPU_MMU_ENTRY_FLAG_LLC_COHERENT BIT(2)
> +#define IVPU_MMU_ENTRY_FLAG_TYPE_PAGE BIT(1)
> +#define IVPU_MMU_ENTRY_FLAG_VALID BIT(0)
> +
> +#define IVPU_MMU_PAGE_SIZE SZ_4K
> +#define IVPU_MMU_PTE_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PAGE_SIZE)
> +#define IVPU_MMU_PMD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PTE_MAP_SIZE)
> +#define IVPU_MMU_PGTABLE_SIZE (IVPU_MMU_PGTABLE_ENTRIES * sizeof(u64))
> +
> +#define IVPU_MMU_DUMMY_ADDRESS 0xdeadb000
> +#define IVPU_MMU_ENTRY_VALID (IVPU_MMU_ENTRY_FLAG_TYPE_PAGE | IVPU_MMU_ENTRY_FLAG_VALID)
> +#define IVPU_MMU_ENTRY_INVALID (IVPU_MMU_DUMMY_ADDRESS & ~IVPU_MMU_ENTRY_FLAGS_MASK)
> +#define IVPU_MMU_ENTRY_MAPPED (IVPU_MMU_ENTRY_FLAG_AF | IVPU_MMU_ENTRY_FLAG_USER | \
> + IVPU_MMU_ENTRY_FLAG_NG | IVPU_MMU_ENTRY_VALID)
> +
> +static int ivpu_mmu_pgtable_init(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable)
> +{
> + dma_addr_t pgd_dma;
> + u64 *pgd;
> +
> + pgd = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pgd_dma, GFP_KERNEL);
> + if (!pgd)
> + return -ENOMEM;
> +
> + pgtable->pgd = pgd;
> + pgtable->pgd_dma = pgd_dma;
> +
> + return 0;
> +}
> +
> +static void ivpu_mmu_pgtable_free(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable)
> +{
> + int pgd_index, pmd_index;
> +
> + for (pgd_index = 0; pgd_index < IVPU_MMU_PGTABLE_ENTRIES; ++pgd_index) {
> + u64 **pmd_entries = pgtable->pgd_cpu_entries[pgd_index];
> + u64 *pmd = pgtable->pgd_entries[pgd_index];
> +
> + if (!pmd_entries)
> + continue;
> +
> + for (pmd_index = 0; pmd_index < IVPU_MMU_PGTABLE_ENTRIES; ++pmd_index) {
> + if (pmd_entries[pmd_index])
> + dma_free_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE,
> + pmd_entries[pmd_index],
> + pmd[pmd_index] & ~IVPU_MMU_ENTRY_FLAGS_MASK);
> + }
> +
> + kfree(pmd_entries);
> + dma_free_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, pgtable->pgd_entries[pgd_index],
> + pgtable->pgd[pgd_index] & ~IVPU_MMU_ENTRY_FLAGS_MASK);
> + }
> +
> + dma_free_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, pgtable->pgd,
> + pgtable->pgd_dma & ~IVPU_MMU_ENTRY_FLAGS_MASK);
> +}
> +
> +static u64*
> +ivpu_mmu_ensure_pmd(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, u64 pgd_index)
> +{
> + u64 **pmd_entries;
> + dma_addr_t pmd_dma;
> + u64 *pmd;
> +
> + if (pgtable->pgd_entries[pgd_index])
> + return pgtable->pgd_entries[pgd_index];
> +
> + pmd = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pmd_dma, GFP_KERNEL);
> + if (!pmd)
> + return NULL;
> +
> + pmd_entries = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL);
> + if (!pmd_entries)
> + goto err_free_pgd;
> +
> + pgtable->pgd_entries[pgd_index] = pmd;
> + pgtable->pgd_cpu_entries[pgd_index] = pmd_entries;
> + pgtable->pgd[pgd_index] = pmd_dma | IVPU_MMU_ENTRY_VALID;
> +
> + return pmd;
> +
> +err_free_pgd:
> + dma_free_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, pmd, pmd_dma);
> + return NULL;
> +}
> +
> +static u64*
> +ivpu_mmu_ensure_pte(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable,
> + int pgd_index, int pmd_index)
> +{
> + dma_addr_t pte_dma;
> + u64 *pte;
> +
> + if (pgtable->pgd_cpu_entries[pgd_index][pmd_index])
> + return pgtable->pgd_cpu_entries[pgd_index][pmd_index];
> +
> + pte = dma_alloc_wc(vdev->drm.dev, IVPU_MMU_PGTABLE_SIZE, &pte_dma, GFP_KERNEL);
> + if (!pte)
> + return NULL;
> +
> + pgtable->pgd_cpu_entries[pgd_index][pmd_index] = pte;
> + pgtable->pgd_entries[pgd_index][pmd_index] = pte_dma | IVPU_MMU_ENTRY_VALID;
> +
> + return pte;
> +}
> +
> +static int
> +ivpu_mmu_context_map_page(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, dma_addr_t dma_addr, int prot)
> +{
> + u64 *pte;
> + int pgd_index = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr);
> + int pmd_index = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr);
> + int pte_index = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr);
> +
> + /* Allocate PMD - second level page table if needed */
> + if (!ivpu_mmu_ensure_pmd(vdev, &ctx->pgtable, pgd_index))
> + return -ENOMEM;
> +
> + /* Allocate PTE - third level page table if needed */
> + pte = ivpu_mmu_ensure_pte(vdev, &ctx->pgtable, pgd_index, pmd_index);
> + if (!pte)
> + return -ENOMEM;
> +
> + /* Update PTE - third level page table with DMA address */
> + pte[pte_index] = dma_addr | prot;
> +
> + return 0;
> +}
> +
> +static void ivpu_mmu_context_unmap_page(struct ivpu_mmu_context *ctx, u64 vpu_addr)
> +{
> + int pgd_index = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr);
> + int pmd_index = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr);
> + int pte_index = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr);
> +
> + /* Update PTE with dummy physical address and clear flags */
> + ctx->pgtable.pgd_cpu_entries[pgd_index][pmd_index][pte_index] = IVPU_MMU_ENTRY_INVALID;
> +}
> +
> +static void
> +ivpu_mmu_context_flush_page_tables(struct ivpu_mmu_context *ctx, u64 vpu_addr, size_t size)
> +{
> + u64 end_addr = vpu_addr + size;
> + u64 *pgd = ctx->pgtable.pgd;
> +
> + /* Align to PMD entry (2 MB) */
> + vpu_addr &= ~(IVPU_MMU_PTE_MAP_SIZE - 1);
> +
> + while (vpu_addr < end_addr) {
> + int pgd_index = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr);
> + u64 pmd_end = (pgd_index + 1) * (u64)IVPU_MMU_PMD_MAP_SIZE;
> + u64 *pmd = ctx->pgtable.pgd_entries[pgd_index];
> +
> + while (vpu_addr < end_addr && vpu_addr < pmd_end) {
> + int pmd_index = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr);
> + u64 *pte = ctx->pgtable.pgd_cpu_entries[pgd_index][pmd_index];
> +
> + clflush_cache_range(pte, IVPU_MMU_PGTABLE_SIZE);
> + vpu_addr += IVPU_MMU_PTE_MAP_SIZE;
> + }
> + clflush_cache_range(pmd, IVPU_MMU_PGTABLE_SIZE);
> + }
> + clflush_cache_range(pgd, IVPU_MMU_PGTABLE_SIZE);
> +}
> +
> +static int
> +ivpu_mmu_context_map_pages(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, dma_addr_t dma_addr, size_t size, int prot)
> +{
> + while (size) {
> + int ret = ivpu_mmu_context_map_page(vdev, ctx, vpu_addr, dma_addr, prot);
> +
> + if (ret)
> + return ret;
> +
> + vpu_addr += IVPU_MMU_PAGE_SIZE;
> + dma_addr += IVPU_MMU_PAGE_SIZE;
> + size -= IVPU_MMU_PAGE_SIZE;
> + }
> +
> + return 0;
> +}
> +
> +static void ivpu_mmu_context_unmap_pages(struct ivpu_mmu_context *ctx, u64 vpu_addr, size_t size)
> +{
> + while (size) {
> + ivpu_mmu_context_unmap_page(ctx, vpu_addr);
> + vpu_addr += IVPU_MMU_PAGE_SIZE;
> + size -= IVPU_MMU_PAGE_SIZE;
> + }
> +}
> +
> +int
> +ivpu_mmu_context_map_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, struct sg_table *sgt, bool llc_coherent)
> +{
Hard to review these functions as the callers are not in this patch
AND there is documenation on the function.
> + struct scatterlist *sg;
> + int prot;
> + int ret;
> + u64 i;
> +
> + if (!IS_ALIGNED(vpu_addr, IVPU_MMU_PAGE_SIZE))
> + return -EINVAL;
> + /*
> + * VPU is only 32 bit, but DMA engine is 38 bit
> + * Ranges < 2 GB are reserved for VPU internal registers
> + * Limit range to 8 GB
> + */
> + if (vpu_addr < SZ_2G || vpu_addr > SZ_8G)
> + return -EINVAL;
> +
> + prot = IVPU_MMU_ENTRY_MAPPED;
> + if (llc_coherent)
> + prot |= IVPU_MMU_ENTRY_FLAG_LLC_COHERENT;
> +
> + mutex_lock(&ctx->lock);
> +
> + for_each_sgtable_dma_sg(sgt, sg, i) {
> + u64 dma_addr = sg_dma_address(sg) - sg->offset;
> + size_t size = sg_dma_len(sg) + sg->offset;
> +
> + ret = ivpu_mmu_context_map_pages(vdev, ctx, vpu_addr, dma_addr, size, prot);
> + if (ret) {
> + ivpu_err(vdev, "Failed to map context pages\n");
> + mutex_unlock(&ctx->lock);
> + return ret;
> + }
> + ivpu_mmu_context_flush_page_tables(ctx, vpu_addr, size);
> + vpu_addr += size;
> + }
> +
> + mutex_unlock(&ctx->lock);
> +
> + ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id);
> + if (ret)
> + ivpu_err(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret);
> + return ret;
> +}
> +
> +void
> +ivpu_mmu_context_unmap_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, struct sg_table *sgt)
> +{
> + struct scatterlist *sg;
> + int ret;
> + u64 i;
> +
> + if (!IS_ALIGNED(vpu_addr, IVPU_MMU_PAGE_SIZE))
> + ivpu_warn(vdev, "Unaligned vpu_addr: 0x%llx\n", vpu_addr);
> +
> + mutex_lock(&ctx->lock);
> +
> + for_each_sgtable_dma_sg(sgt, sg, i) {
> + size_t size = sg_dma_len(sg) + sg->offset;
> +
> + ivpu_mmu_context_unmap_pages(ctx, vpu_addr, size);
> + ivpu_mmu_context_flush_page_tables(ctx, vpu_addr, size);
> + vpu_addr += size;
> + }
> +
> + mutex_unlock(&ctx->lock);
> +
> + ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id);
> + if (ret)
> + ivpu_warn(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret);
> +}
> +
> +int
> +ivpu_mmu_context_insert_node_locked(struct ivpu_mmu_context *ctx,
> + const struct ivpu_addr_range *range,
> + u64 size, struct drm_mm_node *node)
> +{
> + lockdep_assert_held(&ctx->lock);
> +
> + return drm_mm_insert_node_in_range(&ctx->mm, node, size, IVPU_MMU_PAGE_SIZE,
> + 0, range->start, range->end, DRM_MM_INSERT_BEST);
> +}
> +
> +void
> +ivpu_mmu_context_remove_node_locked(struct ivpu_mmu_context *ctx, struct drm_mm_node *node)
> +{
> + lockdep_assert_held(&ctx->lock);
> +
> + drm_mm_remove_node(node);
> +}
> +
> +static int
> +ivpu_mmu_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 context_id)
> +{
> + u64 start, end;
> + int ret;
> +
> + mutex_init(&ctx->lock);
> + INIT_LIST_HEAD(&ctx->bo_list);
> +
> + ret = ivpu_mmu_pgtable_init(vdev, &ctx->pgtable);
> + if (ret)
> + return ret;
> +
> + if (!context_id) {
> + start = vdev->hw->ranges.global_low.start;
> + end = vdev->hw->ranges.global_high.end;
> + } else {
> + start = vdev->hw->ranges.user_low.start;
> + end = vdev->hw->ranges.user_high.end;
> + }
> +
> + drm_mm_init(&ctx->mm, start, end - start);
> + ctx->id = context_id;
> +
> + return 0;
> +}
> +
> +static void ivpu_mmu_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx)
> +{
> + drm_WARN_ON(&vdev->drm, !ctx->pgtable.pgd);
> +
> + mutex_destroy(&ctx->lock);
> + ivpu_mmu_pgtable_free(vdev, &ctx->pgtable);
> + drm_mm_takedown(&ctx->mm);
> +}
> +
> +int ivpu_mmu_global_context_init(struct ivpu_device *vdev)
> +{
> + return ivpu_mmu_context_init(vdev, &vdev->gctx, IVPU_GLOBAL_CONTEXT_MMU_SSID);
> +}
> +
> +void ivpu_mmu_global_context_fini(struct ivpu_device *vdev)
> +{
> + return ivpu_mmu_context_fini(vdev, &vdev->gctx);
> +}
> +
> +int ivpu_mmu_user_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 ctx_id)
> +{
> + int ret;
> +
> + drm_WARN_ON(&vdev->drm, !ctx_id);
> +
> + ret = ivpu_mmu_context_init(vdev, ctx, ctx_id);
> + if (ret) {
> + ivpu_err(vdev, "Failed to initialize context: %d\n", ret);
> + return ret;
> + }
> +
> + ret = ivpu_mmu_set_pgtable(vdev, ctx_id, &ctx->pgtable);
> + if (ret) {
> + ivpu_err(vdev, "Failed to set page table: %d\n", ret);
> + goto err_context_fini;
> + }
> +
> + return 0;
> +
> +err_context_fini:
> + ivpu_mmu_context_fini(vdev, ctx);
> + return ret;
> +}
> +
> +void ivpu_mmu_user_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx)
> +{
> + drm_WARN_ON(&vdev->drm, !ctx->id);
> +
> + ivpu_mmu_clear_pgtable(vdev, ctx->id);
> + ivpu_mmu_context_fini(vdev, ctx);
> +}
> diff --git a/drivers/accel/ivpu/ivpu_mmu_context.h b/drivers/accel/ivpu/ivpu_mmu_context.h
> new file mode 100644
> index 000000000000..a358de65a30d
> --- /dev/null
> +++ b/drivers/accel/ivpu/ivpu_mmu_context.h
> @@ -0,0 +1,49 @@
> +/* SPDX-License-Identifier: GPL-2.0-only */
> +/*
> + * Copyright (C) 2020-2022 Intel Corporation
> + */
> +
> +#ifndef __IVPU_MMU_CONTEXT_H__
> +#define __IVPU_MMU_CONTEXT_H__
> +
> +#include <drm/drm_mm.h>
> +
> +struct ivpu_device;
> +struct ivpu_file_priv;
> +struct ivpu_addr_range;
> +
> +#define IVPU_MMU_PGTABLE_ENTRIES 512
> +
> +struct ivpu_mmu_pgtable {
> + u64 **pgd_cpu_entries[IVPU_MMU_PGTABLE_ENTRIES];
> + u64 *pgd_entries[IVPU_MMU_PGTABLE_ENTRIES];
> + u64 *pgd;
> + dma_addr_t pgd_dma;
> +};
> +
> +struct ivpu_mmu_context {
> + struct mutex lock; /* protects: mm, pgtable, bo_list */
> + struct drm_mm mm;
> + struct ivpu_mmu_pgtable pgtable;
> + struct list_head bo_list;
> + u32 id;
> +};
> +
> +int ivpu_mmu_global_context_init(struct ivpu_device *vdev);
> +void ivpu_mmu_global_context_fini(struct ivpu_device *vdev);
> +
> +int ivpu_mmu_user_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 ctx_id);
> +void ivpu_mmu_user_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx);
> +
> +int ivpu_mmu_context_insert_node_locked(struct ivpu_mmu_context *ctx,
> + const struct ivpu_addr_range *range,
> + u64 size, struct drm_mm_node *node);
> +void ivpu_mmu_context_remove_node_locked(struct ivpu_mmu_context *ctx,
> + struct drm_mm_node *node);
> +
> +int ivpu_mmu_context_map_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, struct sg_table *sgt, bool llc_coherent);
> +void ivpu_mmu_context_unmap_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
> + u64 vpu_addr, struct sg_table *sgt);
> +
> +#endif /* __IVPU_MMU_CONTEXT_H__ */
> diff --git a/include/uapi/drm/ivpu_drm.h b/include/uapi/drm/ivpu_drm.h
> index 922cbf30ce34..fc97ce215e79 100644
> --- a/include/uapi/drm/ivpu_drm.h
> +++ b/include/uapi/drm/ivpu_drm.h
> @@ -38,6 +38,7 @@ extern "C" {
> #define DRM_IVPU_PARAM_NUM_CONTEXTS 4
> #define DRM_IVPU_PARAM_CONTEXT_BASE_ADDRESS 5
> #define DRM_IVPU_PARAM_CONTEXT_PRIORITY 6
> +#define DRM_IVPU_PARAM_CONTEXT_ID 7
>
> #define DRM_IVPU_PLATFORM_TYPE_SILICON 0
>
> @@ -78,6 +79,9 @@ struct drm_ivpu_param {
> * Value of current context scheduling priority (read-write).
> * See DRM_IVPU_CONTEXT_PRIORITY_* for possible values.
> *
> + * %DRM_IVPU_PARAM_CONTEXT_ID:
> + * Current context ID, always greater than 0 (read-only)
> + *
> */
> __u32 param;
>
> --
> 2.34.1
>
More information about the dri-devel
mailing list