
lwn.net

Namespaces in operation, part 1:

namespaces overview

By Michael KerriskJanuary 4, 2013

10-13 minutes

The Linux 3.8 merge window saw the acceptance of Eric

Biederman's sizeable series of user namespace and related

patches. Although there remain some details to finish—for

example, a number of Linux filesystems are not yet user-

namespace aware—the implementation of user namespaces

is now functionally complete.

The completion of the user namespaces work is something of

a milestone, for a number of reasons. First, this work

represents the completion of one of the most complex

namespace implementations to date, as evidenced by the fact

that it has been around five years since the first steps in the

implementation of user namespaces (in Linux 2.6.23).

Second, the namespace work is currently at something of a

"stable point", with the implementation of most of the existing

namespaces being more or less complete. This does not

mean that work on namespaces has finished: other

namespaces may be added in the future, and there will

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

1 of 9 4/20/21, 10:32 PM



probably be further extensions to existing namespaces, such

as the addition of namespace isolation for the kernel log.

Finally, the recent changes in the implementation of user

namespaces are something of a game changer in terms of

how namespaces can be used: starting with Linux 3.8,

unprivileged processes can create user namespaces in which

they have full privileges, which in turn allows any other type of

namespace to be created inside a user namespace.

Thus, the present moment seems a good point to take an

overview of namespaces and a practical look at the

namespace API. This is the first of a series of articles that

does so: in this article, we provide an overview of the

currently available namespaces; in the follow-on articles, we'll

show how the namespace APIs can be used in programs.

The namespaces

Currently, Linux implements six different types of

namespaces. The purpose of each namespace is to wrap a

particular global system resource in an abstraction that makes

it appear to the processes within the namespace that they

have their own isolated instance of the global resource. One

of the overall goals of namespaces is to support the

implementation of containers, a tool for lightweight

virtualization (as well as other purposes) that provides a

group of processes with the illusion that they are the only

processes on the system.

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

2 of 9 4/20/21, 10:32 PM



In the discussion below, we present the namespaces in the

order that they were implemented (or at least, the order in

which the implementations were completed). The

CLONE_NEW* identifiers listed in parentheses are the names

of the constants used to identify namespace types when

employing the namespace-related APIs (clone(),

unshare(), and setns()) that we will describe in our

follow-on articles.

Mount namespaces (CLONE_NEWNS, Linux 2.4.19) isolate the

set of filesystem mount points seen by a group of processes.

Thus, processes in different mount namespaces can have

different views of the filesystem hierarchy. With the addition of

mount namespaces, the mount() and umount() system

calls ceased operating on a global set of mount points visible

to all processes on the system and instead performed

operations that affected just the mount namespace

associated with the calling process.

One use of mount namespaces is to create environments that

are similar to chroot jails. However, by contrast with the use of

the chroot() system call, mount namespaces are a more

secure and flexible tool for this task. Other more sophisticated

uses of mount namespaces are also possible. For example,

separate mount namespaces can be set up in a master-slave

relationship, so that the mount events are automatically

propagated from one namespace to another; this allows, for

example, an optical disk device that is mounted in one

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

3 of 9 4/20/21, 10:32 PM



namespace to automatically appear in other namespaces.

Mount namespaces were the first type of namespace to be

implemented on Linux, appearing in 2002. This fact accounts

for the rather generic "NEWNS" moniker (short for "new

namespace"): at that time no one seems to have been

thinking that other, different types of namespace might be

needed in the future.

UTS namespaces (CLONE_NEWUTS, Linux 2.6.19) isolate two

system identifiers—nodename and domainname—returned

by the uname() system call; the names are set using the

sethostname() and setdomainname() system calls. In

the context of containers, the UTS namespaces feature allows

each container to have its own hostname and NIS domain

name. This can be useful for initialization and configuration

scripts that tailor their actions based on these names. The

term "UTS" derives from the name of the structure passed to

the uname() system call: struct utsname. The name of

that structure in turn derives from "UNIX Time-sharing

System".

IPC namespaces (CLONE_NEWIPC, Linux 2.6.19) isolate

certain interprocess communication (IPC) resources, namely,

System V IPC objects and (since Linux 2.6.30) POSIX

message queues. The common characteristic of these IPC

mechanisms is that IPC objects are identified by mechanisms

other than filesystem pathnames. Each IPC namespace has

its own set of System V IPC identifiers and its own POSIX

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

4 of 9 4/20/21, 10:32 PM



message queue filesystem.

PID namespaces (CLONE_NEWPID, Linux 2.6.24) isolate the

process ID number space. In other words, processes in

different PID namespaces can have the same PID. One of the

main benefits of PID namespaces is that containers can be

migrated between hosts while keeping the same process IDs

for the processes inside the container. PID namespaces also

allow each container to have its own init (PID 1), the

"ancestor of all processes" that manages various system

initialization tasks and reaps orphaned child processes when

they terminate.

From the point of view of a particular PID namespace

instance, a process has two PIDs: the PID inside the

namespace, and the PID outside the namespace on the host

system. PID namespaces can be nested: a process will have

one PID for each of the layers of the hierarchy starting from

the PID namespace in which it resides through to the root PID

namespace. A process can see (e.g., view via /proc/PID

and send signals with kill()) only processes contained in

its own PID namespace and the namespaces nested below

that PID namespace.

Network namespaces (CLONE_NEWNET, started in Linux

2.4.19 2.6.24 and largely completed by about Linux 2.6.29)

provide isolation of the system resources associated with

networking. Thus, each network namespace has its own

network devices, IP addresses, IP routing tables, /proc/net

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

5 of 9 4/20/21, 10:32 PM



directory, port numbers, and so on.

Network namespaces make containers useful from a

networking perspective: each container can have its own

(virtual) network device and its own applications that bind to

the per-namespace port number space; suitable routing rules

in the host system can direct network packets to the network

device associated with a specific container. Thus, for

example, it is possible to have multiple containerized web

servers on the same host system, with each server bound to

port 80 in its (per-container) network namespace.

User namespaces (CLONE_NEWUSER, started in Linux 2.6.23

and completed in Linux 3.8) isolate the user and group ID

number spaces. In other words, a process's user and group

IDs can be different inside and outside a user namespace.

The most interesting case here is that a process can have a

normal unprivileged user ID outside a user namespace while

at the same time having a user ID of 0 inside the namespace.

This means that the process has full root privileges for

operations inside the user namespace, but is unprivileged for

operations outside the namespace.

Starting in Linux 3.8, unprivileged processes can create user

namespaces, which opens up a raft of interesting new

possibilities for applications: since an otherwise unprivileged

process can hold root privileges inside the user namespace,

unprivileged applications now have access to functionality

that was formerly limited to root. Eric Biederman has put a lot

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

6 of 9 4/20/21, 10:32 PM



of effort into making the user namespaces implementation

safe and correct. However, the changes wrought by this work

are subtle and wide ranging. Thus, it may happen that user

namespaces have some as-yet unknown security issues that

remain to be found and fixed in the future.

Concluding remarks

It's now around a decade since the implementation of the first

Linux namespace. Since that time, the namespace concept

has expanded into a more general framework for isolating a

range of global resources whose scope was formerly system-

wide. As a result, namespaces now provide the basis for a

complete lightweight virtualization system, in the form of

containers. As the namespace concept has expanded, the

associated API has grown—from a single system call

(clone()) and one or two /proc files—to include a number

of other system calls and many more files under /proc. The

details of that API will form the subject of the follow-ups to this

article.

Series index

The following list shows later articles in this series, along with

their example programs:

Part 2: the namespaces API

demo_uts_namespaces.c: demonstrate the use of UTS

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

7 of 9 4/20/21, 10:32 PM



namespaces

ns_exec.c: join a namespace using setns() and execute

a command

unshare.c: unshare namespaces and execute a command;

similar in concept to unshare(1)

Part 3: PID namespaces

pidns_init_sleep.c: demonstrate PID namespaces

multi_pidns.c: create a series of child processes in

nested PID namespaces

Part 4: more on PID namespaces

ns_child_exec.c: create a child process that executes a

shell command in new namespace(s)

simple_init.c: a simple init(1)-style program to be

used as the init program in a PID namespace

orphan.c: demonstrate that a child becomes orphaned and

is adopted by the init process when its parent exits

ns_run.c: join one or more namespaces using setns()

and execute a command in those namespaces, possibly

inside a child process; similar in concept to nsenter(1)

Part 5: user namespaces

demo_userns.c: simple program to create a user

namespace and display process credentials and capabilities

userns_child_exec.c: create a child process that

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

8 of 9 4/20/21, 10:32 PM



executes a shell command in new namespace(s); similar to

ns_child_exec.c, but with additional options for use with

user namespaces

Part 6: more on user namespaces

userns_setns_test.c: test the operation of setns()

from two different user namespaces.

Part 7: network namespaces

Mount namespaces and shared subtrees

Mount namespaces, mount propagation, and unbindable

mounts

Index entries for this article

Kernel Containers

Kernel Namespaces

Namespaces in operation, part 1: namespaces ove... about:reader?url=https://lwn.net/Articles/531114/

9 of 9 4/20/21, 10:32 PM


