[Freedreno] [PATCH v2 05/28] drm/msm/dsi: fuse dsi_pll_* code into dsi_phy_* code

abhinavk at codeaurora.org abhinavk at codeaurora.org
Fri Mar 26 17:48:16 UTC 2021


On 2021-03-24 08:18, Dmitry Baryshkov wrote:
> Each phy version is tightly coupled with the corresponding PLL code,
> there is no need to keep them separate. Fuse source files together in
> order to simplify DSI code.
> 
> Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov at linaro.org>
Reviewed-by: Abhinav Kumar <abhinavk at codeaurora.org>
> ---
>  drivers/gpu/drm/msm/Makefile                  |    9 +-
>  drivers/gpu/drm/msm/dsi/phy/dsi_phy_10nm.c    |  873 +++++++++++++
>  drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c    | 1089 ++++++++++++++++
>  drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c    |  637 ++++++++++
>  .../gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c   |  519 ++++++++
>  drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c     |  905 ++++++++++++++
>  .../gpu/drm/msm/dsi/{pll => phy}/dsi_pll.c    |    0
>  .../gpu/drm/msm/dsi/{pll => phy}/dsi_pll.h    |    0
>  drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c    |  881 -------------
>  drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c    | 1096 -----------------
>  drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c    |  643 ----------
>  .../gpu/drm/msm/dsi/pll/dsi_pll_28nm_8960.c   |  526 --------
>  drivers/gpu/drm/msm/dsi/pll/dsi_pll_7nm.c     |  913 --------------
>  13 files changed, 4024 insertions(+), 4067 deletions(-)
>  rename drivers/gpu/drm/msm/dsi/{pll => phy}/dsi_pll.c (100%)
>  rename drivers/gpu/drm/msm/dsi/{pll => phy}/dsi_pll.h (100%)
>  delete mode 100644 drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c
>  delete mode 100644 drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c
>  delete mode 100644 drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c
>  delete mode 100644 drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm_8960.c
>  delete mode 100644 drivers/gpu/drm/msm/dsi/pll/dsi_pll_7nm.c
> 
> diff --git a/drivers/gpu/drm/msm/Makefile 
> b/drivers/gpu/drm/msm/Makefile
> index 3cc906121fb3..1be6996b80b7 100644
> --- a/drivers/gpu/drm/msm/Makefile
> +++ b/drivers/gpu/drm/msm/Makefile
> @@ -136,13 +136,6 @@ msm-$(CONFIG_DRM_MSM_DSI_14NM_PHY) +=
> dsi/phy/dsi_phy_14nm.o
>  msm-$(CONFIG_DRM_MSM_DSI_10NM_PHY) += dsi/phy/dsi_phy_10nm.o
>  msm-$(CONFIG_DRM_MSM_DSI_7NM_PHY) += dsi/phy/dsi_phy_7nm.o
> 
> -ifeq ($(CONFIG_DRM_MSM_DSI_PLL),y)
> -msm-y += dsi/pll/dsi_pll.o
> -msm-$(CONFIG_DRM_MSM_DSI_28NM_PHY) += dsi/pll/dsi_pll_28nm.o
> -msm-$(CONFIG_DRM_MSM_DSI_28NM_8960_PHY) += dsi/pll/dsi_pll_28nm_8960.o
> -msm-$(CONFIG_DRM_MSM_DSI_14NM_PHY) += dsi/pll/dsi_pll_14nm.o
> -msm-$(CONFIG_DRM_MSM_DSI_10NM_PHY) += dsi/pll/dsi_pll_10nm.o
> -msm-$(CONFIG_DRM_MSM_DSI_7NM_PHY) += dsi/pll/dsi_pll_7nm.o
> -endif
> +msm-$(CONFIG_DRM_MSM_DSI_PLL) += dsi/phy/dsi_pll.o
> 
>  obj-$(CONFIG_DRM_MSM)	+= msm.o
> diff --git a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_10nm.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_10nm.c
> index 655fa17a0452..5da369b5c475 100644
> --- a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_10nm.c
> +++ b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_10nm.c
> @@ -3,11 +3,884 @@
>   * Copyright (c) 2018, The Linux Foundation
>   */
> 
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
>  #include <linux/iopoll.h>
> 
> +#include "dsi_pll.h"
>  #include "dsi_phy.h"
>  #include "dsi.xml.h"
> 
> +/*
> + * DSI PLL 10nm - clock diagram (eg: DSI0):
> + *
> + *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
> + *                              |                |
> + *                              |                |
> + *                 +---------+  |  +----------+  |  +----+
> + *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |--
> dsi0_phy_pll_out_byteclk
> + *                 +---------+  |  +----------+  |  +----+
> + *                              |                |
> + *                              |                |
> dsi0_pll_by_2_bit_clk
> + *                              |                |          |
> + *                              |                |  +----+  |  |\
> dsi0_pclk_mux
> + *                              |                |--| /2 |--o--| \   |
> + *                              |                |  +----+     |  \
> |  +---------+
> + *                              |                --------------|
> |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
> + *                              |------------------------------|  /
>   +---------+
> + *                              |          +-----+             | /
> + *                              -----------| /4? |--o----------|/
> + *                                         +-----+  |           |
> + *                                                  |           
> |dsiclk_sel
> + *                                                  |
> + *                                                  
> dsi0_pll_post_out_div_clk
> + */
> +
> +#define DSI_BYTE_PLL_CLK		0
> +#define DSI_PIXEL_PLL_CLK		1
> +#define NUM_PROVIDED_CLKS		2
> +
> +#define VCO_REF_CLK_RATE		19200000
> +
> +struct dsi_pll_regs {
> +	u32 pll_prop_gain_rate;
> +	u32 pll_lockdet_rate;
> +	u32 decimal_div_start;
> +	u32 frac_div_start_low;
> +	u32 frac_div_start_mid;
> +	u32 frac_div_start_high;
> +	u32 pll_clock_inverters;
> +	u32 ssc_stepsize_low;
> +	u32 ssc_stepsize_high;
> +	u32 ssc_div_per_low;
> +	u32 ssc_div_per_high;
> +	u32 ssc_adjper_low;
> +	u32 ssc_adjper_high;
> +	u32 ssc_control;
> +};
> +
> +struct dsi_pll_config {
> +	u32 ref_freq;
> +	bool div_override;
> +	u32 output_div;
> +	bool ignore_frac;
> +	bool disable_prescaler;
> +	bool enable_ssc;
> +	bool ssc_center;
> +	u32 dec_bits;
> +	u32 frac_bits;
> +	u32 lock_timer;
> +	u32 ssc_freq;
> +	u32 ssc_offset;
> +	u32 ssc_adj_per;
> +	u32 thresh_cycles;
> +	u32 refclk_cycles;
> +};
> +
> +struct pll_10nm_cached_state {
> +	unsigned long vco_rate;
> +	u8 bit_clk_div;
> +	u8 pix_clk_div;
> +	u8 pll_out_div;
> +	u8 pll_mux;
> +};
> +
> +struct dsi_pll_10nm {
> +	struct msm_dsi_pll base;
> +
> +	int id;
> +	struct platform_device *pdev;
> +
> +	void __iomem *phy_cmn_mmio;
> +	void __iomem *mmio;
> +
> +	u64 vco_ref_clk_rate;
> +	u64 vco_current_rate;
> +
> +	/* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */
> +	spinlock_t postdiv_lock;
> +
> +	int vco_delay;
> +	struct dsi_pll_config pll_configuration;
> +	struct dsi_pll_regs reg_setup;
> +
> +	/* private clocks: */
> +	struct clk_hw *out_div_clk_hw;
> +	struct clk_hw *bit_clk_hw;
> +	struct clk_hw *byte_clk_hw;
> +	struct clk_hw *by_2_bit_clk_hw;
> +	struct clk_hw *post_out_div_clk_hw;
> +	struct clk_hw *pclk_mux_hw;
> +	struct clk_hw *out_dsiclk_hw;
> +
> +	/* clock-provider: */
> +	struct clk_hw_onecell_data *hw_data;
> +
> +	struct pll_10nm_cached_state cached_state;
> +
> +	enum msm_dsi_phy_usecase uc;
> +	struct dsi_pll_10nm *slave;
> +};
> +
> +#define to_pll_10nm(x)	container_of(x, struct dsi_pll_10nm, base)
> +
> +/*
> + * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> + * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> + */
> +static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX];
> +
> +static void dsi_pll_setup_config(struct dsi_pll_10nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +
> +	config->ref_freq = pll->vco_ref_clk_rate;
> +	config->output_div = 1;
> +	config->dec_bits = 8;
> +	config->frac_bits = 18;
> +	config->lock_timer = 64;
> +	config->ssc_freq = 31500;
> +	config->ssc_offset = 5000;
> +	config->ssc_adj_per = 2;
> +	config->thresh_cycles = 32;
> +	config->refclk_cycles = 256;
> +
> +	config->div_override = false;
> +	config->ignore_frac = false;
> +	config->disable_prescaler = false;
> +
> +	config->enable_ssc = false;
> +	config->ssc_center = 0;
> +}
> +
> +static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +	u64 fref = pll->vco_ref_clk_rate;
> +	u64 pll_freq;
> +	u64 divider;
> +	u64 dec, dec_multiple;
> +	u32 frac;
> +	u64 multiplier;
> +
> +	pll_freq = pll->vco_current_rate;
> +
> +	if (config->disable_prescaler)
> +		divider = fref;
> +	else
> +		divider = fref * 2;
> +
> +	multiplier = 1 << config->frac_bits;
> +	dec_multiple = div_u64(pll_freq * multiplier, divider);
> +	dec = div_u64_rem(dec_multiple, multiplier, &frac);
> +
> +	if (pll_freq <= 1900000000UL)
> +		regs->pll_prop_gain_rate = 8;
> +	else if (pll_freq <= 3000000000UL)
> +		regs->pll_prop_gain_rate = 10;
> +	else
> +		regs->pll_prop_gain_rate = 12;
> +	if (pll_freq < 1100000000UL)
> +		regs->pll_clock_inverters = 8;
> +	else
> +		regs->pll_clock_inverters = 0;
> +
> +	regs->pll_lockdet_rate = config->lock_timer;
> +	regs->decimal_div_start = dec;
> +	regs->frac_div_start_low = (frac & 0xff);
> +	regs->frac_div_start_mid = (frac & 0xff00) >> 8;
> +	regs->frac_div_start_high = (frac & 0x30000) >> 16;
> +}
> +
> +#define SSC_CENTER		BIT(0)
> +#define SSC_EN			BIT(1)
> +
> +static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +	u32 ssc_per;
> +	u32 ssc_mod;
> +	u64 ssc_step_size;
> +	u64 frac;
> +
> +	if (!config->enable_ssc) {
> +		DBG("SSC not enabled\n");
> +		return;
> +	}
> +
> +	ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 
> 1;
> +	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
> +	ssc_per -= ssc_mod;
> +
> +	frac = regs->frac_div_start_low |
> +			(regs->frac_div_start_mid << 8) |
> +			(regs->frac_div_start_high << 16);
> +	ssc_step_size = regs->decimal_div_start;
> +	ssc_step_size *= (1 << config->frac_bits);
> +	ssc_step_size += frac;
> +	ssc_step_size *= config->ssc_offset;
> +	ssc_step_size *= (config->ssc_adj_per + 1);
> +	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
> +	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
> +
> +	regs->ssc_div_per_low = ssc_per & 0xFF;
> +	regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
> +	regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
> +	regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
> +	regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
> +	regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
> +
> +	regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
> +
> +	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
> +		 regs->decimal_div_start, frac, config->frac_bits);
> +	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
> +		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
> +}
> +
> +static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +
> +	if (pll->pll_configuration.enable_ssc) {
> +		pr_debug("SSC is enabled\n");
> +
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
> +			  regs->ssc_stepsize_low);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
> +			  regs->ssc_stepsize_high);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1,
> +			  regs->ssc_div_per_low);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
> +			  regs->ssc_div_per_high);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1,
> +			  regs->ssc_adjper_low);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1,
> +			  regs->ssc_adjper_high);
> +		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL,
> +			  SSC_EN | regs->ssc_control);
> +	}
> +}
> +
> +static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE,
> +		  0xba);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 
> 0x0c);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0xfa);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1,
> +		  0x4c);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f);
> +}
> +
> +static void dsi_pll_commit(struct dsi_pll_10nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	struct dsi_pll_regs *reg = &pll->reg_setup;
> +
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1,
> +		  reg->decimal_div_start);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1,
> +		  reg->frac_div_start_low);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1,
> +		  reg->frac_div_start_mid);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
> +		  reg->frac_div_start_high);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1,
> +		  reg->pll_lockdet_rate);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10);
> +	pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS,
> +		  reg->pll_clock_inverters);
> +}
> +
> +static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> +				     unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +
> +	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate,
> +	    parent_rate);
> +
> +	pll_10nm->vco_current_rate = rate;
> +	pll_10nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> +
> +	dsi_pll_setup_config(pll_10nm);
> +
> +	dsi_pll_calc_dec_frac(pll_10nm);
> +
> +	dsi_pll_calc_ssc(pll_10nm);
> +
> +	dsi_pll_commit(pll_10nm);
> +
> +	dsi_pll_config_hzindep_reg(pll_10nm);
> +
> +	dsi_pll_ssc_commit(pll_10nm);
> +
> +	/* flush, ensure all register writes are done*/
> +	wmb();
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll)
> +{
> +	struct device *dev = &pll->pdev->dev;
> +	int rc;
> +	u32 status = 0;
> +	u32 const delay_us = 100;
> +	u32 const timeout_us = 5000;
> +
> +	rc = readl_poll_timeout_atomic(pll->mmio +
> +				       REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE,
> +				       status,
> +				       ((status & BIT(0)) > 0),
> +				       delay_us,
> +				       timeout_us);
> +	if (rc)
> +		DRM_DEV_ERROR(dev, "DSI PLL(%d) lock failed, status=0x%08x\n",
> +			      pll->id, status);
> +
> +	return rc;
> +}
> +
> +static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll)
> +{
> +	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
> +
> +	pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
> +		  data & ~BIT(5));
> +	ndelay(250);
> +}
> +
> +static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll)
> +{
> +	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
> +
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
> +		  data | BIT(5));
> +	pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
> +	ndelay(250);
> +}
> +
> +static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll)
> +{
> +	u32 data;
> +
> +	data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> +		  data & ~BIT(5));
> +}
> +
> +static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll)
> +{
> +	u32 data;
> +
> +	data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> +		  data | BIT(5));
> +}
> +
> +static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct device *dev = &pll_10nm->pdev->dev;
> +	int rc;
> +
> +	dsi_pll_enable_pll_bias(pll_10nm);
> +	if (pll_10nm->slave)
> +		dsi_pll_enable_pll_bias(pll_10nm->slave);
> +
> +	rc = dsi_pll_10nm_vco_set_rate(hw,pll_10nm->vco_current_rate, 0);
> +	if (rc) {
> +		DRM_DEV_ERROR(dev, "vco_set_rate failed, rc=%d\n", rc);
> +		return rc;
> +	}
> +
> +	/* Start PLL */
> +	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL,
> +		  0x01);
> +
> +	/*
> +	 * ensure all PLL configurations are written prior to checking
> +	 * for PLL lock.
> +	 */
> +	wmb();
> +
> +	/* Check for PLL lock */
> +	rc = dsi_pll_10nm_lock_status(pll_10nm);
> +	if (rc) {
> +		DRM_DEV_ERROR(dev, "PLL(%d) lock failed\n", pll_10nm->id);
> +		goto error;
> +	}
> +
> +	pll->pll_on = true;
> +
> +	dsi_pll_enable_global_clk(pll_10nm);
> +	if (pll_10nm->slave)
> +		dsi_pll_enable_global_clk(pll_10nm->slave);
> +
> +	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL,
> +		  0x01);
> +	if (pll_10nm->slave)
> +		pll_write(pll_10nm->slave->phy_cmn_mmio +
> +			  REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01);
> +
> +error:
> +	return rc;
> +}
> +
> +static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll)
> +{
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0);
> +	dsi_pll_disable_pll_bias(pll);
> +}
> +
> +static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +
> +	/*
> +	 * To avoid any stray glitches while abruptly powering down the PLL
> +	 * make sure to gate the clock using the clock enable bit before
> +	 * powering down the PLL
> +	 */
> +	dsi_pll_disable_global_clk(pll_10nm);
> +	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 
> 0);
> +	dsi_pll_disable_sub(pll_10nm);
> +	if (pll_10nm->slave) {
> +		dsi_pll_disable_global_clk(pll_10nm->slave);
> +		dsi_pll_disable_sub(pll_10nm->slave);
> +	}
> +	/* flush, ensure all register writes are done */
> +	wmb();
> +	pll->pll_on = false;
> +}
> +
> +static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw,
> +						  unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct dsi_pll_config *config = &pll_10nm->pll_configuration;
> +	void __iomem *base = pll_10nm->mmio;
> +	u64 ref_clk = pll_10nm->vco_ref_clk_rate;
> +	u64 vco_rate = 0x0;
> +	u64 multiplier;
> +	u32 frac;
> +	u32 dec;
> +	u64 pll_freq, tmp64;
> +
> +	dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1);
> +	dec &= 0xff;
> +
> +	frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1);
> +	frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) 
> &
> +		  0xff) << 8);
> +	frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) 
> &
> +		  0x3) << 16);
> +
> +	/*
> +	 * TODO:
> +	 *	1. Assumes prescaler is disabled
> +	 */
> +	multiplier = 1 << config->frac_bits;
> +	pll_freq = dec * (ref_clk * 2);
> +	tmp64 = (ref_clk * 2 * frac);
> +	pll_freq += div_u64(tmp64, multiplier);
> +
> +	vco_rate = pll_freq;
> +
> +	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
> +	    pll_10nm->id, (unsigned long)vco_rate, dec, frac);
> +
> +	return (unsigned long)vco_rate;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_10nm_vco = {
> +	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> +	.set_rate = dsi_pll_10nm_vco_set_rate,
> +	.recalc_rate = dsi_pll_10nm_vco_recalc_rate,
> +	.prepare = dsi_pll_10nm_vco_prepare,
> +	.unprepare = dsi_pll_10nm_vco_unprepare,
> +};
> +
> +/*
> + * PLL Callbacks
> + */
> +
> +static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
> +	void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
> +	u32 cmn_clk_cfg0, cmn_clk_cfg1;
> +
> +	cached->pll_out_div = pll_read(pll_10nm->mmio +
> +				       REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
> +	cached->pll_out_div &= 0x3;
> +
> +	cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0);
> +	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
> +	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
> +
> +	cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> +	cached->pll_mux = cmn_clk_cfg1 & 0x3;
> +
> +	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
> +	    pll_10nm->id, cached->pll_out_div, cached->bit_clk_div,
> +	    cached->pix_clk_div, cached->pll_mux);
> +}
> +
> +static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
> +	void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
> +	u32 val;
> +	int ret;
> +
> +	val = pll_read(pll_10nm->mmio + 
> REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
> +	val &= ~0x3;
> +	val |= cached->pll_out_div;
> +	pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, 
> val);
> +
> +	pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> +		  cached->bit_clk_div | (cached->pix_clk_div << 4));
> +
> +	val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> +	val &= ~0x3;
> +	val |= cached->pll_mux;
> +	pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val);
> +
> +	ret = dsi_pll_10nm_vco_set_rate(&pll->clk_hw,
> pll_10nm->vco_current_rate, pll_10nm->vco_ref_clk_rate);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pll_10nm->pdev->dev,
> +			"restore vco rate failed. ret=%d\n", ret);
> +		return ret;
> +	}
> +
> +	DBG("DSI PLL%d", pll_10nm->id);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll,
> +				    enum msm_dsi_phy_usecase uc)
> +{
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	void __iomem *base = pll_10nm->phy_cmn_mmio;
> +	u32 data = 0x0;	/* internal PLL */
> +
> +	DBG("DSI PLL%d", pll_10nm->id);
> +
> +	switch (uc) {
> +	case MSM_DSI_PHY_STANDALONE:
> +		break;
> +	case MSM_DSI_PHY_MASTER:
> +		pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX];
> +		break;
> +	case MSM_DSI_PHY_SLAVE:
> +		data = 0x1; /* external PLL */
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	/* set PLL src */
> +	pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2));
> +
> +	pll_10nm->uc = uc;
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll,
> +				     struct clk **byte_clk_provider,
> +				     struct clk **pixel_clk_provider)
> +{
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data;
> +
> +	DBG("DSI PLL%d", pll_10nm->id);
> +
> +	if (byte_clk_provider)
> +		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> +	if (pixel_clk_provider)
> +		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> +
> +	return 0;
> +}
> +
> +static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> +	struct device *dev = &pll_10nm->pdev->dev;
> +
> +	DBG("DSI PLL%d", pll_10nm->id);
> +	of_clk_del_provider(dev->of_node);
> +
> +	clk_hw_unregister_divider(pll_10nm->out_dsiclk_hw);
> +	clk_hw_unregister_mux(pll_10nm->pclk_mux_hw);
> +	clk_hw_unregister_fixed_factor(pll_10nm->post_out_div_clk_hw);
> +	clk_hw_unregister_fixed_factor(pll_10nm->by_2_bit_clk_hw);
> +	clk_hw_unregister_fixed_factor(pll_10nm->byte_clk_hw);
> +	clk_hw_unregister_divider(pll_10nm->bit_clk_hw);
> +	clk_hw_unregister_divider(pll_10nm->out_div_clk_hw);
> +	clk_hw_unregister(&pll_10nm->base.clk_hw);
> +}
> +
> +/*
> + * The post dividers and mux clocks are created using the standard 
> divider and
> + * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its 
> dividers/mux
> + * state to follow the master PLL's divider/mux state. Therefore, we 
> don't
> + * require special clock ops that also configure the slave PLL 
> registers
> + */
> +static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm)
> +{
> +	char clk_name[32], parent[32], vco_name[32];
> +	char parent2[32], parent3[32], parent4[32];
> +	struct clk_init_data vco_init = {
> +		.parent_names = (const char *[]){ "xo" },
> +		.num_parents = 1,
> +		.name = vco_name,
> +		.flags = CLK_IGNORE_UNUSED,
> +		.ops = &clk_ops_dsi_pll_10nm_vco,
> +	};
> +	struct device *dev = &pll_10nm->pdev->dev;
> +	struct clk_hw_onecell_data *hw_data;
> +	struct clk_hw *hw;
> +	int ret;
> +
> +	DBG("DSI%d", pll_10nm->id);
> +
> +	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> +			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> +			       GFP_KERNEL);
> +	if (!hw_data)
> +		return -ENOMEM;
> +
> +	snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id);
> +	pll_10nm->base.clk_hw.init = &vco_init;
> +
> +	ret = clk_hw_register(dev, &pll_10nm->base.clk_hw);
> +	if (ret)
> +		return ret;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id);
> +
> +	hw = clk_hw_register_divider(dev, clk_name,
> +				     parent, CLK_SET_RATE_PARENT,
> +				     pll_10nm->mmio +
> +				     REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE,
> +				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_base_clk_hw;
> +	}
> +
> +	pll_10nm->out_div_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> +
> +	/* BIT CLK: DIV_CTRL_3_0 */
> +	hw = clk_hw_register_divider(dev, clk_name, parent,
> +				     CLK_SET_RATE_PARENT,
> +				     pll_10nm->phy_cmn_mmio +
> +				     REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> +				     0, 4, CLK_DIVIDER_ONE_BASED,
> +				     &pll_10nm->postdiv_lock);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_out_div_clk_hw;
> +	}
> +
> +	pll_10nm->bit_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> +
> +	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  CLK_SET_RATE_PARENT, 1, 8);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_bit_clk_hw;
> +	}
> +
> +	pll_10nm->byte_clk_hw = hw;
> +	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> +
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  0, 1, 2);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_byte_clk_hw;
> +	}
> +
> +	pll_10nm->by_2_bit_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> +
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  0, 1, 4);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_by_2_bit_clk_hw;
> +	}
> +
> +	pll_10nm->post_out_div_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> +	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
> +	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> +	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
> +
> +	hw = clk_hw_register_mux(dev, clk_name,
> +				 ((const char *[]){
> +				 parent, parent2, parent3, parent4
> +				 }), 4, 0, pll_10nm->phy_cmn_mmio +
> +				 REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> +				 0, 2, 0, NULL);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_post_out_div_clk_hw;
> +	}
> +
> +	pll_10nm->pclk_mux_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_10nm->id);
> +	snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id);
> +
> +	/* PIX CLK DIV : DIV_CTRL_7_4*/
> +	hw = clk_hw_register_divider(dev, clk_name, parent,
> +				     0, pll_10nm->phy_cmn_mmio +
> +					REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> +				     4, 4, CLK_DIVIDER_ONE_BASED,
> +				     &pll_10nm->postdiv_lock);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_pclk_mux_hw;
> +	}
> +
> +	pll_10nm->out_dsiclk_hw = hw;
> +	hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
> +
> +	hw_data->num = NUM_PROVIDED_CLKS;
> +	pll_10nm->hw_data = hw_data;
> +
> +	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> +				     pll_10nm->hw_data);
> +	if (ret) {
> +		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> +		goto err_dsiclk_hw;
> +	}
> +
> +	return 0;
> +
> +err_dsiclk_hw:
> +	clk_hw_unregister_divider(pll_10nm->out_dsiclk_hw);
> +err_pclk_mux_hw:
> +	clk_hw_unregister_mux(pll_10nm->pclk_mux_hw);
> +err_post_out_div_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_10nm->post_out_div_clk_hw);
> +err_by_2_bit_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_10nm->by_2_bit_clk_hw);
> +err_byte_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_10nm->byte_clk_hw);
> +err_bit_clk_hw:
> +	clk_hw_unregister_divider(pll_10nm->bit_clk_hw);
> +err_out_div_clk_hw:
> +	clk_hw_unregister_divider(pll_10nm->out_div_clk_hw);
> +err_base_clk_hw:
> +	clk_hw_unregister(&pll_10nm->base.clk_hw);
> +
> +	return ret;
> +}
> +
> +struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device 
> *pdev, int id)
> +{
> +	struct dsi_pll_10nm *pll_10nm;
> +	struct msm_dsi_pll *pll;
> +	int ret;
> +
> +	pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL);
> +	if (!pll_10nm)
> +		return ERR_PTR(-ENOMEM);
> +
> +	DBG("DSI PLL%d", id);
> +
> +	pll_10nm->pdev = pdev;
> +	pll_10nm->id = id;
> +	pll_10nm_list[id] = pll_10nm;
> +
> +	pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> +	if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> +	if (IS_ERR_OR_NULL(pll_10nm->mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	spin_lock_init(&pll_10nm->postdiv_lock);
> +
> +	pll = &pll_10nm->base;
> +	pll->min_rate = 1000000000UL;
> +	pll->max_rate = 3500000000UL;
> +	pll->get_provider = dsi_pll_10nm_get_provider;
> +	pll->destroy = dsi_pll_10nm_destroy;
> +	pll->save_state = dsi_pll_10nm_save_state;
> +	pll->restore_state = dsi_pll_10nm_restore_state;
> +	pll->set_usecase = dsi_pll_10nm_set_usecase;
> +
> +	pll_10nm->vco_delay = 1;
> +
> +	ret = pll_10nm_register(pll_10nm);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> +		return ERR_PTR(ret);
> +	}
> +
> +	/* TODO: Remove this when we have proper display handover support */
> +	msm_dsi_pll_save_state(pll);
> +
> +	return pll;
> +}
> +
>  static int dsi_phy_hw_v3_0_is_pll_on(struct msm_dsi_phy *phy)
>  {
>  	void __iomem *base = phy->base;
> diff --git a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c
> index 6989730b5fbd..6a63901da7a4 100644
> --- a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c
> +++ b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_14nm.c
> @@ -3,13 +3,1102 @@
>   * Copyright (c) 2016, The Linux Foundation. All rights reserved.
>   */
> 
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
>  #include <linux/delay.h>
> 
>  #include "dsi_phy.h"
> +#include "dsi_pll.h"
>  #include "dsi.xml.h"
> 
>  #define PHY_14NM_CKLN_IDX	4
> 
> +/*
> + * DSI PLL 14nm - clock diagram (eg: DSI0):
> + *
> + *         dsi0n1_postdiv_clk
> + *                         |
> + *                         |
> + *                 +----+  |  +----+
> + *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
> + *                 +----+  |  +----+
> + *                         |           dsi0n1_postdivby2_clk
> + *                         |   +----+  |
> + *                         o---| /2 |--o--|\
> + *                         |   +----+     | \   +----+
> + *                         |              |  |--| n2 |-- dsi0pll
> + *                         o--------------| /   +----+
> + *                                        |/
> + */
> +
> +#define POLL_MAX_READS			15
> +#define POLL_TIMEOUT_US			1000
> +
> +#define NUM_PROVIDED_CLKS		2
> +
> +#define VCO_REF_CLK_RATE		19200000
> +#define VCO_MIN_RATE			1300000000UL
> +#define VCO_MAX_RATE			2600000000UL
> +
> +#define DSI_BYTE_PLL_CLK		0
> +#define DSI_PIXEL_PLL_CLK		1
> +
> +#define DSI_PLL_DEFAULT_VCO_POSTDIV	1
> +
> +struct dsi_pll_input {
> +	u32 fref;	/* reference clk */
> +	u32 fdata;	/* bit clock rate */
> +	u32 dsiclk_sel; /* Mux configuration (see diagram) */
> +	u32 ssc_en;	/* SSC enable/disable */
> +	u32 ldo_en;
> +
> +	/* fixed params */
> +	u32 refclk_dbler_en;
> +	u32 vco_measure_time;
> +	u32 kvco_measure_time;
> +	u32 bandgap_timer;
> +	u32 pll_wakeup_timer;
> +	u32 plllock_cnt;
> +	u32 plllock_rng;
> +	u32 ssc_center;
> +	u32 ssc_adj_period;
> +	u32 ssc_spread;
> +	u32 ssc_freq;
> +	u32 pll_ie_trim;
> +	u32 pll_ip_trim;
> +	u32 pll_iptat_trim;
> +	u32 pll_cpcset_cur;
> +	u32 pll_cpmset_cur;
> +
> +	u32 pll_icpmset;
> +	u32 pll_icpcset;
> +
> +	u32 pll_icpmset_p;
> +	u32 pll_icpmset_m;
> +
> +	u32 pll_icpcset_p;
> +	u32 pll_icpcset_m;
> +
> +	u32 pll_lpf_res1;
> +	u32 pll_lpf_cap1;
> +	u32 pll_lpf_cap2;
> +	u32 pll_c3ctrl;
> +	u32 pll_r3ctrl;
> +};
> +
> +struct dsi_pll_output {
> +	u32 pll_txclk_en;
> +	u32 dec_start;
> +	u32 div_frac_start;
> +	u32 ssc_period;
> +	u32 ssc_step_size;
> +	u32 plllock_cmp;
> +	u32 pll_vco_div_ref;
> +	u32 pll_vco_count;
> +	u32 pll_kvco_div_ref;
> +	u32 pll_kvco_count;
> +	u32 pll_misc1;
> +	u32 pll_lpf2_postdiv;
> +	u32 pll_resetsm_cntrl;
> +	u32 pll_resetsm_cntrl2;
> +	u32 pll_resetsm_cntrl5;
> +	u32 pll_kvco_code;
> +
> +	u32 cmn_clk_cfg0;
> +	u32 cmn_clk_cfg1;
> +	u32 cmn_ldo_cntrl;
> +
> +	u32 pll_postdiv;
> +	u32 fcvo;
> +};
> +
> +struct pll_14nm_cached_state {
> +	unsigned long vco_rate;
> +	u8 n2postdiv;
> +	u8 n1postdiv;
> +};
> +
> +struct dsi_pll_14nm {
> +	struct msm_dsi_pll base;
> +
> +	int id;
> +	struct platform_device *pdev;
> +
> +	void __iomem *phy_cmn_mmio;
> +	void __iomem *mmio;
> +
> +	int vco_delay;
> +
> +	struct dsi_pll_input in;
> +	struct dsi_pll_output out;
> +
> +	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
> +	spinlock_t postdiv_lock;
> +
> +	u64 vco_current_rate;
> +	u64 vco_ref_clk_rate;
> +
> +	/* private clocks: */
> +	struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
> +	u32 num_hws;
> +
> +	/* clock-provider: */
> +	struct clk_hw_onecell_data *hw_data;
> +
> +	struct pll_14nm_cached_state cached_state;
> +
> +	enum msm_dsi_phy_usecase uc;
> +	struct dsi_pll_14nm *slave;
> +};
> +
> +#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, base)
> +
> +/*
> + * Private struct for N1/N2 post-divider clocks. These clocks are 
> similar to
> + * the generic clk_divider class of clocks. The only difference is 
> that it
> + * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
> + */
> +struct dsi_pll_14nm_postdiv {
> +	struct clk_hw hw;
> +
> +	/* divider params */
> +	u8 shift;
> +	u8 width;
> +	u8 flags; /* same flags as used by clk_divider struct */
> +
> +	struct dsi_pll_14nm *pll;
> +};
> +
> +#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct
> dsi_pll_14nm_postdiv, hw)
> +
> +/*
> + * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> + * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> + */
> +static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
> +
> +static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
> +				    u32 nb_tries, u32 timeout_us)
> +{
> +	bool pll_locked = false;
> +	void __iomem *base = pll_14nm->mmio;
> +	u32 tries, val;
> +
> +	tries = nb_tries;
> +	while (tries--) {
> +		val = pll_read(base +
> +			       REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
> +		pll_locked = !!(val & BIT(5));
> +
> +		if (pll_locked)
> +			break;
> +
> +		udelay(timeout_us);
> +	}
> +
> +	if (!pll_locked) {
> +		tries = nb_tries;
> +		while (tries--) {
> +			val = pll_read(base +
> +				REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
> +			pll_locked = !!(val & BIT(0));
> +
> +			if (pll_locked)
> +				break;
> +
> +			udelay(timeout_us);
> +		}
> +	}
> +
> +	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> +
> +	return pll_locked;
> +}
> +
> +static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll)
> +{
> +	pll->in.fref = pll->vco_ref_clk_rate;
> +	pll->in.fdata = 0;
> +	pll->in.dsiclk_sel = 1;	/* Use the /2 path in Mux */
> +	pll->in.ldo_en = 0;	/* disabled for now */
> +
> +	/* fixed input */
> +	pll->in.refclk_dbler_en = 0;
> +	pll->in.vco_measure_time = 5;
> +	pll->in.kvco_measure_time = 5;
> +	pll->in.bandgap_timer = 4;
> +	pll->in.pll_wakeup_timer = 5;
> +	pll->in.plllock_cnt = 1;
> +	pll->in.plllock_rng = 0;
> +
> +	/*
> +	 * SSC is enabled by default. We might need DT props for configuring
> +	 * some SSC params like PPM and center/down spread etc.
> +	 */
> +	pll->in.ssc_en = 1;
> +	pll->in.ssc_center = 0;		/* down spread by default */
> +	pll->in.ssc_spread = 5;		/* PPM / 1000 */
> +	pll->in.ssc_freq = 31500;	/* default recommended */
> +	pll->in.ssc_adj_period = 37;
> +
> +	pll->in.pll_ie_trim = 4;
> +	pll->in.pll_ip_trim = 4;
> +	pll->in.pll_cpcset_cur = 1;
> +	pll->in.pll_cpmset_cur = 1;
> +	pll->in.pll_icpmset = 4;
> +	pll->in.pll_icpcset = 4;
> +	pll->in.pll_icpmset_p = 0;
> +	pll->in.pll_icpmset_m = 0;
> +	pll->in.pll_icpcset_p = 0;
> +	pll->in.pll_icpcset_m = 0;
> +	pll->in.pll_lpf_res1 = 3;
> +	pll->in.pll_lpf_cap1 = 11;
> +	pll->in.pll_lpf_cap2 = 1;
> +	pll->in.pll_iptat_trim = 7;
> +	pll->in.pll_c3ctrl = 2;
> +	pll->in.pll_r3ctrl = 1;
> +}
> +
> +#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
> +
> +static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll)
> +{
> +	u32 period, ssc_period;
> +	u32 ref, rem;
> +	u64 step_size;
> +
> +	DBG("vco=%lld ref=%lld", pll->vco_current_rate, 
> pll->vco_ref_clk_rate);
> +
> +	ssc_period = pll->in.ssc_freq / 500;
> +	period = (u32)pll->vco_ref_clk_rate / 1000;
> +	ssc_period  = CEIL(period, ssc_period);
> +	ssc_period -= 1;
> +	pll->out.ssc_period = ssc_period;
> +
> +	DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq,
> +	    pll->in.ssc_spread, pll->out.ssc_period);
> +
> +	step_size = (u32)pll->vco_current_rate;
> +	ref = pll->vco_ref_clk_rate;
> +	ref /= 1000;
> +	step_size = div_u64(step_size, ref);
> +	step_size <<= 20;
> +	step_size = div_u64(step_size, 1000);
> +	step_size *= pll->in.ssc_spread;
> +	step_size = div_u64(step_size, 1000);
> +	step_size *= (pll->in.ssc_adj_period + 1);
> +
> +	rem = 0;
> +	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
> +	if (rem)
> +		step_size++;
> +
> +	DBG("step_size=%lld", step_size);
> +
> +	step_size &= 0x0ffff;	/* take lower 16 bits */
> +
> +	pll->out.ssc_step_size = step_size;
> +}
> +
> +static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll)
> +{
> +	struct dsi_pll_input *pin = &pll->in;
> +	struct dsi_pll_output *pout = &pll->out;
> +	u64 multiplier = BIT(20);
> +	u64 dec_start_multiple, dec_start, pll_comp_val;
> +	u32 duration, div_frac_start;
> +	u64 vco_clk_rate = pll->vco_current_rate;
> +	u64 fref = pll->vco_ref_clk_rate;
> +
> +	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
> +
> +	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
> +	div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
> +
> +	dec_start = div_u64(dec_start_multiple, multiplier);
> +
> +	pout->dec_start = (u32)dec_start;
> +	pout->div_frac_start = div_frac_start;
> +
> +	if (pin->plllock_cnt == 0)
> +		duration = 1024;
> +	else if (pin->plllock_cnt == 1)
> +		duration = 256;
> +	else if (pin->plllock_cnt == 2)
> +		duration = 128;
> +	else
> +		duration = 32;
> +
> +	pll_comp_val = duration * dec_start_multiple;
> +	pll_comp_val = div_u64(pll_comp_val, multiplier);
> +	do_div(pll_comp_val, 10);
> +
> +	pout->plllock_cmp = (u32)pll_comp_val;
> +
> +	pout->pll_txclk_en = 1;
> +	pout->cmn_ldo_cntrl = 0x3c;
> +}
> +
> +static u32 pll_14nm_kvco_slop(u32 vrate)
> +{
> +	u32 slop = 0;
> +
> +	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
> +		slop =  600;
> +	else if (vrate > 1800000000UL && vrate < 2300000000UL)
> +		slop = 400;
> +	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
> +		slop = 280;
> +
> +	return slop;
> +}
> +
> +static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll)
> +{
> +	struct dsi_pll_input *pin = &pll->in;
> +	struct dsi_pll_output *pout = &pll->out;
> +	u64 vco_clk_rate = pll->vco_current_rate;
> +	u64 fref = pll->vco_ref_clk_rate;
> +	u64 data;
> +	u32 cnt;
> +
> +	data = fref * pin->vco_measure_time;
> +	do_div(data, 1000000);
> +	data &= 0x03ff;	/* 10 bits */
> +	data -= 2;
> +	pout->pll_vco_div_ref = data;
> +
> +	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
> +	data *= pin->vco_measure_time;
> +	do_div(data, 10);
> +	pout->pll_vco_count = data;
> +
> +	data = fref * pin->kvco_measure_time;
> +	do_div(data, 1000000);
> +	data &= 0x03ff;	/* 10 bits */
> +	data -= 1;
> +	pout->pll_kvco_div_ref = data;
> +
> +	cnt = pll_14nm_kvco_slop(vco_clk_rate);
> +	cnt *= 2;
> +	cnt /= 100;
> +	cnt *= pin->kvco_measure_time;
> +	pout->pll_kvco_count = cnt;
> +
> +	pout->pll_misc1 = 16;
> +	pout->pll_resetsm_cntrl = 48;
> +	pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3;
> +	pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer;
> +	pout->pll_kvco_code = 0;
> +}
> +
> +static void pll_db_commit_ssc(struct dsi_pll_14nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	struct dsi_pll_input *pin = &pll->in;
> +	struct dsi_pll_output *pout = &pll->out;
> +	u8 data;
> +
> +	data = pin->ssc_adj_period;
> +	data &= 0x0ff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
> +	data = (pin->ssc_adj_period >> 8);
> +	data &= 0x03;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
> +
> +	data = pout->ssc_period;
> +	data &= 0x0ff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
> +	data = (pout->ssc_period >> 8);
> +	data &= 0x0ff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
> +
> +	data = pout->ssc_step_size;
> +	data &= 0x0ff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
> +	data = (pout->ssc_step_size >> 8);
> +	data &= 0x0ff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
> +
> +	data = (pin->ssc_center & 0x01);
> +	data <<= 1;
> +	data |= 0x01; /* enable */
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
> +
> +	wmb();	/* make sure register committed */
> +}
> +
> +static void pll_db_commit_common(struct dsi_pll_14nm *pll,
> +				 struct dsi_pll_input *pin,
> +				 struct dsi_pll_output *pout)
> +{
> +	void __iomem *base = pll->mmio;
> +	u8 data;
> +
> +	/* confgiure the non frequency dependent pll registers */
> +	data = 0;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
> +
> +	data = pout->pll_txclk_en;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data);
> +
> +	data = pout->pll_resetsm_cntrl;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data);
> +	data = pout->pll_resetsm_cntrl2;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data);
> +	data = pout->pll_resetsm_cntrl5;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data);
> +
> +	data = pout->pll_vco_div_ref & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
> +	data = (pout->pll_vco_div_ref >> 8) & 0x3;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
> +
> +	data = pout->pll_kvco_div_ref & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
> +	data = (pout->pll_kvco_div_ref >> 8) & 0x3;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
> +
> +	data = pout->pll_misc1;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data);
> +
> +	data = pin->pll_ie_trim;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data);
> +
> +	data = pin->pll_ip_trim;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data);
> +
> +	data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data);
> +
> +	data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data);
> +
> +	data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data);
> +
> +	data = pin->pll_icpmset << 3 | pin->pll_icpcset;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data);
> +
> +	data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data);
> +
> +	data = pin->pll_iptat_trim;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data);
> +
> +	data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data);
> +}
> +
> +static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
> +{
> +	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> +
> +	/* de assert pll start and apply pll sw reset */
> +
> +	/* stop pll */
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
> +
> +	/* pll sw reset */
> +	pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
> +	wmb();	/* make sure register committed */
> +
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
> +	wmb();	/* make sure register committed */
> +}
> +
> +static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
> +			       struct dsi_pll_input *pin,
> +			       struct dsi_pll_output *pout)
> +{
> +	void __iomem *base = pll->mmio;
> +	void __iomem *cmn_base = pll->phy_cmn_mmio;
> +	u8 data;
> +
> +	DBG("DSI%d PLL", pll->id);
> +
> +	data = pout->cmn_ldo_cntrl;
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
> +
> +	pll_db_commit_common(pll, pin, pout);
> +
> +	pll_14nm_software_reset(pll);
> +
> +	data = pin->dsiclk_sel; /* set dsiclk_sel = 1  */
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data);
> +
> +	data = 0xff; /* data, clk, pll normal operation */
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
> +
> +	/* configure the frequency dependent pll registers */
> +	data = pout->dec_start;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
> +
> +	data = pout->div_frac_start & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
> +	data = (pout->div_frac_start >> 8) & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
> +	data = (pout->div_frac_start >> 16) & 0xf;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
> +
> +	data = pout->plllock_cmp & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
> +
> +	data = (pout->plllock_cmp >> 8) & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
> +
> +	data = (pout->plllock_cmp >> 16) & 0x3;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
> +
> +	data = pin->plllock_cnt << 1 | pin->plllock_rng << 3;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
> +
> +	data = pout->pll_vco_count & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
> +	data = (pout->pll_vco_count >> 8) & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
> +
> +	data = pout->pll_kvco_count & 0xff;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
> +	data = (pout->pll_kvco_count >> 8) & 0x3;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
> +
> +	data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1;
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data);
> +
> +	if (pin->ssc_en)
> +		pll_db_commit_ssc(pll);
> +
> +	wmb();	/* make sure register committed */
> +}
> +
> +/*
> + * VCO clock Callbacks
> + */
> +static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> +				     unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	struct dsi_pll_input *pin = &pll_14nm->in;
> +	struct dsi_pll_output *pout = &pll_14nm->out;
> +
> +	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate,
> +	    parent_rate);
> +
> +	pll_14nm->vco_current_rate = rate;
> +	pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> +
> +	dsi_pll_14nm_input_init(pll_14nm);
> +
> +	/*
> +	 * This configures the post divider internal to the VCO. It's
> +	 * fixed to divide by 1 for now.
> +	 *
> +	 * tx_band = pll_postdiv.
> +	 * 0: divided by 1
> +	 * 1: divided by 2
> +	 * 2: divided by 4
> +	 * 3: divided by 8
> +	 */
> +	pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV;
> +
> +	pll_14nm_dec_frac_calc(pll_14nm);
> +
> +	if (pin->ssc_en)
> +		pll_14nm_ssc_calc(pll_14nm);
> +
> +	pll_14nm_calc_vco_count(pll_14nm);
> +
> +	/* commit the slave DSI PLL registers if we're master. Note that we
> +	 * don't lock the slave PLL. We just ensure that the PLL/PHY 
> registers
> +	 * of the master and slave are identical
> +	 */
> +	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> +		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> +
> +		pll_db_commit_14nm(pll_14nm_slave, pin, pout);
> +	}
> +
> +	pll_db_commit_14nm(pll_14nm, pin, pout);
> +
> +	return 0;
> +}
> +
> +static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
> +						  unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	void __iomem *base = pll_14nm->mmio;
> +	u64 vco_rate, multiplier = BIT(20);
> +	u32 div_frac_start;
> +	u32 dec_start;
> +	u64 ref_clk = parent_rate;
> +
> +	dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
> +	dec_start &= 0x0ff;
> +
> +	DBG("dec_start = %x", dec_start);
> +
> +	div_frac_start = (pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
> +				& 0xf) << 16;
> +	div_frac_start |= (pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
> +				& 0xff) << 8;
> +	div_frac_start |= pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
> +				& 0xff;
> +
> +	DBG("div_frac_start = %x", div_frac_start);
> +
> +	vco_rate = ref_clk * dec_start;
> +
> +	vco_rate += ((ref_clk * div_frac_start) / multiplier);
> +
> +	/*
> +	 * Recalculating the rate from dec_start and frac_start doesn't end 
> up
> +	 * the rate we originally set. Convert the freq to KHz, round it up 
> and
> +	 * convert it back to MHz.
> +	 */
> +	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
> +
> +	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
> +
> +	return (unsigned long)vco_rate;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
> +	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> +	.set_rate = dsi_pll_14nm_vco_set_rate,
> +	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
> +	.prepare = msm_dsi_pll_helper_clk_prepare,
> +	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> +};
> +
> +/*
> + * N1 and N2 post-divider clock callbacks
> + */
> +#define div_mask(width)	((1 << (width)) - 1)
> +static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw 
> *hw,
> +						      unsigned long parent_rate)
> +{
> +	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> +	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> +	void __iomem *base = pll_14nm->phy_cmn_mmio;
> +	u8 shift = postdiv->shift;
> +	u8 width = postdiv->width;
> +	u32 val;
> +
> +	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate);
> +
> +	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
> +	val &= div_mask(width);
> +
> +	return divider_recalc_rate(hw, parent_rate, val, NULL,
> +				   postdiv->flags, width);
> +}
> +
> +static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
> +					    unsigned long rate,
> +					    unsigned long *prate)
> +{
> +	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> +	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> +
> +	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate);
> +
> +	return divider_round_rate(hw, rate, prate, NULL,
> +				  postdiv->width,
> +				  postdiv->flags);
> +}
> +
> +static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned 
> long rate,
> +					 unsigned long parent_rate)
> +{
> +	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> +	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> +	void __iomem *base = pll_14nm->phy_cmn_mmio;
> +	spinlock_t *lock = &pll_14nm->postdiv_lock;
> +	u8 shift = postdiv->shift;
> +	u8 width = postdiv->width;
> +	unsigned int value;
> +	unsigned long flags = 0;
> +	u32 val;
> +
> +	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate,
> +	    parent_rate);
> +
> +	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
> +				postdiv->flags);
> +
> +	spin_lock_irqsave(lock, flags);
> +
> +	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
> +	val &= ~(div_mask(width) << shift);
> +
> +	val |= value << shift;
> +	pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
> +
> +	/* If we're master in dual DSI mode, then the slave PLL's 
> post-dividers
> +	 * follow the master's post dividers
> +	 */
> +	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> +		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> +		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
> +
> +		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
> +	}
> +
> +	spin_unlock_irqrestore(lock, flags);
> +
> +	return 0;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
> +	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
> +	.round_rate = dsi_pll_14nm_postdiv_round_rate,
> +	.set_rate = dsi_pll_14nm_postdiv_set_rate,
> +};
> +
> +/*
> + * PLL Callbacks
> + */
> +
> +static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	void __iomem *base = pll_14nm->mmio;
> +	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> +	bool locked;
> +
> +	DBG("");
> +
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
> +
> +	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
> +					 POLL_TIMEOUT_US);
> +
> +	if (unlikely(!locked))
> +		DRM_DEV_ERROR(&pll_14nm->pdev->dev, "DSI PLL lock failed\n");
> +	else
> +		DBG("DSI PLL lock success");
> +
> +	return locked ? 0 : -EINVAL;
> +}
> +
> +static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> +
> +	DBG("");
> +
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
> +}
> +
> +static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
> +	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> +	u32 data;
> +
> +	data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
> +
> +	cached_state->n1postdiv = data & 0xf;
> +	cached_state->n2postdiv = (data >> 4) & 0xf;
> +
> +	DBG("DSI%d PLL save state %x %x", pll_14nm->id,
> +	    cached_state->n1postdiv, cached_state->n2postdiv);
> +
> +	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> +}
> +
> +static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
> +	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> +	u32 data;
> +	int ret;
> +
> +	ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw,
> +					cached_state->vco_rate, 0);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pll_14nm->pdev->dev,
> +			"restore vco rate failed. ret=%d\n", ret);
> +		return ret;
> +	}
> +
> +	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
> +
> +	DBG("DSI%d PLL restore state %x %x", pll_14nm->id,
> +	    cached_state->n1postdiv, cached_state->n2postdiv);
> +
> +	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
> +
> +	/* also restore post-dividers for slave DSI PLL */
> +	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> +		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> +		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
> +
> +		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
> +	}
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll,
> +				    enum msm_dsi_phy_usecase uc)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	void __iomem *base = pll_14nm->mmio;
> +	u32 clkbuflr_en, bandgap = 0;
> +
> +	switch (uc) {
> +	case MSM_DSI_PHY_STANDALONE:
> +		clkbuflr_en = 0x1;
> +		break;
> +	case MSM_DSI_PHY_MASTER:
> +		clkbuflr_en = 0x3;
> +		pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX];
> +		break;
> +	case MSM_DSI_PHY_SLAVE:
> +		clkbuflr_en = 0x0;
> +		bandgap = 0x3;
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
> +	if (bandgap)
> +		pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
> +
> +	pll_14nm->uc = uc;
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll,
> +				     struct clk **byte_clk_provider,
> +				     struct clk **pixel_clk_provider)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data;
> +
> +	if (byte_clk_provider)
> +		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> +	if (pixel_clk_provider)
> +		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> +
> +	return 0;
> +}
> +
> +static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> +	struct platform_device *pdev = pll_14nm->pdev;
> +	int num_hws = pll_14nm->num_hws;
> +
> +	of_clk_del_provider(pdev->dev.of_node);
> +
> +	while (num_hws--)
> +		clk_hw_unregister(pll_14nm->hws[num_hws]);
> +}
> +
> +static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm 
> *pll_14nm,
> +						const char *name,
> +						const char *parent_name,
> +						unsigned long flags,
> +						u8 shift)
> +{
> +	struct dsi_pll_14nm_postdiv *pll_postdiv;
> +	struct device *dev = &pll_14nm->pdev->dev;
> +	struct clk_init_data postdiv_init = {
> +		.parent_names = (const char *[]) { parent_name },
> +		.num_parents = 1,
> +		.name = name,
> +		.flags = flags,
> +		.ops = &clk_ops_dsi_pll_14nm_postdiv,
> +	};
> +	int ret;
> +
> +	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
> +	if (!pll_postdiv)
> +		return ERR_PTR(-ENOMEM);
> +
> +	pll_postdiv->pll = pll_14nm;
> +	pll_postdiv->shift = shift;
> +	/* both N1 and N2 postdividers are 4 bits wide */
> +	pll_postdiv->width = 4;
> +	/* range of each divider is from 1 to 15 */
> +	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
> +	pll_postdiv->hw.init = &postdiv_init;
> +
> +	ret = clk_hw_register(dev, &pll_postdiv->hw);
> +	if (ret)
> +		return ERR_PTR(ret);
> +
> +	return &pll_postdiv->hw;
> +}
> +
> +static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm)
> +{
> +	char clk_name[32], parent[32], vco_name[32];
> +	struct clk_init_data vco_init = {
> +		.parent_names = (const char *[]){ "xo" },
> +		.num_parents = 1,
> +		.name = vco_name,
> +		.flags = CLK_IGNORE_UNUSED,
> +		.ops = &clk_ops_dsi_pll_14nm_vco,
> +	};
> +	struct device *dev = &pll_14nm->pdev->dev;
> +	struct clk_hw **hws = pll_14nm->hws;
> +	struct clk_hw_onecell_data *hw_data;
> +	struct clk_hw *hw;
> +	int num = 0;
> +	int ret;
> +
> +	DBG("DSI%d", pll_14nm->id);
> +
> +	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> +			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> +			       GFP_KERNEL);
> +	if (!hw_data)
> +		return -ENOMEM;
> +
> +	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id);
> +	pll_14nm->base.clk_hw.init = &vco_init;
> +
> +	ret = clk_hw_register(dev, &pll_14nm->base.clk_hw);
> +	if (ret)
> +		return ret;
> +
> +	hws[num++] = &pll_14nm->base.clk_hw;
> +
> +	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> +	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id);
> +
> +	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
> +	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
> +				       CLK_SET_RATE_PARENT, 0);
> +	if (IS_ERR(hw))
> +		return PTR_ERR(hw);
> +
> +	hws[num++] = hw;
> +
> +	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id);
> +	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> +
> +	/* DSI Byte clock = VCO_CLK / N1 / 8 */
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  CLK_SET_RATE_PARENT, 1, 8);
> +	if (IS_ERR(hw))
> +		return PTR_ERR(hw);
> +
> +	hws[num++] = hw;
> +	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> +
> +	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
> +	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> +
> +	/*
> +	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
> +	 * on the way. Don't let it set parent.
> +	 */
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
> +	if (IS_ERR(hw))
> +		return PTR_ERR(hw);
> +
> +	hws[num++] = hw;
> +
> +	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id);
> +	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
> +
> +	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
> +	 * This is the output of N2 post-divider, bits 4-7 in
> +	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
> +	 */
> +	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
> +	if (IS_ERR(hw))
> +		return PTR_ERR(hw);
> +
> +	hws[num++] = hw;
> +	hw_data->hws[DSI_PIXEL_PLL_CLK]	= hw;
> +
> +	pll_14nm->num_hws = num;
> +
> +	hw_data->num = NUM_PROVIDED_CLKS;
> +	pll_14nm->hw_data = hw_data;
> +
> +	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> +				     pll_14nm->hw_data);
> +	if (ret) {
> +		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device 
> *pdev, int id)
> +{
> +	struct dsi_pll_14nm *pll_14nm;
> +	struct msm_dsi_pll *pll;
> +	int ret;
> +
> +	if (!pdev)
> +		return ERR_PTR(-ENODEV);
> +
> +	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
> +	if (!pll_14nm)
> +		return ERR_PTR(-ENOMEM);
> +
> +	DBG("PLL%d", id);
> +
> +	pll_14nm->pdev = pdev;
> +	pll_14nm->id = id;
> +	pll_14nm_list[id] = pll_14nm;
> +
> +	pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> +	if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> +	if (IS_ERR_OR_NULL(pll_14nm->mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	spin_lock_init(&pll_14nm->postdiv_lock);
> +
> +	pll = &pll_14nm->base;
> +	pll->min_rate = VCO_MIN_RATE;
> +	pll->max_rate = VCO_MAX_RATE;
> +	pll->get_provider = dsi_pll_14nm_get_provider;
> +	pll->destroy = dsi_pll_14nm_destroy;
> +	pll->disable_seq = dsi_pll_14nm_disable_seq;
> +	pll->save_state = dsi_pll_14nm_save_state;
> +	pll->restore_state = dsi_pll_14nm_restore_state;
> +	pll->set_usecase = dsi_pll_14nm_set_usecase;
> +
> +	pll_14nm->vco_delay = 1;
> +
> +	pll->en_seq_cnt = 1;
> +	pll->enable_seqs[0] = dsi_pll_14nm_enable_seq;
> +
> +	ret = pll_14nm_register(pll_14nm);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> +		return ERR_PTR(ret);
> +	}
> +
> +	return pll;
> +}
> +
>  static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
>  				     struct msm_dsi_dphy_timing *timing,
>  				     int lane_idx)
> diff --git a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c
> index 5bf79de0da67..2f502efa4dd5 100644
> --- a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c
> +++ b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm.c
> @@ -3,9 +3,646 @@
>   * Copyright (c) 2015, The Linux Foundation. All rights reserved.
>   */
> 
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
> +
>  #include "dsi_phy.h"
> +#include "dsi_pll.h"
>  #include "dsi.xml.h"
> 
> +/*
> + * DSI PLL 28nm - clock diagram (eg: DSI0):
> + *
> + *         dsi0analog_postdiv_clk
> + *                             |         dsi0indirect_path_div2_clk
> + *                             |          |
> + *                   +------+  |  +----+  |  |\   dsi0byte_mux
> + *  dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \   |
> + *                |  +------+     +----+     | m|  |  +----+
> + *                |                          | u|--o--| /4 |-- 
> dsi0pllbyte
> + *                |                          | x|     +----+
> + *                o--------------------------| /
> + *                |                          |/
> + *                |          +------+
> + *                o----------| DIV3 |------------------------- dsi0pll
> + *                           +------+
> + */
> +
> +#define POLL_MAX_READS			10
> +#define POLL_TIMEOUT_US		50
> +
> +#define NUM_PROVIDED_CLKS		2
> +
> +#define VCO_REF_CLK_RATE		19200000
> +#define VCO_MIN_RATE			350000000
> +#define VCO_MAX_RATE			750000000
> +
> +#define DSI_BYTE_PLL_CLK		0
> +#define DSI_PIXEL_PLL_CLK		1
> +
> +#define LPFR_LUT_SIZE			10
> +struct lpfr_cfg {
> +	unsigned long vco_rate;
> +	u32 resistance;
> +};
> +
> +/* Loop filter resistance: */
> +static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = {
> +	{ 479500000,  8 },
> +	{ 480000000, 11 },
> +	{ 575500000,  8 },
> +	{ 576000000, 12 },
> +	{ 610500000,  8 },
> +	{ 659500000,  9 },
> +	{ 671500000, 10 },
> +	{ 672000000, 14 },
> +	{ 708500000, 10 },
> +	{ 750000000, 11 },
> +};
> +
> +struct pll_28nm_cached_state {
> +	unsigned long vco_rate;
> +	u8 postdiv3;
> +	u8 postdiv1;
> +	u8 byte_mux;
> +};
> +
> +struct dsi_pll_28nm {
> +	struct msm_dsi_pll base;
> +
> +	int id;
> +	struct platform_device *pdev;
> +	void __iomem *mmio;
> +
> +	int vco_delay;
> +
> +	/* private clocks: */
> +	struct clk *clks[NUM_DSI_CLOCKS_MAX];
> +	u32 num_clks;
> +
> +	/* clock-provider: */
> +	struct clk *provided_clks[NUM_PROVIDED_CLKS];
> +	struct clk_onecell_data clk_data;
> +
> +	struct pll_28nm_cached_state cached_state;
> +};
> +
> +#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)
> +
> +static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
> +				u32 nb_tries, u32 timeout_us)
> +{
> +	bool pll_locked = false;
> +	u32 val;
> +
> +	while (nb_tries--) {
> +		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_STATUS);
> +		pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY);
> +
> +		if (pll_locked)
> +			break;
> +
> +		udelay(timeout_us);
> +	}
> +	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> +
> +	return pll_locked;
> +}
> +
> +static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm)
> +{
> +	void __iomem *base = pll_28nm->mmio;
> +
> +	/*
> +	 * Add HW recommended delays after toggling the software
> +	 * reset bit off and back on.
> +	 */
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG,
> +			DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1);
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1);
> +}
> +
> +/*
> + * Clock Callbacks
> + */
> +static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> +		unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	void __iomem *base = pll_28nm->mmio;
> +	unsigned long div_fbx1000, gen_vco_clk;
> +	u32 refclk_cfg, frac_n_mode, frac_n_value;
> +	u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
> +	u32 cal_cfg10, cal_cfg11;
> +	u32 rem;
> +	int i;
> +
> +	VERB("rate=%lu, parent's=%lu", rate, parent_rate);
> +
> +	/* Force postdiv2 to be div-4 */
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3);
> +
> +	/* Configure the Loop filter resistance */
> +	for (i = 0; i < LPFR_LUT_SIZE; i++)
> +		if (rate <= lpfr_lut[i].vco_rate)
> +			break;
> +	if (i == LPFR_LUT_SIZE) {
> +		DRM_DEV_ERROR(dev, "unable to get loop filter resistance. 
> vco=%lu\n",
> +				rate);
> +		return -EINVAL;
> +	}
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, 
> lpfr_lut[i].resistance);
> +
> +	/* Loop filter capacitance values : c1 and c2 */
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15);
> +
> +	rem = rate % VCO_REF_CLK_RATE;
> +	if (rem) {
> +		refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
> +		frac_n_mode = 1;
> +		div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500);
> +		gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500);
> +	} else {
> +		refclk_cfg = 0x0;
> +		frac_n_mode = 0;
> +		div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000);
> +		gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000);
> +	}
> +
> +	DBG("refclk_cfg = %d", refclk_cfg);
> +
> +	rem = div_fbx1000 % 1000;
> +	frac_n_value = (rem << 16) / 1000;
> +
> +	DBG("div_fb = %lu", div_fbx1000);
> +	DBG("frac_n_value = %d", frac_n_value);
> +
> +	DBG("Generated VCO Clock: %lu", gen_vco_clk);
> +	rem = 0;
> +	sdm_cfg1 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1);
> +	sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK;
> +	if (frac_n_mode) {
> +		sdm_cfg0 = 0x0;
> +		sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0);
> +		sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(
> +				(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
> +		sdm_cfg3 = frac_n_value >> 8;
> +		sdm_cfg2 = frac_n_value & 0xff;
> +	} else {
> +		sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP;
> +		sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(
> +				(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
> +		sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0);
> +		sdm_cfg2 = 0;
> +		sdm_cfg3 = 0;
> +	}
> +
> +	DBG("sdm_cfg0=%d", sdm_cfg0);
> +	DBG("sdm_cfg1=%d", sdm_cfg1);
> +	DBG("sdm_cfg2=%d", sdm_cfg2);
> +	DBG("sdm_cfg3=%d", sdm_cfg3);
> +
> +	cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000));
> +	cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000);
> +	DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11);
> +
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3,    0x2b);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4,    0x06);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,  0x0d);
> +
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2,
> +		DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2));
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3,
> +		DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3));
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00);
> +
> +	/* Add hardware recommended delay for correct PLL configuration */
> +	if (pll_28nm->vco_delay)
> +		udelay(pll_28nm->vco_delay);
> +
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0,   sdm_cfg0);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0,   0x12);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6,   0x30);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7,   0x00);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8,   0x60);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9,   0x00);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10,  cal_cfg10 & 0xff);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11,  cal_cfg11 & 0xff);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG,  0x20);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
> +					POLL_TIMEOUT_US);
> +}
> +
> +static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
> +		unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	void __iomem *base = pll_28nm->mmio;
> +	u32 sdm0, doubler, sdm_byp_div;
> +	u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
> +	u32 ref_clk = VCO_REF_CLK_RATE;
> +	unsigned long vco_rate;
> +
> +	VERB("parent_rate=%lu", parent_rate);
> +
> +	/* Check to see if the ref clk doubler is enabled */
> +	doubler = pll_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) &
> +			DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
> +	ref_clk += (doubler * VCO_REF_CLK_RATE);
> +
> +	/* see if it is integer mode or sdm mode */
> +	sdm0 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0);
> +	if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) {
> +		/* integer mode */
> +		sdm_byp_div = FIELD(
> +				pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0),
> +				DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1;
> +		vco_rate = ref_clk * sdm_byp_div;
> +	} else {
> +		/* sdm mode */
> +		sdm_dc_off = FIELD(
> +				pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1),
> +				DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET);
> +		DBG("sdm_dc_off = %d", sdm_dc_off);
> +		sdm2 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2),
> +				DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0);
> +		sdm3 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3),
> +				DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8);
> +		sdm_freq_seed = (sdm3 << 8) | sdm2;
> +		DBG("sdm_freq_seed = %d", sdm_freq_seed);
> +
> +		vco_rate = (ref_clk * (sdm_dc_off + 1)) +
> +			mult_frac(ref_clk, sdm_freq_seed, BIT(16));
> +		DBG("vco rate = %lu", vco_rate);
> +	}
> +
> +	DBG("returning vco rate = %lu", vco_rate);
> +
> +	return vco_rate;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
> +	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> +	.set_rate = dsi_pll_28nm_clk_set_rate,
> +	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
> +	.prepare = msm_dsi_pll_helper_clk_prepare,
> +	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> +	.is_enabled = dsi_pll_28nm_clk_is_enabled,
> +};
> +
> +/*
> + * PLL Callbacks
> + */
> +static int dsi_pll_28nm_enable_seq_hpm(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	void __iomem *base = pll_28nm->mmio;
> +	u32 max_reads = 5, timeout_us = 100;
> +	bool locked;
> +	u32 val;
> +	int i;
> +
> +	DBG("id=%d", pll_28nm->id);
> +
> +	pll_28nm_software_reset(pll_28nm);
> +
> +	/*
> +	 * PLL power up sequence.
> +	 * Add necessary delays recommended by hardware.
> +	 */
> +	val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
> +
> +	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> +
> +	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> +
> +	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
> +
> +	for (i = 0; i < 2; i++) {
> +		/* DSI Uniphy lock detect setting */
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,
> +				0x0c, 100);
> +		pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
> +
> +		/* poll for PLL ready status */
> +		locked = pll_28nm_poll_for_ready(pll_28nm,
> +						max_reads, timeout_us);
> +		if (locked)
> +			break;
> +
> +		pll_28nm_software_reset(pll_28nm);
> +
> +		/*
> +		 * PLL power up sequence.
> +		 * Add necessary delays recommended by hardware.
> +		 */
> +		val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
> +
> +		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> +
> +		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250);
> +
> +		val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> +
> +		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> +
> +		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> +		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
> +	}
> +
> +	if (unlikely(!locked))
> +		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> +	else
> +		DBG("DSI PLL Lock success");
> +
> +	return locked ? 0 : -EINVAL;
> +}
> +
> +static int dsi_pll_28nm_enable_seq_lp(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	void __iomem *base = pll_28nm->mmio;
> +	bool locked;
> +	u32 max_reads = 10, timeout_us = 50;
> +	u32 val;
> +
> +	DBG("id=%d", pll_28nm->id);
> +
> +	pll_28nm_software_reset(pll_28nm);
> +
> +	/*
> +	 * PLL power up sequence.
> +	 * Add necessary delays recommended by hardware.
> +	 */
> +	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500);
> +
> +	val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> +	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> +
> +	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> +	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> +
> +	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B |
> +		DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> +	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> +
> +	/* DSI PLL toggle lock detect setting */
> +	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500);
> +	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512);
> +
> +	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
> +
> +	if (unlikely(!locked))
> +		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> +	else
> +		DBG("DSI PLL lock success");
> +
> +	return locked ? 0 : -EINVAL;
> +}
> +
> +static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	DBG("id=%d", pll_28nm->id);
> +	pll_write(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00);
> +}
> +
> +static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> +	void __iomem *base = pll_28nm->mmio;
> +
> +	cached_state->postdiv3 =
> +			pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG);
> +	cached_state->postdiv1 =
> +			pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG);
> +	cached_state->byte_mux = pll_read(base + 
> REG_DSI_28nm_PHY_PLL_VREG_CFG);
> +	if (dsi_pll_28nm_clk_is_enabled(&pll->clk_hw))
> +		cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> +	else
> +		cached_state->vco_rate = 0;
> +}
> +
> +static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> +	void __iomem *base = pll_28nm->mmio;
> +	int ret;
> +
> +	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
> +					cached_state->vco_rate, 0);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
> +			"restore vco rate failed. ret=%d\n", ret);
> +		return ret;
> +	}
> +
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
> +			cached_state->postdiv3);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
> +			cached_state->postdiv1);
> +	pll_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG,
> +			cached_state->byte_mux);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
> +				struct clk **byte_clk_provider,
> +				struct clk **pixel_clk_provider)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	if (byte_clk_provider)
> +		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
> +	if (pixel_clk_provider)
> +		*pixel_clk_provider =
> +				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
> +
> +	return 0;
> +}
> +
> +static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	int i;
> +
> +	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
> +					pll_28nm->clks, pll_28nm->num_clks);
> +
> +	for (i = 0; i < NUM_PROVIDED_CLKS; i++)
> +		pll_28nm->provided_clks[i] = NULL;
> +
> +	pll_28nm->num_clks = 0;
> +	pll_28nm->clk_data.clks = NULL;
> +	pll_28nm->clk_data.clk_num = 0;
> +}
> +
> +static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
> +{
> +	char clk_name[32], parent1[32], parent2[32], vco_name[32];
> +	struct clk_init_data vco_init = {
> +		.parent_names = (const char *[]){ "xo" },
> +		.num_parents = 1,
> +		.name = vco_name,
> +		.flags = CLK_IGNORE_UNUSED,
> +		.ops = &clk_ops_dsi_pll_28nm_vco,
> +	};
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	struct clk **clks = pll_28nm->clks;
> +	struct clk **provided_clks = pll_28nm->provided_clks;
> +	int num = 0;
> +	int ret;
> +
> +	DBG("%d", pll_28nm->id);
> +
> +	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
> +	pll_28nm->base.clk_hw.init = &vco_init;
> +	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
> +
> +	snprintf(clk_name, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
> +	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> +	clks[num++] = clk_register_divider(dev, clk_name,
> +			parent1, CLK_SET_RATE_PARENT,
> +			pll_28nm->mmio +
> +			REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
> +			0, 4, 0, NULL);
> +
> +	snprintf(clk_name, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
> +	snprintf(parent1, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
> +	clks[num++] = clk_register_fixed_factor(dev, clk_name,
> +			parent1, CLK_SET_RATE_PARENT,
> +			1, 2);
> +
> +	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
> +	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> +	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
> +			clk_register_divider(dev, clk_name,
> +				parent1, 0, pll_28nm->mmio +
> +				REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
> +				0, 8, 0, NULL);
> +
> +	snprintf(clk_name, 32, "dsi%dbyte_mux", pll_28nm->id);
> +	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> +	snprintf(parent2, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
> +	clks[num++] = clk_register_mux(dev, clk_name,
> +			((const char *[]){
> +				parent1, parent2
> +			}), 2, CLK_SET_RATE_PARENT, pll_28nm->mmio +
> +			REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL);
> +
> +	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
> +	snprintf(parent1, 32, "dsi%dbyte_mux", pll_28nm->id);
> +	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
> +			clk_register_fixed_factor(dev, clk_name,
> +				parent1, CLK_SET_RATE_PARENT, 1, 4);
> +
> +	pll_28nm->num_clks = num;
> +
> +	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
> +	pll_28nm->clk_data.clks = provided_clks;
> +
> +	ret = of_clk_add_provider(dev->of_node,
> +			of_clk_src_onecell_get, &pll_28nm->clk_data);
> +	if (ret) {
> +		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +struct msm_dsi_pll *msm_dsi_pll_28nm_init(struct platform_device 
> *pdev,
> +					enum msm_dsi_phy_type type, int id)
> +{
> +	struct dsi_pll_28nm *pll_28nm;
> +	struct msm_dsi_pll *pll;
> +	int ret;
> +
> +	if (!pdev)
> +		return ERR_PTR(-ENODEV);
> +
> +	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
> +	if (!pll_28nm)
> +		return ERR_PTR(-ENOMEM);
> +
> +	pll_28nm->pdev = pdev;
> +	pll_28nm->id = id;
> +
> +	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> +	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	pll = &pll_28nm->base;
> +	pll->min_rate = VCO_MIN_RATE;
> +	pll->max_rate = VCO_MAX_RATE;
> +	pll->get_provider = dsi_pll_28nm_get_provider;
> +	pll->destroy = dsi_pll_28nm_destroy;
> +	pll->disable_seq = dsi_pll_28nm_disable_seq;
> +	pll->save_state = dsi_pll_28nm_save_state;
> +	pll->restore_state = dsi_pll_28nm_restore_state;
> +
> +	if (type == MSM_DSI_PHY_28NM_HPM) {
> +		pll_28nm->vco_delay = 1;
> +
> +		pll->en_seq_cnt = 3;
> +		pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_hpm;
> +		pll->enable_seqs[1] = dsi_pll_28nm_enable_seq_hpm;
> +		pll->enable_seqs[2] = dsi_pll_28nm_enable_seq_hpm;
> +	} else if (type == MSM_DSI_PHY_28NM_LP) {
> +		pll_28nm->vco_delay = 1000;
> +
> +		pll->en_seq_cnt = 1;
> +		pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_lp;
> +	} else {
> +		DRM_DEV_ERROR(&pdev->dev, "phy type (%d) is not 28nm\n", type);
> +		return ERR_PTR(-EINVAL);
> +	}
> +
> +	ret = pll_28nm_register(pll_28nm);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> +		return ERR_PTR(ret);
> +	}
> +
> +	return pll;
> +}
> +
> +
>  static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
>  		struct msm_dsi_dphy_timing *timing)
>  {
> diff --git a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c
> index 5d33de27a0f4..4a40513057e8 100644
> --- a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c
> +++ b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c
> @@ -3,11 +3,530 @@
>   * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
>   */
> 
> +#include <linux/clk-provider.h>
>  #include <linux/delay.h>
> 
>  #include "dsi_phy.h"
> +#include "dsi_pll.h"
>  #include "dsi.xml.h"
> 
> +/*
> + * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
> + *
> + *
> + *                        +------+
> + *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
> + *  F * byte_clk    |     +------+
> + *                  | bit clock divider (F / 8)
> + *                  |
> + *                  |     +------+
> + *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
> + *                  |     +------+                 | (sets parent 
> rate)
> + *                  | byte clock divider (F)       |
> + *                  |                              |
> + *                  |                              o---> To esc RCG
> + *                  |                                (doesn't set 
> parent rate)
> + *                  |
> + *                  |     +------+
> + *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
> + *                        +------+                 | (sets parent 
> rate)
> + *                  dsi clock divider (F * magic)  |
> + *                                                 |
> + *                                                 o---> To pixel rcg
> + *                                                  (doesn't set 
> parent rate)
> + */
> +
> +#define POLL_MAX_READS		8000
> +#define POLL_TIMEOUT_US		1
> +
> +#define NUM_PROVIDED_CLKS	2
> +
> +#define VCO_REF_CLK_RATE	27000000
> +#define VCO_MIN_RATE		600000000
> +#define VCO_MAX_RATE		1200000000
> +
> +#define DSI_BYTE_PLL_CLK	0
> +#define DSI_PIXEL_PLL_CLK	1
> +
> +#define VCO_PREF_DIV_RATIO	27
> +
> +struct pll_28nm_cached_state {
> +	unsigned long vco_rate;
> +	u8 postdiv3;
> +	u8 postdiv2;
> +	u8 postdiv1;
> +};
> +
> +struct clk_bytediv {
> +	struct clk_hw hw;
> +	void __iomem *reg;
> +};
> +
> +struct dsi_pll_28nm {
> +	struct msm_dsi_pll base;
> +
> +	int id;
> +	struct platform_device *pdev;
> +	void __iomem *mmio;
> +
> +	/* custom byte clock divider */
> +	struct clk_bytediv *bytediv;
> +
> +	/* private clocks: */
> +	struct clk *clks[NUM_DSI_CLOCKS_MAX];
> +	u32 num_clks;
> +
> +	/* clock-provider: */
> +	struct clk *provided_clks[NUM_PROVIDED_CLKS];
> +	struct clk_onecell_data clk_data;
> +
> +	struct pll_28nm_cached_state cached_state;
> +};
> +
> +#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)
> +
> +static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
> +				    int nb_tries, int timeout_us)
> +{
> +	bool pll_locked = false;
> +	u32 val;
> +
> +	while (nb_tries--) {
> +		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY);
> +		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);
> +
> +		if (pll_locked)
> +			break;
> +
> +		udelay(timeout_us);
> +	}
> +	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> +
> +	return pll_locked;
> +}
> +
> +/*
> + * Clock Callbacks
> + */
> +static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> +				     unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	void __iomem *base = pll_28nm->mmio;
> +	u32 val, temp, fb_divider;
> +
> +	DBG("rate=%lu, parent's=%lu", rate, parent_rate);
> +
> +	temp = rate / 10;
> +	val = VCO_REF_CLK_RATE / 10;
> +	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
> +	fb_divider = fb_divider / 2 - 1;
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
> +			fb_divider & 0xff);
> +
> +	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);
> +
> +	val |= (fb_divider >> 8) & 0x07;
> +
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
> +			val);
> +
> +	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
> +
> +	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;
> +
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
> +			val);
> +
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
> +			0xf);
> +
> +	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> +	val |= 0x7 << 4;
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
> +			val);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
> +					POLL_TIMEOUT_US);
> +}
> +
> +static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
> +						  unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	void __iomem *base = pll_28nm->mmio;
> +	unsigned long vco_rate;
> +	u32 status, fb_divider, temp, ref_divider;
> +
> +	VERB("parent_rate=%lu", parent_rate);
> +
> +	status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);
> +
> +	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
> +		fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
> +		fb_divider &= 0xff;
> +		temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
> +		fb_divider = (temp << 8) | fb_divider;
> +		fb_divider += 1;
> +
> +		ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
> +		ref_divider &= 0x3f;
> +		ref_divider += 1;
> +
> +		/* multiply by 2 */
> +		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
> +	} else {
> +		vco_rate = 0;
> +	}
> +
> +	DBG("returning vco rate = %lu", vco_rate);
> +
> +	return vco_rate;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
> +	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> +	.set_rate = dsi_pll_28nm_clk_set_rate,
> +	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
> +	.prepare = msm_dsi_pll_helper_clk_prepare,
> +	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> +	.is_enabled = dsi_pll_28nm_clk_is_enabled,
> +};
> +
> +/*
> + * Custom byte clock divier clk_ops
> + *
> + * This clock is the entry point to configuring the PLL. The user (dsi 
> host)
> + * will set this clock's rate to the desired byte clock rate. The VCO 
> lock
> + * frequency is a multiple of the byte clock rate. The multiplication 
> factor
> + * (shown as F in the diagram above) is a function of the byte clock 
> rate.
> + *
> + * This custom divider clock ensures that its parent (VCO) is set to 
> the
> + * desired rate, and that the byte clock postdivider (POSTDIV2) is 
> configured
> + * accordingly
> + */
> +#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)
> +
> +static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
> +		unsigned long parent_rate)
> +{
> +	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
> +	unsigned int div;
> +
> +	div = pll_read(bytediv->reg) & 0xff;
> +
> +	return parent_rate / (div + 1);
> +}
> +
> +/* find multiplication factor(wrt byte clock) at which the VCO should 
> be set */
> +static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
> +{
> +	unsigned long bit_mhz;
> +
> +	/* convert to bit clock in Mhz */
> +	bit_mhz = (byte_clk_rate * 8) / 1000000;
> +
> +	if (bit_mhz < 125)
> +		return 64;
> +	else if (bit_mhz < 250)
> +		return 32;
> +	else if (bit_mhz < 600)
> +		return 16;
> +	else
> +		return 8;
> +}
> +
> +static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long 
> rate,
> +				   unsigned long *prate)
> +{
> +	unsigned long best_parent;
> +	unsigned int factor;
> +
> +	factor = get_vco_mul_factor(rate);
> +
> +	best_parent = rate * factor;
> +	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
> +
> +	return *prate / factor;
> +}
> +
> +static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
> +				unsigned long parent_rate)
> +{
> +	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
> +	u32 val;
> +	unsigned int factor;
> +
> +	factor = get_vco_mul_factor(rate);
> +
> +	val = pll_read(bytediv->reg);
> +	val |= (factor - 1) & 0xff;
> +	pll_write(bytediv->reg, val);
> +
> +	return 0;
> +}
> +
> +/* Our special byte clock divider ops */
> +static const struct clk_ops clk_bytediv_ops = {
> +	.round_rate = clk_bytediv_round_rate,
> +	.set_rate = clk_bytediv_set_rate,
> +	.recalc_rate = clk_bytediv_recalc_rate,
> +};
> +
> +/*
> + * PLL Callbacks
> + */
> +static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	void __iomem *base = pll_28nm->mmio;
> +	bool locked;
> +	unsigned int bit_div, byte_div;
> +	int max_reads = 1000, timeout_us = 100;
> +	u32 val;
> +
> +	DBG("id=%d", pll_28nm->id);
> +
> +	/*
> +	 * before enabling the PLL, configure the bit clock divider since we
> +	 * don't expose it as a clock to the outside world
> +	 * 1: read back the byte clock divider that should already be set
> +	 * 2: divide by 8 to get bit clock divider
> +	 * 3: write it to POSTDIV1
> +	 */
> +	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
> +	byte_div = val + 1;
> +	bit_div = byte_div / 8;
> +
> +	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> +	val &= ~0xf;
> +	val |= (bit_div - 1);
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);
> +
> +	/* enable the PLL */
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
> +			DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);
> +
> +	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
> +
> +	if (unlikely(!locked))
> +		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> +	else
> +		DBG("DSI PLL lock success");
> +
> +	return locked ? 0 : -EINVAL;
> +}
> +
> +static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	DBG("id=%d", pll_28nm->id);
> +	pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
> +}
> +
> +static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> +	void __iomem *base = pll_28nm->mmio;
> +
> +	cached_state->postdiv3 =
> +			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
> +	cached_state->postdiv2 =
> +			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
> +	cached_state->postdiv1 =
> +			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> +
> +	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> +}
> +
> +static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> +	void __iomem *base = pll_28nm->mmio;
> +	int ret;
> +
> +	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
> +					cached_state->vco_rate, 0);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
> +			"restore vco rate failed. ret=%d\n", ret);
> +		return ret;
> +	}
> +
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
> +			cached_state->postdiv3);
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
> +			cached_state->postdiv2);
> +	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
> +			cached_state->postdiv1);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
> +				struct clk **byte_clk_provider,
> +				struct clk **pixel_clk_provider)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	if (byte_clk_provider)
> +		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
> +	if (pixel_clk_provider)
> +		*pixel_clk_provider =
> +				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
> +
> +	return 0;
> +}
> +
> +static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> +
> +	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
> +					pll_28nm->clks, pll_28nm->num_clks);
> +}
> +
> +static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
> +{
> +	char *clk_name, *parent_name, *vco_name;
> +	struct clk_init_data vco_init = {
> +		.parent_names = (const char *[]){ "pxo" },
> +		.num_parents = 1,
> +		.flags = CLK_IGNORE_UNUSED,
> +		.ops = &clk_ops_dsi_pll_28nm_vco,
> +	};
> +	struct device *dev = &pll_28nm->pdev->dev;
> +	struct clk **clks = pll_28nm->clks;
> +	struct clk **provided_clks = pll_28nm->provided_clks;
> +	struct clk_bytediv *bytediv;
> +	struct clk_init_data bytediv_init = { };
> +	int ret, num = 0;
> +
> +	DBG("%d", pll_28nm->id);
> +
> +	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
> +	if (!bytediv)
> +		return -ENOMEM;
> +
> +	vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> +	if (!vco_name)
> +		return -ENOMEM;
> +
> +	parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> +	if (!parent_name)
> +		return -ENOMEM;
> +
> +	clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> +	if (!clk_name)
> +		return -ENOMEM;
> +
> +	pll_28nm->bytediv = bytediv;
> +
> +	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
> +	vco_init.name = vco_name;
> +
> +	pll_28nm->base.clk_hw.init = &vco_init;
> +
> +	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
> +
> +	/* prepare and register bytediv */
> +	bytediv->hw.init = &bytediv_init;
> +	bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;
> +
> +	snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id);
> +	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
> +
> +	bytediv_init.name = clk_name;
> +	bytediv_init.ops = &clk_bytediv_ops;
> +	bytediv_init.flags = CLK_SET_RATE_PARENT;
> +	bytediv_init.parent_names = (const char * const *) &parent_name;
> +	bytediv_init.num_parents = 1;
> +
> +	/* DIV2 */
> +	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
> +			clk_register(dev, &bytediv->hw);
> +
> +	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
> +	/* DIV3 */
> +	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
> +			clk_register_divider(dev, clk_name,
> +				parent_name, 0, pll_28nm->mmio +
> +				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
> +				0, 8, 0, NULL);
> +
> +	pll_28nm->num_clks = num;
> +
> +	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
> +	pll_28nm->clk_data.clks = provided_clks;
> +
> +	ret = of_clk_add_provider(dev->of_node,
> +			of_clk_src_onecell_get, &pll_28nm->clk_data);
> +	if (ret) {
> +		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> +		return ret;
> +	}
> +
> +	return 0;
> +}
> +
> +struct msm_dsi_pll *msm_dsi_pll_28nm_8960_init(struct platform_device 
> *pdev,
> +					       int id)
> +{
> +	struct dsi_pll_28nm *pll_28nm;
> +	struct msm_dsi_pll *pll;
> +	int ret;
> +
> +	if (!pdev)
> +		return ERR_PTR(-ENODEV);
> +
> +	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
> +	if (!pll_28nm)
> +		return ERR_PTR(-ENOMEM);
> +
> +	pll_28nm->pdev = pdev;
> +	pll_28nm->id = id + 1;
> +
> +	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> +	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	pll = &pll_28nm->base;
> +	pll->min_rate = VCO_MIN_RATE;
> +	pll->max_rate = VCO_MAX_RATE;
> +	pll->get_provider = dsi_pll_28nm_get_provider;
> +	pll->destroy = dsi_pll_28nm_destroy;
> +	pll->disable_seq = dsi_pll_28nm_disable_seq;
> +	pll->save_state = dsi_pll_28nm_save_state;
> +	pll->restore_state = dsi_pll_28nm_restore_state;
> +
> +	pll->en_seq_cnt = 1;
> +	pll->enable_seqs[0] = dsi_pll_28nm_enable_seq;
> +
> +	ret = pll_28nm_register(pll_28nm);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> +		return ERR_PTR(ret);
> +	}
> +
> +	return pll;
> +}
> +
>  static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
>  		struct msm_dsi_dphy_timing *timing)
>  {
> diff --git a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c
> index cbfeec860e69..f9af9d70b56a 100644
> --- a/drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c
> +++ b/drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c
> @@ -3,11 +3,916 @@
>   * Copyright (c) 2018, The Linux Foundation
>   */
> 
> +#include <linux/clk.h>
> +#include <linux/clk-provider.h>
>  #include <linux/iopoll.h>
> 
> +#include "dsi_pll.h"
>  #include "dsi_phy.h"
>  #include "dsi.xml.h"
> 
> +/*
> + * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
> + *
> + *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
> + *                              |                |
> + *                              |                |
> + *                 +---------+  |  +----------+  |  +----+
> + *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |--
> dsi0_phy_pll_out_byteclk
> + *                 +---------+  |  +----------+  |  +----+
> + *                              |                |
> + *                              |                |
> dsi0_pll_by_2_bit_clk
> + *                              |                |          |
> + *                              |                |  +----+  |  |\
> dsi0_pclk_mux
> + *                              |                |--| /2 |--o--| \   |
> + *                              |                |  +----+     |  \
> |  +---------+
> + *                              |                --------------|
> |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
> + *                              |------------------------------|  /
>   +---------+
> + *                              |          +-----+             | /
> + *                              -----------| /4? |--o----------|/
> + *                                         +-----+  |           |
> + *                                                  |           
> |dsiclk_sel
> + *                                                  |
> + *                                                  
> dsi0_pll_post_out_div_clk
> + */
> +
> +#define DSI_BYTE_PLL_CLK		0
> +#define DSI_PIXEL_PLL_CLK		1
> +#define NUM_PROVIDED_CLKS		2
> +
> +#define VCO_REF_CLK_RATE		19200000
> +
> +struct dsi_pll_regs {
> +	u32 pll_prop_gain_rate;
> +	u32 pll_lockdet_rate;
> +	u32 decimal_div_start;
> +	u32 frac_div_start_low;
> +	u32 frac_div_start_mid;
> +	u32 frac_div_start_high;
> +	u32 pll_clock_inverters;
> +	u32 ssc_stepsize_low;
> +	u32 ssc_stepsize_high;
> +	u32 ssc_div_per_low;
> +	u32 ssc_div_per_high;
> +	u32 ssc_adjper_low;
> +	u32 ssc_adjper_high;
> +	u32 ssc_control;
> +};
> +
> +struct dsi_pll_config {
> +	u32 ref_freq;
> +	bool div_override;
> +	u32 output_div;
> +	bool ignore_frac;
> +	bool disable_prescaler;
> +	bool enable_ssc;
> +	bool ssc_center;
> +	u32 dec_bits;
> +	u32 frac_bits;
> +	u32 lock_timer;
> +	u32 ssc_freq;
> +	u32 ssc_offset;
> +	u32 ssc_adj_per;
> +	u32 thresh_cycles;
> +	u32 refclk_cycles;
> +};
> +
> +struct pll_7nm_cached_state {
> +	unsigned long vco_rate;
> +	u8 bit_clk_div;
> +	u8 pix_clk_div;
> +	u8 pll_out_div;
> +	u8 pll_mux;
> +};
> +
> +struct dsi_pll_7nm {
> +	struct msm_dsi_pll base;
> +
> +	int id;
> +	struct platform_device *pdev;
> +
> +	void __iomem *phy_cmn_mmio;
> +	void __iomem *mmio;
> +
> +	u64 vco_ref_clk_rate;
> +	u64 vco_current_rate;
> +
> +	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
> +	spinlock_t postdiv_lock;
> +
> +	int vco_delay;
> +	struct dsi_pll_config pll_configuration;
> +	struct dsi_pll_regs reg_setup;
> +
> +	/* private clocks: */
> +	struct clk_hw *out_div_clk_hw;
> +	struct clk_hw *bit_clk_hw;
> +	struct clk_hw *byte_clk_hw;
> +	struct clk_hw *by_2_bit_clk_hw;
> +	struct clk_hw *post_out_div_clk_hw;
> +	struct clk_hw *pclk_mux_hw;
> +	struct clk_hw *out_dsiclk_hw;
> +
> +	/* clock-provider: */
> +	struct clk_hw_onecell_data *hw_data;
> +
> +	struct pll_7nm_cached_state cached_state;
> +
> +	enum msm_dsi_phy_usecase uc;
> +	struct dsi_pll_7nm *slave;
> +};
> +
> +#define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, base)
> +
> +/*
> + * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> + * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> + */
> +static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
> +
> +static void dsi_pll_setup_config(struct dsi_pll_7nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +
> +	config->ref_freq = pll->vco_ref_clk_rate;
> +	config->output_div = 1;
> +	config->dec_bits = 8;
> +	config->frac_bits = 18;
> +	config->lock_timer = 64;
> +	config->ssc_freq = 31500;
> +	config->ssc_offset = 4800;
> +	config->ssc_adj_per = 2;
> +	config->thresh_cycles = 32;
> +	config->refclk_cycles = 256;
> +
> +	config->div_override = false;
> +	config->ignore_frac = false;
> +	config->disable_prescaler = false;
> +
> +	/* TODO: ssc enable */
> +	config->enable_ssc = false;
> +	config->ssc_center = 0;
> +}
> +
> +static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +	u64 fref = pll->vco_ref_clk_rate;
> +	u64 pll_freq;
> +	u64 divider;
> +	u64 dec, dec_multiple;
> +	u32 frac;
> +	u64 multiplier;
> +
> +	pll_freq = pll->vco_current_rate;
> +
> +	if (config->disable_prescaler)
> +		divider = fref;
> +	else
> +		divider = fref * 2;
> +
> +	multiplier = 1 << config->frac_bits;
> +	dec_multiple = div_u64(pll_freq * multiplier, divider);
> +	div_u64_rem(dec_multiple, multiplier, &frac);
> +
> +	dec = div_u64(dec_multiple, multiplier);
> +
> +	if (pll->base.type != MSM_DSI_PHY_7NM_V4_1)
> +		regs->pll_clock_inverters = 0x28;
> +	else if (pll_freq <= 1000000000ULL)
> +		regs->pll_clock_inverters = 0xa0;
> +	else if (pll_freq <= 2500000000ULL)
> +		regs->pll_clock_inverters = 0x20;
> +	else if (pll_freq <= 3020000000ULL)
> +		regs->pll_clock_inverters = 0x00;
> +	else
> +		regs->pll_clock_inverters = 0x40;
> +
> +	regs->pll_lockdet_rate = config->lock_timer;
> +	regs->decimal_div_start = dec;
> +	regs->frac_div_start_low = (frac & 0xff);
> +	regs->frac_div_start_mid = (frac & 0xff00) >> 8;
> +	regs->frac_div_start_high = (frac & 0x30000) >> 16;
> +}
> +
> +#define SSC_CENTER		BIT(0)
> +#define SSC_EN			BIT(1)
> +
> +static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll)
> +{
> +	struct dsi_pll_config *config = &pll->pll_configuration;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +	u32 ssc_per;
> +	u32 ssc_mod;
> +	u64 ssc_step_size;
> +	u64 frac;
> +
> +	if (!config->enable_ssc) {
> +		DBG("SSC not enabled\n");
> +		return;
> +	}
> +
> +	ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 
> 1;
> +	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
> +	ssc_per -= ssc_mod;
> +
> +	frac = regs->frac_div_start_low |
> +			(regs->frac_div_start_mid << 8) |
> +			(regs->frac_div_start_high << 16);
> +	ssc_step_size = regs->decimal_div_start;
> +	ssc_step_size *= (1 << config->frac_bits);
> +	ssc_step_size += frac;
> +	ssc_step_size *= config->ssc_offset;
> +	ssc_step_size *= (config->ssc_adj_per + 1);
> +	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
> +	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
> +
> +	regs->ssc_div_per_low = ssc_per & 0xFF;
> +	regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
> +	regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
> +	regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
> +	regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
> +	regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
> +
> +	regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
> +
> +	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
> +		 regs->decimal_div_start, frac, config->frac_bits);
> +	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
> +		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
> +}
> +
> +static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	struct dsi_pll_regs *regs = &pll->reg_setup;
> +
> +	if (pll->pll_configuration.enable_ssc) {
> +		pr_debug("SSC is enabled\n");
> +
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
> +			  regs->ssc_stepsize_low);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
> +			  regs->ssc_stepsize_high);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
> +			  regs->ssc_div_per_low);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
> +			  regs->ssc_div_per_high);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
> +			  regs->ssc_adjper_low);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
> +			  regs->ssc_adjper_high);
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
> +			  SSC_EN | regs->ssc_control);
> +	}
> +}
> +
> +static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
> +
> +	if (pll->base.type == MSM_DSI_PHY_7NM_V4_1) {
> +		if (pll->vco_current_rate >= 3100000000ULL)
> +			analog_controls_five_1 = 0x03;
> +
> +		if (pll->vco_current_rate < 1520000000ULL)
> +			vco_config_1 = 0x08;
> +		else if (pll->vco_current_rate < 2990000000ULL)
> +			vco_config_1 = 0x01;
> +	}
> +
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
> +		  analog_controls_five_1);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 
> 0xba);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0x84);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0x82);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 
> 0x4c);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
> +		  pll->base.type == MSM_DSI_PHY_7NM_V4_1 ? 0x3f : 0x22);
> +
> +	if (pll->base.type == MSM_DSI_PHY_7NM_V4_1) {
> +		pll_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
> +		if (pll->slave)
> +			pll_write(pll->slave->mmio + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 
> 0x22);
> +	}
> +}
> +
> +static void dsi_pll_commit(struct dsi_pll_7nm *pll)
> +{
> +	void __iomem *base = pll->mmio;
> +	struct dsi_pll_regs *reg = &pll->reg_setup;
> +
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
> reg->decimal_div_start);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
> reg->frac_div_start_low);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
> reg->frac_div_start_mid);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
> reg->frac_div_start_high);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1,
> reg->pll_lockdet_rate);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, 0x10); /* TODO: 0x00 
> for CPHY */
> +	pll_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
> reg->pll_clock_inverters);
> +}
> +
> +static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> +				     unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +
> +	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->id, rate,
> +	    parent_rate);
> +
> +	pll_7nm->vco_current_rate = rate;
> +	pll_7nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> +
> +	dsi_pll_setup_config(pll_7nm);
> +
> +	dsi_pll_calc_dec_frac(pll_7nm);
> +
> +	dsi_pll_calc_ssc(pll_7nm);
> +
> +	dsi_pll_commit(pll_7nm);
> +
> +	dsi_pll_config_hzindep_reg(pll_7nm);
> +
> +	dsi_pll_ssc_commit(pll_7nm);
> +
> +	/* flush, ensure all register writes are done*/
> +	wmb();
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
> +{
> +	int rc;
> +	u32 status = 0;
> +	u32 const delay_us = 100;
> +	u32 const timeout_us = 5000;
> +
> +	rc = readl_poll_timeout_atomic(pll->mmio +
> +				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
> +				       status,
> +				       ((status & BIT(0)) > 0),
> +				       delay_us,
> +				       timeout_us);
> +	if (rc)
> +		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
> +		       pll->id, status);
> +
> +	return rc;
> +}
> +
> +static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
> +{
> +	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0);
> +
> +	pll_write(pll->mmio + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0, data & 
> ~BIT(5));
> +	ndelay(250);
> +}
> +
> +static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
> +{
> +	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0);
> +
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0, data | 
> BIT(5));
> +	pll_write(pll->mmio + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
> +	ndelay(250);
> +}
> +
> +static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
> +{
> +	u32 data;
> +
> +	data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & 
> ~BIT(5));
> +}
> +
> +static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
> +{
> +	u32 data;
> +
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
> +
> +	data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
> +		  data | BIT(5) | BIT(4));
> +}
> +
> +static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
> +{
> +	/*
> +	 * Reset the PHY digital domain. This would be needed when
> +	 * coming out of a CX or analog rail power collapse while
> +	 * ensuring that the pads maintain LP00 or LP11 state
> +	 */
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 
> BIT(0));
> +	wmb(); /* Ensure that the reset is deasserted */
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 
> 0x0);
> +	wmb(); /* Ensure that the reset is deasserted */
> +}
> +
> +static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	int rc;
> +
> +	dsi_pll_enable_pll_bias(pll_7nm);
> +	if (pll_7nm->slave)
> +		dsi_pll_enable_pll_bias(pll_7nm->slave);
> +
> +	/* Start PLL */
> +	pll_write(pll_7nm->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 
> 0x01);
> +
> +	/*
> +	 * ensure all PLL configurations are written prior to checking
> +	 * for PLL lock.
> +	 */
> +	wmb();
> +
> +	/* Check for PLL lock */
> +	rc = dsi_pll_7nm_lock_status(pll_7nm);
> +	if (rc) {
> +		pr_err("PLL(%d) lock failed\n", pll_7nm->id);
> +		goto error;
> +	}
> +
> +	pll->pll_on = true;
> +
> +	/*
> +	 * assert power on reset for PHY digital in case the PLL is
> +	 * enabled after CX of analog domain power collapse. This needs
> +	 * to be done before enabling the global clk.
> +	 */
> +	dsi_pll_phy_dig_reset(pll_7nm);
> +	if (pll_7nm->slave)
> +		dsi_pll_phy_dig_reset(pll_7nm->slave);
> +
> +	dsi_pll_enable_global_clk(pll_7nm);
> +	if (pll_7nm->slave)
> +		dsi_pll_enable_global_clk(pll_7nm->slave);
> +
> +error:
> +	return rc;
> +}
> +
> +static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
> +{
> +	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
> +	dsi_pll_disable_pll_bias(pll);
> +}
> +
> +static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +
> +	/*
> +	 * To avoid any stray glitches while abruptly powering down the PLL
> +	 * make sure to gate the clock using the clock enable bit before
> +	 * powering down the PLL
> +	 */
> +	dsi_pll_disable_global_clk(pll_7nm);
> +	pll_write(pll_7nm->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
> +	dsi_pll_disable_sub(pll_7nm);
> +	if (pll_7nm->slave) {
> +		dsi_pll_disable_global_clk(pll_7nm->slave);
> +		dsi_pll_disable_sub(pll_7nm->slave);
> +	}
> +	/* flush, ensure all register writes are done */
> +	wmb();
> +	pll->pll_on = false;
> +}
> +
> +static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
> +						  unsigned long parent_rate)
> +{
> +	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	struct dsi_pll_config *config = &pll_7nm->pll_configuration;
> +	void __iomem *base = pll_7nm->mmio;
> +	u64 ref_clk = pll_7nm->vco_ref_clk_rate;
> +	u64 vco_rate = 0x0;
> +	u64 multiplier;
> +	u32 frac;
> +	u32 dec;
> +	u64 pll_freq, tmp64;
> +
> +	dec = pll_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
> +	dec &= 0xff;
> +
> +	frac = pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
> +	frac |= ((pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
> +		  0xff) << 8);
> +	frac |= ((pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) 
> &
> +		  0x3) << 16);
> +
> +	/*
> +	 * TODO:
> +	 *	1. Assumes prescaler is disabled
> +	 */
> +	multiplier = 1 << config->frac_bits;
> +	pll_freq = dec * (ref_clk * 2);
> +	tmp64 = (ref_clk * 2 * frac);
> +	pll_freq += div_u64(tmp64, multiplier);
> +
> +	vco_rate = pll_freq;
> +
> +	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
> +	    pll_7nm->id, (unsigned long)vco_rate, dec, frac);
> +
> +	return (unsigned long)vco_rate;
> +}
> +
> +static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
> +	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> +	.set_rate = dsi_pll_7nm_vco_set_rate,
> +	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
> +	.prepare = dsi_pll_7nm_vco_prepare,
> +	.unprepare = dsi_pll_7nm_vco_unprepare,
> +};
> +
> +/*
> + * PLL Callbacks
> + */
> +
> +static void dsi_pll_7nm_save_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
> +	void __iomem *phy_base = pll_7nm->phy_cmn_mmio;
> +	u32 cmn_clk_cfg0, cmn_clk_cfg1;
> +
> +	cached->pll_out_div = pll_read(pll_7nm->mmio +
> +				       REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
> +	cached->pll_out_div &= 0x3;
> +
> +	cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
> +	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
> +	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
> +
> +	cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> +	cached->pll_mux = cmn_clk_cfg1 & 0x3;
> +
> +	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
> +	    pll_7nm->id, cached->pll_out_div, cached->bit_clk_div,
> +	    cached->pix_clk_div, cached->pll_mux);
> +}
> +
> +static int dsi_pll_7nm_restore_state(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
> +	void __iomem *phy_base = pll_7nm->phy_cmn_mmio;
> +	u32 val;
> +	int ret;
> +
> +	val = pll_read(pll_7nm->mmio + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
> +	val &= ~0x3;
> +	val |= cached->pll_out_div;
> +	pll_write(pll_7nm->mmio + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
> +
> +	pll_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> +		  cached->bit_clk_div | (cached->pix_clk_div << 4));
> +
> +	val = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> +	val &= ~0x3;
> +	val |= cached->pll_mux;
> +	pll_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
> +
> +	ret = dsi_pll_7nm_vco_set_rate(&pll->clk_hw,
> pll_7nm->vco_current_rate, pll_7nm->vco_ref_clk_rate);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pll_7nm->pdev->dev,
> +			"restore vco rate failed. ret=%d\n", ret);
> +		return ret;
> +	}
> +
> +	DBG("DSI PLL%d", pll_7nm->id);
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_7nm_set_usecase(struct msm_dsi_pll *pll,
> +				    enum msm_dsi_phy_usecase uc)
> +{
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	void __iomem *base = pll_7nm->phy_cmn_mmio;
> +	u32 data = 0x0;	/* internal PLL */
> +
> +	DBG("DSI PLL%d", pll_7nm->id);
> +
> +	switch (uc) {
> +	case MSM_DSI_PHY_STANDALONE:
> +		break;
> +	case MSM_DSI_PHY_MASTER:
> +		pll_7nm->slave = pll_7nm_list[(pll_7nm->id + 1) % DSI_MAX];
> +		break;
> +	case MSM_DSI_PHY_SLAVE:
> +		data = 0x1; /* external PLL */
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	/* set PLL src */
> +	pll_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
> +
> +	pll_7nm->uc = uc;
> +
> +	return 0;
> +}
> +
> +static int dsi_pll_7nm_get_provider(struct msm_dsi_pll *pll,
> +				     struct clk **byte_clk_provider,
> +				     struct clk **pixel_clk_provider)
> +{
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	struct clk_hw_onecell_data *hw_data = pll_7nm->hw_data;
> +
> +	DBG("DSI PLL%d", pll_7nm->id);
> +
> +	if (byte_clk_provider)
> +		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> +	if (pixel_clk_provider)
> +		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> +
> +	return 0;
> +}
> +
> +static void dsi_pll_7nm_destroy(struct msm_dsi_pll *pll)
> +{
> +	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> +	struct device *dev = &pll_7nm->pdev->dev;
> +
> +	DBG("DSI PLL%d", pll_7nm->id);
> +	of_clk_del_provider(dev->of_node);
> +
> +	clk_hw_unregister_divider(pll_7nm->out_dsiclk_hw);
> +	clk_hw_unregister_mux(pll_7nm->pclk_mux_hw);
> +	clk_hw_unregister_fixed_factor(pll_7nm->post_out_div_clk_hw);
> +	clk_hw_unregister_fixed_factor(pll_7nm->by_2_bit_clk_hw);
> +	clk_hw_unregister_fixed_factor(pll_7nm->byte_clk_hw);
> +	clk_hw_unregister_divider(pll_7nm->bit_clk_hw);
> +	clk_hw_unregister_divider(pll_7nm->out_div_clk_hw);
> +	clk_hw_unregister(&pll_7nm->base.clk_hw);
> +}
> +
> +/*
> + * The post dividers and mux clocks are created using the standard 
> divider and
> + * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its 
> dividers/mux
> + * state to follow the master PLL's divider/mux state. Therefore, we 
> don't
> + * require special clock ops that also configure the slave PLL 
> registers
> + */
> +static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm)
> +{
> +	char clk_name[32], parent[32], vco_name[32];
> +	char parent2[32], parent3[32], parent4[32];
> +	struct clk_init_data vco_init = {
> +		.parent_names = (const char *[]){ "bi_tcxo" },
> +		.num_parents = 1,
> +		.name = vco_name,
> +		.flags = CLK_IGNORE_UNUSED,
> +		.ops = &clk_ops_dsi_pll_7nm_vco,
> +	};
> +	struct device *dev = &pll_7nm->pdev->dev;
> +	struct clk_hw_onecell_data *hw_data;
> +	struct clk_hw *hw;
> +	int ret;
> +
> +	DBG("DSI%d", pll_7nm->id);
> +
> +	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> +			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> +			       GFP_KERNEL);
> +	if (!hw_data)
> +		return -ENOMEM;
> +
> +	snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->id);
> +	pll_7nm->base.clk_hw.init = &vco_init;
> +
> +	ret = clk_hw_register(dev, &pll_7nm->base.clk_hw);
> +	if (ret)
> +		return ret;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->id);
> +
> +	hw = clk_hw_register_divider(dev, clk_name,
> +				     parent, CLK_SET_RATE_PARENT,
> +				     pll_7nm->mmio +
> +				     REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
> +				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_base_clk_hw;
> +	}
> +
> +	pll_7nm->out_div_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> +
> +	/* BIT CLK: DIV_CTRL_3_0 */
> +	hw = clk_hw_register_divider(dev, clk_name, parent,
> +				     CLK_SET_RATE_PARENT,
> +				     pll_7nm->phy_cmn_mmio +
> +				     REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> +				     0, 4, CLK_DIVIDER_ONE_BASED,
> +				     &pll_7nm->postdiv_lock);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_out_div_clk_hw;
> +	}
> +
> +	pll_7nm->bit_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> +
> +	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  CLK_SET_RATE_PARENT, 1, 8);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_bit_clk_hw;
> +	}
> +
> +	pll_7nm->byte_clk_hw = hw;
> +	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> +
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  0, 1, 2);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_byte_clk_hw;
> +	}
> +
> +	pll_7nm->by_2_bit_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> +
> +	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> +					  0, 1, 4);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_by_2_bit_clk_hw;
> +	}
> +
> +	pll_7nm->post_out_div_clk_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> +	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->id);
> +	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> +	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->id);
> +
> +	hw = clk_hw_register_mux(dev, clk_name,
> +				 ((const char *[]){
> +				 parent, parent2, parent3, parent4
> +				 }), 4, 0, pll_7nm->phy_cmn_mmio +
> +				 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
> +				 0, 2, 0, NULL);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_post_out_div_clk_hw;
> +	}
> +
> +	pll_7nm->pclk_mux_hw = hw;
> +
> +	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->id);
> +	snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->id);
> +
> +	/* PIX CLK DIV : DIV_CTRL_7_4*/
> +	hw = clk_hw_register_divider(dev, clk_name, parent,
> +				     0, pll_7nm->phy_cmn_mmio +
> +					REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> +				     4, 4, CLK_DIVIDER_ONE_BASED,
> +				     &pll_7nm->postdiv_lock);
> +	if (IS_ERR(hw)) {
> +		ret = PTR_ERR(hw);
> +		goto err_pclk_mux_hw;
> +	}
> +
> +	pll_7nm->out_dsiclk_hw = hw;
> +	hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
> +
> +	hw_data->num = NUM_PROVIDED_CLKS;
> +	pll_7nm->hw_data = hw_data;
> +
> +	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> +				     pll_7nm->hw_data);
> +	if (ret) {
> +		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> +		goto err_dsiclk_hw;
> +	}
> +
> +	return 0;
> +
> +err_dsiclk_hw:
> +	clk_hw_unregister_divider(pll_7nm->out_dsiclk_hw);
> +err_pclk_mux_hw:
> +	clk_hw_unregister_mux(pll_7nm->pclk_mux_hw);
> +err_post_out_div_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_7nm->post_out_div_clk_hw);
> +err_by_2_bit_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_7nm->by_2_bit_clk_hw);
> +err_byte_clk_hw:
> +	clk_hw_unregister_fixed_factor(pll_7nm->byte_clk_hw);
> +err_bit_clk_hw:
> +	clk_hw_unregister_divider(pll_7nm->bit_clk_hw);
> +err_out_div_clk_hw:
> +	clk_hw_unregister_divider(pll_7nm->out_div_clk_hw);
> +err_base_clk_hw:
> +	clk_hw_unregister(&pll_7nm->base.clk_hw);
> +
> +	return ret;
> +}
> +
> +struct msm_dsi_pll *msm_dsi_pll_7nm_init(struct platform_device *pdev,
> +					enum msm_dsi_phy_type type, int id)
> +{
> +	struct dsi_pll_7nm *pll_7nm;
> +	struct msm_dsi_pll *pll;
> +	int ret;
> +
> +	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
> +	if (!pll_7nm)
> +		return ERR_PTR(-ENOMEM);
> +
> +	DBG("DSI PLL%d", id);
> +
> +	pll_7nm->pdev = pdev;
> +	pll_7nm->id = id;
> +	pll_7nm_list[id] = pll_7nm;
> +
> +	pll_7nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> +	if (IS_ERR_OR_NULL(pll_7nm->phy_cmn_mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	pll_7nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> +	if (IS_ERR_OR_NULL(pll_7nm->mmio)) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> +		return ERR_PTR(-ENOMEM);
> +	}
> +
> +	spin_lock_init(&pll_7nm->postdiv_lock);
> +
> +	pll = &pll_7nm->base;
> +	pll->min_rate = 1000000000UL;
> +	pll->max_rate = 3500000000UL;
> +	if (type == MSM_DSI_PHY_7NM_V4_1) {
> +		pll->min_rate = 600000000UL;
> +		pll->max_rate = (unsigned long)5000000000ULL;
> +		/* workaround for max rate overflowing on 32-bit builds: */
> +		pll->max_rate = max(pll->max_rate, 0xffffffffUL);
> +	}
> +	pll->get_provider = dsi_pll_7nm_get_provider;
> +	pll->destroy = dsi_pll_7nm_destroy;
> +	pll->save_state = dsi_pll_7nm_save_state;
> +	pll->restore_state = dsi_pll_7nm_restore_state;
> +	pll->set_usecase = dsi_pll_7nm_set_usecase;
> +
> +	pll_7nm->vco_delay = 1;
> +
> +	ret = pll_7nm_register(pll_7nm);
> +	if (ret) {
> +		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> +		return ERR_PTR(ret);
> +	}
> +
> +	/* TODO: Remove this when we have proper display handover support */
> +	msm_dsi_pll_save_state(pll);
> +
> +	return pll;
> +}
> +
>  static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
>  {
>  	void __iomem *base = phy->base;
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll.c
> b/drivers/gpu/drm/msm/dsi/phy/dsi_pll.c
> similarity index 100%
> rename from drivers/gpu/drm/msm/dsi/pll/dsi_pll.c
> rename to drivers/gpu/drm/msm/dsi/phy/dsi_pll.c
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll.h
> b/drivers/gpu/drm/msm/dsi/phy/dsi_pll.h
> similarity index 100%
> rename from drivers/gpu/drm/msm/dsi/pll/dsi_pll.h
> rename to drivers/gpu/drm/msm/dsi/phy/dsi_pll.h
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c
> b/drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c
> deleted file mode 100644
> index de3b802ccd3d..000000000000
> --- a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_10nm.c
> +++ /dev/null
> @@ -1,881 +0,0 @@
> -/*
> - * SPDX-License-Identifier: GPL-2.0
> - * Copyright (c) 2018, The Linux Foundation
> - */
> -
> -#include <linux/clk.h>
> -#include <linux/clk-provider.h>
> -#include <linux/iopoll.h>
> -
> -#include "dsi_pll.h"
> -#include "dsi.xml.h"
> -
> -/*
> - * DSI PLL 10nm - clock diagram (eg: DSI0):
> - *
> - *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
> - *                              |                |
> - *                              |                |
> - *                 +---------+  |  +----------+  |  +----+
> - *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |--
> dsi0_phy_pll_out_byteclk
> - *                 +---------+  |  +----------+  |  +----+
> - *                              |                |
> - *                              |                |
> dsi0_pll_by_2_bit_clk
> - *                              |                |          |
> - *                              |                |  +----+  |  |\
> dsi0_pclk_mux
> - *                              |                |--| /2 |--o--| \   |
> - *                              |                |  +----+     |  \
> |  +---------+
> - *                              |                --------------|
> |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
> - *                              |------------------------------|  /
>   +---------+
> - *                              |          +-----+             | /
> - *                              -----------| /4? |--o----------|/
> - *                                         +-----+  |           |
> - *                                                  |           
> |dsiclk_sel
> - *                                                  |
> - *                                                  
> dsi0_pll_post_out_div_clk
> - */
> -
> -#define DSI_BYTE_PLL_CLK		0
> -#define DSI_PIXEL_PLL_CLK		1
> -#define NUM_PROVIDED_CLKS		2
> -
> -#define VCO_REF_CLK_RATE		19200000
> -
> -struct dsi_pll_regs {
> -	u32 pll_prop_gain_rate;
> -	u32 pll_lockdet_rate;
> -	u32 decimal_div_start;
> -	u32 frac_div_start_low;
> -	u32 frac_div_start_mid;
> -	u32 frac_div_start_high;
> -	u32 pll_clock_inverters;
> -	u32 ssc_stepsize_low;
> -	u32 ssc_stepsize_high;
> -	u32 ssc_div_per_low;
> -	u32 ssc_div_per_high;
> -	u32 ssc_adjper_low;
> -	u32 ssc_adjper_high;
> -	u32 ssc_control;
> -};
> -
> -struct dsi_pll_config {
> -	u32 ref_freq;
> -	bool div_override;
> -	u32 output_div;
> -	bool ignore_frac;
> -	bool disable_prescaler;
> -	bool enable_ssc;
> -	bool ssc_center;
> -	u32 dec_bits;
> -	u32 frac_bits;
> -	u32 lock_timer;
> -	u32 ssc_freq;
> -	u32 ssc_offset;
> -	u32 ssc_adj_per;
> -	u32 thresh_cycles;
> -	u32 refclk_cycles;
> -};
> -
> -struct pll_10nm_cached_state {
> -	unsigned long vco_rate;
> -	u8 bit_clk_div;
> -	u8 pix_clk_div;
> -	u8 pll_out_div;
> -	u8 pll_mux;
> -};
> -
> -struct dsi_pll_10nm {
> -	struct msm_dsi_pll base;
> -
> -	int id;
> -	struct platform_device *pdev;
> -
> -	void __iomem *phy_cmn_mmio;
> -	void __iomem *mmio;
> -
> -	u64 vco_ref_clk_rate;
> -	u64 vco_current_rate;
> -
> -	/* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */
> -	spinlock_t postdiv_lock;
> -
> -	int vco_delay;
> -	struct dsi_pll_config pll_configuration;
> -	struct dsi_pll_regs reg_setup;
> -
> -	/* private clocks: */
> -	struct clk_hw *out_div_clk_hw;
> -	struct clk_hw *bit_clk_hw;
> -	struct clk_hw *byte_clk_hw;
> -	struct clk_hw *by_2_bit_clk_hw;
> -	struct clk_hw *post_out_div_clk_hw;
> -	struct clk_hw *pclk_mux_hw;
> -	struct clk_hw *out_dsiclk_hw;
> -
> -	/* clock-provider: */
> -	struct clk_hw_onecell_data *hw_data;
> -
> -	struct pll_10nm_cached_state cached_state;
> -
> -	enum msm_dsi_phy_usecase uc;
> -	struct dsi_pll_10nm *slave;
> -};
> -
> -#define to_pll_10nm(x)	container_of(x, struct dsi_pll_10nm, base)
> -
> -/*
> - * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> - * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> - */
> -static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX];
> -
> -static void dsi_pll_setup_config(struct dsi_pll_10nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -
> -	config->ref_freq = pll->vco_ref_clk_rate;
> -	config->output_div = 1;
> -	config->dec_bits = 8;
> -	config->frac_bits = 18;
> -	config->lock_timer = 64;
> -	config->ssc_freq = 31500;
> -	config->ssc_offset = 5000;
> -	config->ssc_adj_per = 2;
> -	config->thresh_cycles = 32;
> -	config->refclk_cycles = 256;
> -
> -	config->div_override = false;
> -	config->ignore_frac = false;
> -	config->disable_prescaler = false;
> -
> -	config->enable_ssc = false;
> -	config->ssc_center = 0;
> -}
> -
> -static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -	u64 fref = pll->vco_ref_clk_rate;
> -	u64 pll_freq;
> -	u64 divider;
> -	u64 dec, dec_multiple;
> -	u32 frac;
> -	u64 multiplier;
> -
> -	pll_freq = pll->vco_current_rate;
> -
> -	if (config->disable_prescaler)
> -		divider = fref;
> -	else
> -		divider = fref * 2;
> -
> -	multiplier = 1 << config->frac_bits;
> -	dec_multiple = div_u64(pll_freq * multiplier, divider);
> -	dec = div_u64_rem(dec_multiple, multiplier, &frac);
> -
> -	if (pll_freq <= 1900000000UL)
> -		regs->pll_prop_gain_rate = 8;
> -	else if (pll_freq <= 3000000000UL)
> -		regs->pll_prop_gain_rate = 10;
> -	else
> -		regs->pll_prop_gain_rate = 12;
> -	if (pll_freq < 1100000000UL)
> -		regs->pll_clock_inverters = 8;
> -	else
> -		regs->pll_clock_inverters = 0;
> -
> -	regs->pll_lockdet_rate = config->lock_timer;
> -	regs->decimal_div_start = dec;
> -	regs->frac_div_start_low = (frac & 0xff);
> -	regs->frac_div_start_mid = (frac & 0xff00) >> 8;
> -	regs->frac_div_start_high = (frac & 0x30000) >> 16;
> -}
> -
> -#define SSC_CENTER		BIT(0)
> -#define SSC_EN			BIT(1)
> -
> -static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -	u32 ssc_per;
> -	u32 ssc_mod;
> -	u64 ssc_step_size;
> -	u64 frac;
> -
> -	if (!config->enable_ssc) {
> -		DBG("SSC not enabled\n");
> -		return;
> -	}
> -
> -	ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 
> 1;
> -	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
> -	ssc_per -= ssc_mod;
> -
> -	frac = regs->frac_div_start_low |
> -			(regs->frac_div_start_mid << 8) |
> -			(regs->frac_div_start_high << 16);
> -	ssc_step_size = regs->decimal_div_start;
> -	ssc_step_size *= (1 << config->frac_bits);
> -	ssc_step_size += frac;
> -	ssc_step_size *= config->ssc_offset;
> -	ssc_step_size *= (config->ssc_adj_per + 1);
> -	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
> -	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
> -
> -	regs->ssc_div_per_low = ssc_per & 0xFF;
> -	regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
> -	regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
> -	regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
> -	regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
> -	regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
> -
> -	regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
> -
> -	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
> -		 regs->decimal_div_start, frac, config->frac_bits);
> -	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
> -		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
> -}
> -
> -static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -
> -	if (pll->pll_configuration.enable_ssc) {
> -		pr_debug("SSC is enabled\n");
> -
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
> -			  regs->ssc_stepsize_low);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
> -			  regs->ssc_stepsize_high);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1,
> -			  regs->ssc_div_per_low);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
> -			  regs->ssc_div_per_high);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1,
> -			  regs->ssc_adjper_low);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1,
> -			  regs->ssc_adjper_high);
> -		pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL,
> -			  SSC_EN | regs->ssc_control);
> -	}
> -}
> -
> -static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE,
> -		  0xba);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 
> 0x0c);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0xfa);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1,
> -		  0x4c);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f);
> -}
> -
> -static void dsi_pll_commit(struct dsi_pll_10nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	struct dsi_pll_regs *reg = &pll->reg_setup;
> -
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1,
> -		  reg->decimal_div_start);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1,
> -		  reg->frac_div_start_low);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1,
> -		  reg->frac_div_start_mid);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
> -		  reg->frac_div_start_high);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1,
> -		  reg->pll_lockdet_rate);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10);
> -	pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS,
> -		  reg->pll_clock_inverters);
> -}
> -
> -static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> -				     unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -
> -	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate,
> -	    parent_rate);
> -
> -	pll_10nm->vco_current_rate = rate;
> -	pll_10nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> -
> -	dsi_pll_setup_config(pll_10nm);
> -
> -	dsi_pll_calc_dec_frac(pll_10nm);
> -
> -	dsi_pll_calc_ssc(pll_10nm);
> -
> -	dsi_pll_commit(pll_10nm);
> -
> -	dsi_pll_config_hzindep_reg(pll_10nm);
> -
> -	dsi_pll_ssc_commit(pll_10nm);
> -
> -	/* flush, ensure all register writes are done*/
> -	wmb();
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll)
> -{
> -	struct device *dev = &pll->pdev->dev;
> -	int rc;
> -	u32 status = 0;
> -	u32 const delay_us = 100;
> -	u32 const timeout_us = 5000;
> -
> -	rc = readl_poll_timeout_atomic(pll->mmio +
> -				       REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE,
> -				       status,
> -				       ((status & BIT(0)) > 0),
> -				       delay_us,
> -				       timeout_us);
> -	if (rc)
> -		DRM_DEV_ERROR(dev, "DSI PLL(%d) lock failed, status=0x%08x\n",
> -			      pll->id, status);
> -
> -	return rc;
> -}
> -
> -static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll)
> -{
> -	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
> -
> -	pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
> -		  data & ~BIT(5));
> -	ndelay(250);
> -}
> -
> -static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll)
> -{
> -	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
> -
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
> -		  data | BIT(5));
> -	pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
> -	ndelay(250);
> -}
> -
> -static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll)
> -{
> -	u32 data;
> -
> -	data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> -		  data & ~BIT(5));
> -}
> -
> -static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll)
> -{
> -	u32 data;
> -
> -	data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> -		  data | BIT(5));
> -}
> -
> -static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct device *dev = &pll_10nm->pdev->dev;
> -	int rc;
> -
> -	dsi_pll_enable_pll_bias(pll_10nm);
> -	if (pll_10nm->slave)
> -		dsi_pll_enable_pll_bias(pll_10nm->slave);
> -
> -	rc = dsi_pll_10nm_vco_set_rate(hw,pll_10nm->vco_current_rate, 0);
> -	if (rc) {
> -		DRM_DEV_ERROR(dev, "vco_set_rate failed, rc=%d\n", rc);
> -		return rc;
> -	}
> -
> -	/* Start PLL */
> -	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL,
> -		  0x01);
> -
> -	/*
> -	 * ensure all PLL configurations are written prior to checking
> -	 * for PLL lock.
> -	 */
> -	wmb();
> -
> -	/* Check for PLL lock */
> -	rc = dsi_pll_10nm_lock_status(pll_10nm);
> -	if (rc) {
> -		DRM_DEV_ERROR(dev, "PLL(%d) lock failed\n", pll_10nm->id);
> -		goto error;
> -	}
> -
> -	pll->pll_on = true;
> -
> -	dsi_pll_enable_global_clk(pll_10nm);
> -	if (pll_10nm->slave)
> -		dsi_pll_enable_global_clk(pll_10nm->slave);
> -
> -	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL,
> -		  0x01);
> -	if (pll_10nm->slave)
> -		pll_write(pll_10nm->slave->phy_cmn_mmio +
> -			  REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01);
> -
> -error:
> -	return rc;
> -}
> -
> -static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll)
> -{
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0);
> -	dsi_pll_disable_pll_bias(pll);
> -}
> -
> -static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -
> -	/*
> -	 * To avoid any stray glitches while abruptly powering down the PLL
> -	 * make sure to gate the clock using the clock enable bit before
> -	 * powering down the PLL
> -	 */
> -	dsi_pll_disable_global_clk(pll_10nm);
> -	pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 
> 0);
> -	dsi_pll_disable_sub(pll_10nm);
> -	if (pll_10nm->slave) {
> -		dsi_pll_disable_global_clk(pll_10nm->slave);
> -		dsi_pll_disable_sub(pll_10nm->slave);
> -	}
> -	/* flush, ensure all register writes are done */
> -	wmb();
> -	pll->pll_on = false;
> -}
> -
> -static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw,
> -						  unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct dsi_pll_config *config = &pll_10nm->pll_configuration;
> -	void __iomem *base = pll_10nm->mmio;
> -	u64 ref_clk = pll_10nm->vco_ref_clk_rate;
> -	u64 vco_rate = 0x0;
> -	u64 multiplier;
> -	u32 frac;
> -	u32 dec;
> -	u64 pll_freq, tmp64;
> -
> -	dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1);
> -	dec &= 0xff;
> -
> -	frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1);
> -	frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) 
> &
> -		  0xff) << 8);
> -	frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) 
> &
> -		  0x3) << 16);
> -
> -	/*
> -	 * TODO:
> -	 *	1. Assumes prescaler is disabled
> -	 */
> -	multiplier = 1 << config->frac_bits;
> -	pll_freq = dec * (ref_clk * 2);
> -	tmp64 = (ref_clk * 2 * frac);
> -	pll_freq += div_u64(tmp64, multiplier);
> -
> -	vco_rate = pll_freq;
> -
> -	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
> -	    pll_10nm->id, (unsigned long)vco_rate, dec, frac);
> -
> -	return (unsigned long)vco_rate;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_10nm_vco = {
> -	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> -	.set_rate = dsi_pll_10nm_vco_set_rate,
> -	.recalc_rate = dsi_pll_10nm_vco_recalc_rate,
> -	.prepare = dsi_pll_10nm_vco_prepare,
> -	.unprepare = dsi_pll_10nm_vco_unprepare,
> -};
> -
> -/*
> - * PLL Callbacks
> - */
> -
> -static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
> -	void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
> -	u32 cmn_clk_cfg0, cmn_clk_cfg1;
> -
> -	cached->pll_out_div = pll_read(pll_10nm->mmio +
> -				       REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
> -	cached->pll_out_div &= 0x3;
> -
> -	cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0);
> -	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
> -	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
> -
> -	cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> -	cached->pll_mux = cmn_clk_cfg1 & 0x3;
> -
> -	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
> -	    pll_10nm->id, cached->pll_out_div, cached->bit_clk_div,
> -	    cached->pix_clk_div, cached->pll_mux);
> -}
> -
> -static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
> -	void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
> -	u32 val;
> -	int ret;
> -
> -	val = pll_read(pll_10nm->mmio + 
> REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
> -	val &= ~0x3;
> -	val |= cached->pll_out_div;
> -	pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, 
> val);
> -
> -	pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> -		  cached->bit_clk_div | (cached->pix_clk_div << 4));
> -
> -	val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
> -	val &= ~0x3;
> -	val |= cached->pll_mux;
> -	pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val);
> -
> -	ret = dsi_pll_10nm_vco_set_rate(&pll->clk_hw,
> pll_10nm->vco_current_rate, pll_10nm->vco_ref_clk_rate);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pll_10nm->pdev->dev,
> -			"restore vco rate failed. ret=%d\n", ret);
> -		return ret;
> -	}
> -
> -	DBG("DSI PLL%d", pll_10nm->id);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll,
> -				    enum msm_dsi_phy_usecase uc)
> -{
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	void __iomem *base = pll_10nm->phy_cmn_mmio;
> -	u32 data = 0x0;	/* internal PLL */
> -
> -	DBG("DSI PLL%d", pll_10nm->id);
> -
> -	switch (uc) {
> -	case MSM_DSI_PHY_STANDALONE:
> -		break;
> -	case MSM_DSI_PHY_MASTER:
> -		pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX];
> -		break;
> -	case MSM_DSI_PHY_SLAVE:
> -		data = 0x1; /* external PLL */
> -		break;
> -	default:
> -		return -EINVAL;
> -	}
> -
> -	/* set PLL src */
> -	pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2));
> -
> -	pll_10nm->uc = uc;
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll,
> -				     struct clk **byte_clk_provider,
> -				     struct clk **pixel_clk_provider)
> -{
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data;
> -
> -	DBG("DSI PLL%d", pll_10nm->id);
> -
> -	if (byte_clk_provider)
> -		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> -	if (pixel_clk_provider)
> -		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> -
> -	return 0;
> -}
> -
> -static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
> -	struct device *dev = &pll_10nm->pdev->dev;
> -
> -	DBG("DSI PLL%d", pll_10nm->id);
> -	of_clk_del_provider(dev->of_node);
> -
> -	clk_hw_unregister_divider(pll_10nm->out_dsiclk_hw);
> -	clk_hw_unregister_mux(pll_10nm->pclk_mux_hw);
> -	clk_hw_unregister_fixed_factor(pll_10nm->post_out_div_clk_hw);
> -	clk_hw_unregister_fixed_factor(pll_10nm->by_2_bit_clk_hw);
> -	clk_hw_unregister_fixed_factor(pll_10nm->byte_clk_hw);
> -	clk_hw_unregister_divider(pll_10nm->bit_clk_hw);
> -	clk_hw_unregister_divider(pll_10nm->out_div_clk_hw);
> -	clk_hw_unregister(&pll_10nm->base.clk_hw);
> -}
> -
> -/*
> - * The post dividers and mux clocks are created using the standard 
> divider and
> - * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its 
> dividers/mux
> - * state to follow the master PLL's divider/mux state. Therefore, we 
> don't
> - * require special clock ops that also configure the slave PLL 
> registers
> - */
> -static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm)
> -{
> -	char clk_name[32], parent[32], vco_name[32];
> -	char parent2[32], parent3[32], parent4[32];
> -	struct clk_init_data vco_init = {
> -		.parent_names = (const char *[]){ "xo" },
> -		.num_parents = 1,
> -		.name = vco_name,
> -		.flags = CLK_IGNORE_UNUSED,
> -		.ops = &clk_ops_dsi_pll_10nm_vco,
> -	};
> -	struct device *dev = &pll_10nm->pdev->dev;
> -	struct clk_hw_onecell_data *hw_data;
> -	struct clk_hw *hw;
> -	int ret;
> -
> -	DBG("DSI%d", pll_10nm->id);
> -
> -	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> -			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> -			       GFP_KERNEL);
> -	if (!hw_data)
> -		return -ENOMEM;
> -
> -	snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id);
> -	pll_10nm->base.clk_hw.init = &vco_init;
> -
> -	ret = clk_hw_register(dev, &pll_10nm->base.clk_hw);
> -	if (ret)
> -		return ret;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id);
> -
> -	hw = clk_hw_register_divider(dev, clk_name,
> -				     parent, CLK_SET_RATE_PARENT,
> -				     pll_10nm->mmio +
> -				     REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE,
> -				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_base_clk_hw;
> -	}
> -
> -	pll_10nm->out_div_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> -
> -	/* BIT CLK: DIV_CTRL_3_0 */
> -	hw = clk_hw_register_divider(dev, clk_name, parent,
> -				     CLK_SET_RATE_PARENT,
> -				     pll_10nm->phy_cmn_mmio +
> -				     REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> -				     0, 4, CLK_DIVIDER_ONE_BASED,
> -				     &pll_10nm->postdiv_lock);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_out_div_clk_hw;
> -	}
> -
> -	pll_10nm->bit_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> -
> -	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  CLK_SET_RATE_PARENT, 1, 8);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_bit_clk_hw;
> -	}
> -
> -	pll_10nm->byte_clk_hw = hw;
> -	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> -
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  0, 1, 2);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_byte_clk_hw;
> -	}
> -
> -	pll_10nm->by_2_bit_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> -
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  0, 1, 4);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_by_2_bit_clk_hw;
> -	}
> -
> -	pll_10nm->post_out_div_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
> -	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
> -	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
> -	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
> -
> -	hw = clk_hw_register_mux(dev, clk_name,
> -				 ((const char *[]){
> -				 parent, parent2, parent3, parent4
> -				 }), 4, 0, pll_10nm->phy_cmn_mmio +
> -				 REG_DSI_10nm_PHY_CMN_CLK_CFG1,
> -				 0, 2, 0, NULL);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_post_out_div_clk_hw;
> -	}
> -
> -	pll_10nm->pclk_mux_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_10nm->id);
> -	snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id);
> -
> -	/* PIX CLK DIV : DIV_CTRL_7_4*/
> -	hw = clk_hw_register_divider(dev, clk_name, parent,
> -				     0, pll_10nm->phy_cmn_mmio +
> -					REG_DSI_10nm_PHY_CMN_CLK_CFG0,
> -				     4, 4, CLK_DIVIDER_ONE_BASED,
> -				     &pll_10nm->postdiv_lock);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_pclk_mux_hw;
> -	}
> -
> -	pll_10nm->out_dsiclk_hw = hw;
> -	hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
> -
> -	hw_data->num = NUM_PROVIDED_CLKS;
> -	pll_10nm->hw_data = hw_data;
> -
> -	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> -				     pll_10nm->hw_data);
> -	if (ret) {
> -		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> -		goto err_dsiclk_hw;
> -	}
> -
> -	return 0;
> -
> -err_dsiclk_hw:
> -	clk_hw_unregister_divider(pll_10nm->out_dsiclk_hw);
> -err_pclk_mux_hw:
> -	clk_hw_unregister_mux(pll_10nm->pclk_mux_hw);
> -err_post_out_div_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_10nm->post_out_div_clk_hw);
> -err_by_2_bit_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_10nm->by_2_bit_clk_hw);
> -err_byte_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_10nm->byte_clk_hw);
> -err_bit_clk_hw:
> -	clk_hw_unregister_divider(pll_10nm->bit_clk_hw);
> -err_out_div_clk_hw:
> -	clk_hw_unregister_divider(pll_10nm->out_div_clk_hw);
> -err_base_clk_hw:
> -	clk_hw_unregister(&pll_10nm->base.clk_hw);
> -
> -	return ret;
> -}
> -
> -struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device 
> *pdev, int id)
> -{
> -	struct dsi_pll_10nm *pll_10nm;
> -	struct msm_dsi_pll *pll;
> -	int ret;
> -
> -	pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL);
> -	if (!pll_10nm)
> -		return ERR_PTR(-ENOMEM);
> -
> -	DBG("DSI PLL%d", id);
> -
> -	pll_10nm->pdev = pdev;
> -	pll_10nm->id = id;
> -	pll_10nm_list[id] = pll_10nm;
> -
> -	pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> -	if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> -	if (IS_ERR_OR_NULL(pll_10nm->mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	spin_lock_init(&pll_10nm->postdiv_lock);
> -
> -	pll = &pll_10nm->base;
> -	pll->min_rate = 1000000000UL;
> -	pll->max_rate = 3500000000UL;
> -	pll->get_provider = dsi_pll_10nm_get_provider;
> -	pll->destroy = dsi_pll_10nm_destroy;
> -	pll->save_state = dsi_pll_10nm_save_state;
> -	pll->restore_state = dsi_pll_10nm_restore_state;
> -	pll->set_usecase = dsi_pll_10nm_set_usecase;
> -
> -	pll_10nm->vco_delay = 1;
> -
> -	ret = pll_10nm_register(pll_10nm);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> -		return ERR_PTR(ret);
> -	}
> -
> -	/* TODO: Remove this when we have proper display handover support */
> -	msm_dsi_pll_save_state(pll);
> -
> -	return pll;
> -}
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c
> b/drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c
> deleted file mode 100644
> index f847376d501e..000000000000
> --- a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_14nm.c
> +++ /dev/null
> @@ -1,1096 +0,0 @@
> -// SPDX-License-Identifier: GPL-2.0-only
> -/*
> - * Copyright (c) 2016, The Linux Foundation. All rights reserved.
> - */
> -
> -#include <linux/clk.h>
> -#include <linux/clk-provider.h>
> -
> -#include "dsi_pll.h"
> -#include "dsi.xml.h"
> -
> -/*
> - * DSI PLL 14nm - clock diagram (eg: DSI0):
> - *
> - *         dsi0n1_postdiv_clk
> - *                         |
> - *                         |
> - *                 +----+  |  +----+
> - *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
> - *                 +----+  |  +----+
> - *                         |           dsi0n1_postdivby2_clk
> - *                         |   +----+  |
> - *                         o---| /2 |--o--|\
> - *                         |   +----+     | \   +----+
> - *                         |              |  |--| n2 |-- dsi0pll
> - *                         o--------------| /   +----+
> - *                                        |/
> - */
> -
> -#define POLL_MAX_READS			15
> -#define POLL_TIMEOUT_US			1000
> -
> -#define NUM_PROVIDED_CLKS		2
> -
> -#define VCO_REF_CLK_RATE		19200000
> -#define VCO_MIN_RATE			1300000000UL
> -#define VCO_MAX_RATE			2600000000UL
> -
> -#define DSI_BYTE_PLL_CLK		0
> -#define DSI_PIXEL_PLL_CLK		1
> -
> -#define DSI_PLL_DEFAULT_VCO_POSTDIV	1
> -
> -struct dsi_pll_input {
> -	u32 fref;	/* reference clk */
> -	u32 fdata;	/* bit clock rate */
> -	u32 dsiclk_sel; /* Mux configuration (see diagram) */
> -	u32 ssc_en;	/* SSC enable/disable */
> -	u32 ldo_en;
> -
> -	/* fixed params */
> -	u32 refclk_dbler_en;
> -	u32 vco_measure_time;
> -	u32 kvco_measure_time;
> -	u32 bandgap_timer;
> -	u32 pll_wakeup_timer;
> -	u32 plllock_cnt;
> -	u32 plllock_rng;
> -	u32 ssc_center;
> -	u32 ssc_adj_period;
> -	u32 ssc_spread;
> -	u32 ssc_freq;
> -	u32 pll_ie_trim;
> -	u32 pll_ip_trim;
> -	u32 pll_iptat_trim;
> -	u32 pll_cpcset_cur;
> -	u32 pll_cpmset_cur;
> -
> -	u32 pll_icpmset;
> -	u32 pll_icpcset;
> -
> -	u32 pll_icpmset_p;
> -	u32 pll_icpmset_m;
> -
> -	u32 pll_icpcset_p;
> -	u32 pll_icpcset_m;
> -
> -	u32 pll_lpf_res1;
> -	u32 pll_lpf_cap1;
> -	u32 pll_lpf_cap2;
> -	u32 pll_c3ctrl;
> -	u32 pll_r3ctrl;
> -};
> -
> -struct dsi_pll_output {
> -	u32 pll_txclk_en;
> -	u32 dec_start;
> -	u32 div_frac_start;
> -	u32 ssc_period;
> -	u32 ssc_step_size;
> -	u32 plllock_cmp;
> -	u32 pll_vco_div_ref;
> -	u32 pll_vco_count;
> -	u32 pll_kvco_div_ref;
> -	u32 pll_kvco_count;
> -	u32 pll_misc1;
> -	u32 pll_lpf2_postdiv;
> -	u32 pll_resetsm_cntrl;
> -	u32 pll_resetsm_cntrl2;
> -	u32 pll_resetsm_cntrl5;
> -	u32 pll_kvco_code;
> -
> -	u32 cmn_clk_cfg0;
> -	u32 cmn_clk_cfg1;
> -	u32 cmn_ldo_cntrl;
> -
> -	u32 pll_postdiv;
> -	u32 fcvo;
> -};
> -
> -struct pll_14nm_cached_state {
> -	unsigned long vco_rate;
> -	u8 n2postdiv;
> -	u8 n1postdiv;
> -};
> -
> -struct dsi_pll_14nm {
> -	struct msm_dsi_pll base;
> -
> -	int id;
> -	struct platform_device *pdev;
> -
> -	void __iomem *phy_cmn_mmio;
> -	void __iomem *mmio;
> -
> -	int vco_delay;
> -
> -	struct dsi_pll_input in;
> -	struct dsi_pll_output out;
> -
> -	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
> -	spinlock_t postdiv_lock;
> -
> -	u64 vco_current_rate;
> -	u64 vco_ref_clk_rate;
> -
> -	/* private clocks: */
> -	struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
> -	u32 num_hws;
> -
> -	/* clock-provider: */
> -	struct clk_hw_onecell_data *hw_data;
> -
> -	struct pll_14nm_cached_state cached_state;
> -
> -	enum msm_dsi_phy_usecase uc;
> -	struct dsi_pll_14nm *slave;
> -};
> -
> -#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, base)
> -
> -/*
> - * Private struct for N1/N2 post-divider clocks. These clocks are 
> similar to
> - * the generic clk_divider class of clocks. The only difference is 
> that it
> - * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
> - */
> -struct dsi_pll_14nm_postdiv {
> -	struct clk_hw hw;
> -
> -	/* divider params */
> -	u8 shift;
> -	u8 width;
> -	u8 flags; /* same flags as used by clk_divider struct */
> -
> -	struct dsi_pll_14nm *pll;
> -};
> -
> -#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct
> dsi_pll_14nm_postdiv, hw)
> -
> -/*
> - * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> - * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> - */
> -static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
> -
> -static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
> -				    u32 nb_tries, u32 timeout_us)
> -{
> -	bool pll_locked = false;
> -	void __iomem *base = pll_14nm->mmio;
> -	u32 tries, val;
> -
> -	tries = nb_tries;
> -	while (tries--) {
> -		val = pll_read(base +
> -			       REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
> -		pll_locked = !!(val & BIT(5));
> -
> -		if (pll_locked)
> -			break;
> -
> -		udelay(timeout_us);
> -	}
> -
> -	if (!pll_locked) {
> -		tries = nb_tries;
> -		while (tries--) {
> -			val = pll_read(base +
> -				REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
> -			pll_locked = !!(val & BIT(0));
> -
> -			if (pll_locked)
> -				break;
> -
> -			udelay(timeout_us);
> -		}
> -	}
> -
> -	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> -
> -	return pll_locked;
> -}
> -
> -static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll)
> -{
> -	pll->in.fref = pll->vco_ref_clk_rate;
> -	pll->in.fdata = 0;
> -	pll->in.dsiclk_sel = 1;	/* Use the /2 path in Mux */
> -	pll->in.ldo_en = 0;	/* disabled for now */
> -
> -	/* fixed input */
> -	pll->in.refclk_dbler_en = 0;
> -	pll->in.vco_measure_time = 5;
> -	pll->in.kvco_measure_time = 5;
> -	pll->in.bandgap_timer = 4;
> -	pll->in.pll_wakeup_timer = 5;
> -	pll->in.plllock_cnt = 1;
> -	pll->in.plllock_rng = 0;
> -
> -	/*
> -	 * SSC is enabled by default. We might need DT props for configuring
> -	 * some SSC params like PPM and center/down spread etc.
> -	 */
> -	pll->in.ssc_en = 1;
> -	pll->in.ssc_center = 0;		/* down spread by default */
> -	pll->in.ssc_spread = 5;		/* PPM / 1000 */
> -	pll->in.ssc_freq = 31500;	/* default recommended */
> -	pll->in.ssc_adj_period = 37;
> -
> -	pll->in.pll_ie_trim = 4;
> -	pll->in.pll_ip_trim = 4;
> -	pll->in.pll_cpcset_cur = 1;
> -	pll->in.pll_cpmset_cur = 1;
> -	pll->in.pll_icpmset = 4;
> -	pll->in.pll_icpcset = 4;
> -	pll->in.pll_icpmset_p = 0;
> -	pll->in.pll_icpmset_m = 0;
> -	pll->in.pll_icpcset_p = 0;
> -	pll->in.pll_icpcset_m = 0;
> -	pll->in.pll_lpf_res1 = 3;
> -	pll->in.pll_lpf_cap1 = 11;
> -	pll->in.pll_lpf_cap2 = 1;
> -	pll->in.pll_iptat_trim = 7;
> -	pll->in.pll_c3ctrl = 2;
> -	pll->in.pll_r3ctrl = 1;
> -}
> -
> -#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
> -
> -static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll)
> -{
> -	u32 period, ssc_period;
> -	u32 ref, rem;
> -	u64 step_size;
> -
> -	DBG("vco=%lld ref=%lld", pll->vco_current_rate, 
> pll->vco_ref_clk_rate);
> -
> -	ssc_period = pll->in.ssc_freq / 500;
> -	period = (u32)pll->vco_ref_clk_rate / 1000;
> -	ssc_period  = CEIL(period, ssc_period);
> -	ssc_period -= 1;
> -	pll->out.ssc_period = ssc_period;
> -
> -	DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq,
> -	    pll->in.ssc_spread, pll->out.ssc_period);
> -
> -	step_size = (u32)pll->vco_current_rate;
> -	ref = pll->vco_ref_clk_rate;
> -	ref /= 1000;
> -	step_size = div_u64(step_size, ref);
> -	step_size <<= 20;
> -	step_size = div_u64(step_size, 1000);
> -	step_size *= pll->in.ssc_spread;
> -	step_size = div_u64(step_size, 1000);
> -	step_size *= (pll->in.ssc_adj_period + 1);
> -
> -	rem = 0;
> -	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
> -	if (rem)
> -		step_size++;
> -
> -	DBG("step_size=%lld", step_size);
> -
> -	step_size &= 0x0ffff;	/* take lower 16 bits */
> -
> -	pll->out.ssc_step_size = step_size;
> -}
> -
> -static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll)
> -{
> -	struct dsi_pll_input *pin = &pll->in;
> -	struct dsi_pll_output *pout = &pll->out;
> -	u64 multiplier = BIT(20);
> -	u64 dec_start_multiple, dec_start, pll_comp_val;
> -	u32 duration, div_frac_start;
> -	u64 vco_clk_rate = pll->vco_current_rate;
> -	u64 fref = pll->vco_ref_clk_rate;
> -
> -	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
> -
> -	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
> -	div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
> -
> -	dec_start = div_u64(dec_start_multiple, multiplier);
> -
> -	pout->dec_start = (u32)dec_start;
> -	pout->div_frac_start = div_frac_start;
> -
> -	if (pin->plllock_cnt == 0)
> -		duration = 1024;
> -	else if (pin->plllock_cnt == 1)
> -		duration = 256;
> -	else if (pin->plllock_cnt == 2)
> -		duration = 128;
> -	else
> -		duration = 32;
> -
> -	pll_comp_val = duration * dec_start_multiple;
> -	pll_comp_val = div_u64(pll_comp_val, multiplier);
> -	do_div(pll_comp_val, 10);
> -
> -	pout->plllock_cmp = (u32)pll_comp_val;
> -
> -	pout->pll_txclk_en = 1;
> -	pout->cmn_ldo_cntrl = 0x3c;
> -}
> -
> -static u32 pll_14nm_kvco_slop(u32 vrate)
> -{
> -	u32 slop = 0;
> -
> -	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
> -		slop =  600;
> -	else if (vrate > 1800000000UL && vrate < 2300000000UL)
> -		slop = 400;
> -	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
> -		slop = 280;
> -
> -	return slop;
> -}
> -
> -static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll)
> -{
> -	struct dsi_pll_input *pin = &pll->in;
> -	struct dsi_pll_output *pout = &pll->out;
> -	u64 vco_clk_rate = pll->vco_current_rate;
> -	u64 fref = pll->vco_ref_clk_rate;
> -	u64 data;
> -	u32 cnt;
> -
> -	data = fref * pin->vco_measure_time;
> -	do_div(data, 1000000);
> -	data &= 0x03ff;	/* 10 bits */
> -	data -= 2;
> -	pout->pll_vco_div_ref = data;
> -
> -	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
> -	data *= pin->vco_measure_time;
> -	do_div(data, 10);
> -	pout->pll_vco_count = data;
> -
> -	data = fref * pin->kvco_measure_time;
> -	do_div(data, 1000000);
> -	data &= 0x03ff;	/* 10 bits */
> -	data -= 1;
> -	pout->pll_kvco_div_ref = data;
> -
> -	cnt = pll_14nm_kvco_slop(vco_clk_rate);
> -	cnt *= 2;
> -	cnt /= 100;
> -	cnt *= pin->kvco_measure_time;
> -	pout->pll_kvco_count = cnt;
> -
> -	pout->pll_misc1 = 16;
> -	pout->pll_resetsm_cntrl = 48;
> -	pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3;
> -	pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer;
> -	pout->pll_kvco_code = 0;
> -}
> -
> -static void pll_db_commit_ssc(struct dsi_pll_14nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	struct dsi_pll_input *pin = &pll->in;
> -	struct dsi_pll_output *pout = &pll->out;
> -	u8 data;
> -
> -	data = pin->ssc_adj_period;
> -	data &= 0x0ff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
> -	data = (pin->ssc_adj_period >> 8);
> -	data &= 0x03;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
> -
> -	data = pout->ssc_period;
> -	data &= 0x0ff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
> -	data = (pout->ssc_period >> 8);
> -	data &= 0x0ff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
> -
> -	data = pout->ssc_step_size;
> -	data &= 0x0ff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
> -	data = (pout->ssc_step_size >> 8);
> -	data &= 0x0ff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
> -
> -	data = (pin->ssc_center & 0x01);
> -	data <<= 1;
> -	data |= 0x01; /* enable */
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
> -
> -	wmb();	/* make sure register committed */
> -}
> -
> -static void pll_db_commit_common(struct dsi_pll_14nm *pll,
> -				 struct dsi_pll_input *pin,
> -				 struct dsi_pll_output *pout)
> -{
> -	void __iomem *base = pll->mmio;
> -	u8 data;
> -
> -	/* confgiure the non frequency dependent pll registers */
> -	data = 0;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
> -
> -	data = pout->pll_txclk_en;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data);
> -
> -	data = pout->pll_resetsm_cntrl;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data);
> -	data = pout->pll_resetsm_cntrl2;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data);
> -	data = pout->pll_resetsm_cntrl5;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data);
> -
> -	data = pout->pll_vco_div_ref & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
> -	data = (pout->pll_vco_div_ref >> 8) & 0x3;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
> -
> -	data = pout->pll_kvco_div_ref & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
> -	data = (pout->pll_kvco_div_ref >> 8) & 0x3;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
> -
> -	data = pout->pll_misc1;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data);
> -
> -	data = pin->pll_ie_trim;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data);
> -
> -	data = pin->pll_ip_trim;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data);
> -
> -	data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data);
> -
> -	data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data);
> -
> -	data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data);
> -
> -	data = pin->pll_icpmset << 3 | pin->pll_icpcset;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data);
> -
> -	data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data);
> -
> -	data = pin->pll_iptat_trim;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data);
> -
> -	data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data);
> -}
> -
> -static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
> -{
> -	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> -
> -	/* de assert pll start and apply pll sw reset */
> -
> -	/* stop pll */
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
> -
> -	/* pll sw reset */
> -	pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
> -	wmb();	/* make sure register committed */
> -
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
> -	wmb();	/* make sure register committed */
> -}
> -
> -static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
> -			       struct dsi_pll_input *pin,
> -			       struct dsi_pll_output *pout)
> -{
> -	void __iomem *base = pll->mmio;
> -	void __iomem *cmn_base = pll->phy_cmn_mmio;
> -	u8 data;
> -
> -	DBG("DSI%d PLL", pll->id);
> -
> -	data = pout->cmn_ldo_cntrl;
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
> -
> -	pll_db_commit_common(pll, pin, pout);
> -
> -	pll_14nm_software_reset(pll);
> -
> -	data = pin->dsiclk_sel; /* set dsiclk_sel = 1  */
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data);
> -
> -	data = 0xff; /* data, clk, pll normal operation */
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
> -
> -	/* configure the frequency dependent pll registers */
> -	data = pout->dec_start;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
> -
> -	data = pout->div_frac_start & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
> -	data = (pout->div_frac_start >> 8) & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
> -	data = (pout->div_frac_start >> 16) & 0xf;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
> -
> -	data = pout->plllock_cmp & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
> -
> -	data = (pout->plllock_cmp >> 8) & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
> -
> -	data = (pout->plllock_cmp >> 16) & 0x3;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
> -
> -	data = pin->plllock_cnt << 1 | pin->plllock_rng << 3;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
> -
> -	data = pout->pll_vco_count & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
> -	data = (pout->pll_vco_count >> 8) & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
> -
> -	data = pout->pll_kvco_count & 0xff;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
> -	data = (pout->pll_kvco_count >> 8) & 0x3;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
> -
> -	data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1;
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data);
> -
> -	if (pin->ssc_en)
> -		pll_db_commit_ssc(pll);
> -
> -	wmb();	/* make sure register committed */
> -}
> -
> -/*
> - * VCO clock Callbacks
> - */
> -static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> -				     unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	struct dsi_pll_input *pin = &pll_14nm->in;
> -	struct dsi_pll_output *pout = &pll_14nm->out;
> -
> -	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate,
> -	    parent_rate);
> -
> -	pll_14nm->vco_current_rate = rate;
> -	pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> -
> -	dsi_pll_14nm_input_init(pll_14nm);
> -
> -	/*
> -	 * This configures the post divider internal to the VCO. It's
> -	 * fixed to divide by 1 for now.
> -	 *
> -	 * tx_band = pll_postdiv.
> -	 * 0: divided by 1
> -	 * 1: divided by 2
> -	 * 2: divided by 4
> -	 * 3: divided by 8
> -	 */
> -	pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV;
> -
> -	pll_14nm_dec_frac_calc(pll_14nm);
> -
> -	if (pin->ssc_en)
> -		pll_14nm_ssc_calc(pll_14nm);
> -
> -	pll_14nm_calc_vco_count(pll_14nm);
> -
> -	/* commit the slave DSI PLL registers if we're master. Note that we
> -	 * don't lock the slave PLL. We just ensure that the PLL/PHY 
> registers
> -	 * of the master and slave are identical
> -	 */
> -	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> -		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> -
> -		pll_db_commit_14nm(pll_14nm_slave, pin, pout);
> -	}
> -
> -	pll_db_commit_14nm(pll_14nm, pin, pout);
> -
> -	return 0;
> -}
> -
> -static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
> -						  unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	void __iomem *base = pll_14nm->mmio;
> -	u64 vco_rate, multiplier = BIT(20);
> -	u32 div_frac_start;
> -	u32 dec_start;
> -	u64 ref_clk = parent_rate;
> -
> -	dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
> -	dec_start &= 0x0ff;
> -
> -	DBG("dec_start = %x", dec_start);
> -
> -	div_frac_start = (pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
> -				& 0xf) << 16;
> -	div_frac_start |= (pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
> -				& 0xff) << 8;
> -	div_frac_start |= pll_read(base + 
> REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
> -				& 0xff;
> -
> -	DBG("div_frac_start = %x", div_frac_start);
> -
> -	vco_rate = ref_clk * dec_start;
> -
> -	vco_rate += ((ref_clk * div_frac_start) / multiplier);
> -
> -	/*
> -	 * Recalculating the rate from dec_start and frac_start doesn't end 
> up
> -	 * the rate we originally set. Convert the freq to KHz, round it up 
> and
> -	 * convert it back to MHz.
> -	 */
> -	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
> -
> -	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
> -
> -	return (unsigned long)vco_rate;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
> -	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> -	.set_rate = dsi_pll_14nm_vco_set_rate,
> -	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
> -	.prepare = msm_dsi_pll_helper_clk_prepare,
> -	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> -};
> -
> -/*
> - * N1 and N2 post-divider clock callbacks
> - */
> -#define div_mask(width)	((1 << (width)) - 1)
> -static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw 
> *hw,
> -						      unsigned long parent_rate)
> -{
> -	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> -	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> -	void __iomem *base = pll_14nm->phy_cmn_mmio;
> -	u8 shift = postdiv->shift;
> -	u8 width = postdiv->width;
> -	u32 val;
> -
> -	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate);
> -
> -	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
> -	val &= div_mask(width);
> -
> -	return divider_recalc_rate(hw, parent_rate, val, NULL,
> -				   postdiv->flags, width);
> -}
> -
> -static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
> -					    unsigned long rate,
> -					    unsigned long *prate)
> -{
> -	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> -	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> -
> -	DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate);
> -
> -	return divider_round_rate(hw, rate, prate, NULL,
> -				  postdiv->width,
> -				  postdiv->flags);
> -}
> -
> -static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned 
> long rate,
> -					 unsigned long parent_rate)
> -{
> -	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
> -	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
> -	void __iomem *base = pll_14nm->phy_cmn_mmio;
> -	spinlock_t *lock = &pll_14nm->postdiv_lock;
> -	u8 shift = postdiv->shift;
> -	u8 width = postdiv->width;
> -	unsigned int value;
> -	unsigned long flags = 0;
> -	u32 val;
> -
> -	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate,
> -	    parent_rate);
> -
> -	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
> -				postdiv->flags);
> -
> -	spin_lock_irqsave(lock, flags);
> -
> -	val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
> -	val &= ~(div_mask(width) << shift);
> -
> -	val |= value << shift;
> -	pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
> -
> -	/* If we're master in dual DSI mode, then the slave PLL's 
> post-dividers
> -	 * follow the master's post dividers
> -	 */
> -	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> -		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> -		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
> -
> -		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
> -	}
> -
> -	spin_unlock_irqrestore(lock, flags);
> -
> -	return 0;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
> -	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
> -	.round_rate = dsi_pll_14nm_postdiv_round_rate,
> -	.set_rate = dsi_pll_14nm_postdiv_set_rate,
> -};
> -
> -/*
> - * PLL Callbacks
> - */
> -
> -static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	void __iomem *base = pll_14nm->mmio;
> -	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> -	bool locked;
> -
> -	DBG("");
> -
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
> -
> -	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
> -					 POLL_TIMEOUT_US);
> -
> -	if (unlikely(!locked))
> -		DRM_DEV_ERROR(&pll_14nm->pdev->dev, "DSI PLL lock failed\n");
> -	else
> -		DBG("DSI PLL lock success");
> -
> -	return locked ? 0 : -EINVAL;
> -}
> -
> -static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> -
> -	DBG("");
> -
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
> -}
> -
> -static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
> -	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> -	u32 data;
> -
> -	data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
> -
> -	cached_state->n1postdiv = data & 0xf;
> -	cached_state->n2postdiv = (data >> 4) & 0xf;
> -
> -	DBG("DSI%d PLL save state %x %x", pll_14nm->id,
> -	    cached_state->n1postdiv, cached_state->n2postdiv);
> -
> -	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> -}
> -
> -static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
> -	void __iomem *cmn_base = pll_14nm->phy_cmn_mmio;
> -	u32 data;
> -	int ret;
> -
> -	ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw,
> -					cached_state->vco_rate, 0);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pll_14nm->pdev->dev,
> -			"restore vco rate failed. ret=%d\n", ret);
> -		return ret;
> -	}
> -
> -	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
> -
> -	DBG("DSI%d PLL restore state %x %x", pll_14nm->id,
> -	    cached_state->n1postdiv, cached_state->n2postdiv);
> -
> -	pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
> -
> -	/* also restore post-dividers for slave DSI PLL */
> -	if (pll_14nm->uc == MSM_DSI_PHY_MASTER) {
> -		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
> -		void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio;
> -
> -		pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
> -	}
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll,
> -				    enum msm_dsi_phy_usecase uc)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	void __iomem *base = pll_14nm->mmio;
> -	u32 clkbuflr_en, bandgap = 0;
> -
> -	switch (uc) {
> -	case MSM_DSI_PHY_STANDALONE:
> -		clkbuflr_en = 0x1;
> -		break;
> -	case MSM_DSI_PHY_MASTER:
> -		clkbuflr_en = 0x3;
> -		pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX];
> -		break;
> -	case MSM_DSI_PHY_SLAVE:
> -		clkbuflr_en = 0x0;
> -		bandgap = 0x3;
> -		break;
> -	default:
> -		return -EINVAL;
> -	}
> -
> -	pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
> -	if (bandgap)
> -		pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
> -
> -	pll_14nm->uc = uc;
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll,
> -				     struct clk **byte_clk_provider,
> -				     struct clk **pixel_clk_provider)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data;
> -
> -	if (byte_clk_provider)
> -		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> -	if (pixel_clk_provider)
> -		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> -
> -	return 0;
> -}
> -
> -static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll);
> -	struct platform_device *pdev = pll_14nm->pdev;
> -	int num_hws = pll_14nm->num_hws;
> -
> -	of_clk_del_provider(pdev->dev.of_node);
> -
> -	while (num_hws--)
> -		clk_hw_unregister(pll_14nm->hws[num_hws]);
> -}
> -
> -static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm 
> *pll_14nm,
> -						const char *name,
> -						const char *parent_name,
> -						unsigned long flags,
> -						u8 shift)
> -{
> -	struct dsi_pll_14nm_postdiv *pll_postdiv;
> -	struct device *dev = &pll_14nm->pdev->dev;
> -	struct clk_init_data postdiv_init = {
> -		.parent_names = (const char *[]) { parent_name },
> -		.num_parents = 1,
> -		.name = name,
> -		.flags = flags,
> -		.ops = &clk_ops_dsi_pll_14nm_postdiv,
> -	};
> -	int ret;
> -
> -	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
> -	if (!pll_postdiv)
> -		return ERR_PTR(-ENOMEM);
> -
> -	pll_postdiv->pll = pll_14nm;
> -	pll_postdiv->shift = shift;
> -	/* both N1 and N2 postdividers are 4 bits wide */
> -	pll_postdiv->width = 4;
> -	/* range of each divider is from 1 to 15 */
> -	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
> -	pll_postdiv->hw.init = &postdiv_init;
> -
> -	ret = clk_hw_register(dev, &pll_postdiv->hw);
> -	if (ret)
> -		return ERR_PTR(ret);
> -
> -	return &pll_postdiv->hw;
> -}
> -
> -static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm)
> -{
> -	char clk_name[32], parent[32], vco_name[32];
> -	struct clk_init_data vco_init = {
> -		.parent_names = (const char *[]){ "xo" },
> -		.num_parents = 1,
> -		.name = vco_name,
> -		.flags = CLK_IGNORE_UNUSED,
> -		.ops = &clk_ops_dsi_pll_14nm_vco,
> -	};
> -	struct device *dev = &pll_14nm->pdev->dev;
> -	struct clk_hw **hws = pll_14nm->hws;
> -	struct clk_hw_onecell_data *hw_data;
> -	struct clk_hw *hw;
> -	int num = 0;
> -	int ret;
> -
> -	DBG("DSI%d", pll_14nm->id);
> -
> -	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> -			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> -			       GFP_KERNEL);
> -	if (!hw_data)
> -		return -ENOMEM;
> -
> -	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id);
> -	pll_14nm->base.clk_hw.init = &vco_init;
> -
> -	ret = clk_hw_register(dev, &pll_14nm->base.clk_hw);
> -	if (ret)
> -		return ret;
> -
> -	hws[num++] = &pll_14nm->base.clk_hw;
> -
> -	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> -	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id);
> -
> -	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
> -	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
> -				       CLK_SET_RATE_PARENT, 0);
> -	if (IS_ERR(hw))
> -		return PTR_ERR(hw);
> -
> -	hws[num++] = hw;
> -
> -	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id);
> -	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> -
> -	/* DSI Byte clock = VCO_CLK / N1 / 8 */
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  CLK_SET_RATE_PARENT, 1, 8);
> -	if (IS_ERR(hw))
> -		return PTR_ERR(hw);
> -
> -	hws[num++] = hw;
> -	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> -
> -	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
> -	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id);
> -
> -	/*
> -	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
> -	 * on the way. Don't let it set parent.
> -	 */
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
> -	if (IS_ERR(hw))
> -		return PTR_ERR(hw);
> -
> -	hws[num++] = hw;
> -
> -	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id);
> -	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id);
> -
> -	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
> -	 * This is the output of N2 post-divider, bits 4-7 in
> -	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
> -	 */
> -	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
> -	if (IS_ERR(hw))
> -		return PTR_ERR(hw);
> -
> -	hws[num++] = hw;
> -	hw_data->hws[DSI_PIXEL_PLL_CLK]	= hw;
> -
> -	pll_14nm->num_hws = num;
> -
> -	hw_data->num = NUM_PROVIDED_CLKS;
> -	pll_14nm->hw_data = hw_data;
> -
> -	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> -				     pll_14nm->hw_data);
> -	if (ret) {
> -		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> -		return ret;
> -	}
> -
> -	return 0;
> -}
> -
> -struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device 
> *pdev, int id)
> -{
> -	struct dsi_pll_14nm *pll_14nm;
> -	struct msm_dsi_pll *pll;
> -	int ret;
> -
> -	if (!pdev)
> -		return ERR_PTR(-ENODEV);
> -
> -	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
> -	if (!pll_14nm)
> -		return ERR_PTR(-ENOMEM);
> -
> -	DBG("PLL%d", id);
> -
> -	pll_14nm->pdev = pdev;
> -	pll_14nm->id = id;
> -	pll_14nm_list[id] = pll_14nm;
> -
> -	pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> -	if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> -	if (IS_ERR_OR_NULL(pll_14nm->mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	spin_lock_init(&pll_14nm->postdiv_lock);
> -
> -	pll = &pll_14nm->base;
> -	pll->min_rate = VCO_MIN_RATE;
> -	pll->max_rate = VCO_MAX_RATE;
> -	pll->get_provider = dsi_pll_14nm_get_provider;
> -	pll->destroy = dsi_pll_14nm_destroy;
> -	pll->disable_seq = dsi_pll_14nm_disable_seq;
> -	pll->save_state = dsi_pll_14nm_save_state;
> -	pll->restore_state = dsi_pll_14nm_restore_state;
> -	pll->set_usecase = dsi_pll_14nm_set_usecase;
> -
> -	pll_14nm->vco_delay = 1;
> -
> -	pll->en_seq_cnt = 1;
> -	pll->enable_seqs[0] = dsi_pll_14nm_enable_seq;
> -
> -	ret = pll_14nm_register(pll_14nm);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> -		return ERR_PTR(ret);
> -	}
> -
> -	return pll;
> -}
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c
> b/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c
> deleted file mode 100644
> index 37a1f996a588..000000000000
> --- a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm.c
> +++ /dev/null
> @@ -1,643 +0,0 @@
> -// SPDX-License-Identifier: GPL-2.0-only
> -/*
> - * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
> - */
> -
> -#include <linux/clk.h>
> -#include <linux/clk-provider.h>
> -
> -#include "dsi_pll.h"
> -#include "dsi.xml.h"
> -
> -/*
> - * DSI PLL 28nm - clock diagram (eg: DSI0):
> - *
> - *         dsi0analog_postdiv_clk
> - *                             |         dsi0indirect_path_div2_clk
> - *                             |          |
> - *                   +------+  |  +----+  |  |\   dsi0byte_mux
> - *  dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \   |
> - *                |  +------+     +----+     | m|  |  +----+
> - *                |                          | u|--o--| /4 |-- 
> dsi0pllbyte
> - *                |                          | x|     +----+
> - *                o--------------------------| /
> - *                |                          |/
> - *                |          +------+
> - *                o----------| DIV3 |------------------------- dsi0pll
> - *                           +------+
> - */
> -
> -#define POLL_MAX_READS			10
> -#define POLL_TIMEOUT_US		50
> -
> -#define NUM_PROVIDED_CLKS		2
> -
> -#define VCO_REF_CLK_RATE		19200000
> -#define VCO_MIN_RATE			350000000
> -#define VCO_MAX_RATE			750000000
> -
> -#define DSI_BYTE_PLL_CLK		0
> -#define DSI_PIXEL_PLL_CLK		1
> -
> -#define LPFR_LUT_SIZE			10
> -struct lpfr_cfg {
> -	unsigned long vco_rate;
> -	u32 resistance;
> -};
> -
> -/* Loop filter resistance: */
> -static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = {
> -	{ 479500000,  8 },
> -	{ 480000000, 11 },
> -	{ 575500000,  8 },
> -	{ 576000000, 12 },
> -	{ 610500000,  8 },
> -	{ 659500000,  9 },
> -	{ 671500000, 10 },
> -	{ 672000000, 14 },
> -	{ 708500000, 10 },
> -	{ 750000000, 11 },
> -};
> -
> -struct pll_28nm_cached_state {
> -	unsigned long vco_rate;
> -	u8 postdiv3;
> -	u8 postdiv1;
> -	u8 byte_mux;
> -};
> -
> -struct dsi_pll_28nm {
> -	struct msm_dsi_pll base;
> -
> -	int id;
> -	struct platform_device *pdev;
> -	void __iomem *mmio;
> -
> -	int vco_delay;
> -
> -	/* private clocks: */
> -	struct clk *clks[NUM_DSI_CLOCKS_MAX];
> -	u32 num_clks;
> -
> -	/* clock-provider: */
> -	struct clk *provided_clks[NUM_PROVIDED_CLKS];
> -	struct clk_onecell_data clk_data;
> -
> -	struct pll_28nm_cached_state cached_state;
> -};
> -
> -#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)
> -
> -static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
> -				u32 nb_tries, u32 timeout_us)
> -{
> -	bool pll_locked = false;
> -	u32 val;
> -
> -	while (nb_tries--) {
> -		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_STATUS);
> -		pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY);
> -
> -		if (pll_locked)
> -			break;
> -
> -		udelay(timeout_us);
> -	}
> -	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> -
> -	return pll_locked;
> -}
> -
> -static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm)
> -{
> -	void __iomem *base = pll_28nm->mmio;
> -
> -	/*
> -	 * Add HW recommended delays after toggling the software
> -	 * reset bit off and back on.
> -	 */
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG,
> -			DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1);
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1);
> -}
> -
> -/*
> - * Clock Callbacks
> - */
> -static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> -		unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	void __iomem *base = pll_28nm->mmio;
> -	unsigned long div_fbx1000, gen_vco_clk;
> -	u32 refclk_cfg, frac_n_mode, frac_n_value;
> -	u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
> -	u32 cal_cfg10, cal_cfg11;
> -	u32 rem;
> -	int i;
> -
> -	VERB("rate=%lu, parent's=%lu", rate, parent_rate);
> -
> -	/* Force postdiv2 to be div-4 */
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3);
> -
> -	/* Configure the Loop filter resistance */
> -	for (i = 0; i < LPFR_LUT_SIZE; i++)
> -		if (rate <= lpfr_lut[i].vco_rate)
> -			break;
> -	if (i == LPFR_LUT_SIZE) {
> -		DRM_DEV_ERROR(dev, "unable to get loop filter resistance. 
> vco=%lu\n",
> -				rate);
> -		return -EINVAL;
> -	}
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, 
> lpfr_lut[i].resistance);
> -
> -	/* Loop filter capacitance values : c1 and c2 */
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15);
> -
> -	rem = rate % VCO_REF_CLK_RATE;
> -	if (rem) {
> -		refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
> -		frac_n_mode = 1;
> -		div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500);
> -		gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500);
> -	} else {
> -		refclk_cfg = 0x0;
> -		frac_n_mode = 0;
> -		div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000);
> -		gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000);
> -	}
> -
> -	DBG("refclk_cfg = %d", refclk_cfg);
> -
> -	rem = div_fbx1000 % 1000;
> -	frac_n_value = (rem << 16) / 1000;
> -
> -	DBG("div_fb = %lu", div_fbx1000);
> -	DBG("frac_n_value = %d", frac_n_value);
> -
> -	DBG("Generated VCO Clock: %lu", gen_vco_clk);
> -	rem = 0;
> -	sdm_cfg1 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1);
> -	sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK;
> -	if (frac_n_mode) {
> -		sdm_cfg0 = 0x0;
> -		sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0);
> -		sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(
> -				(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
> -		sdm_cfg3 = frac_n_value >> 8;
> -		sdm_cfg2 = frac_n_value & 0xff;
> -	} else {
> -		sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP;
> -		sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(
> -				(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
> -		sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0);
> -		sdm_cfg2 = 0;
> -		sdm_cfg3 = 0;
> -	}
> -
> -	DBG("sdm_cfg0=%d", sdm_cfg0);
> -	DBG("sdm_cfg1=%d", sdm_cfg1);
> -	DBG("sdm_cfg2=%d", sdm_cfg2);
> -	DBG("sdm_cfg3=%d", sdm_cfg3);
> -
> -	cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000));
> -	cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000);
> -	DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11);
> -
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3,    0x2b);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4,    0x06);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,  0x0d);
> -
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2,
> -		DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2));
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3,
> -		DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3));
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00);
> -
> -	/* Add hardware recommended delay for correct PLL configuration */
> -	if (pll_28nm->vco_delay)
> -		udelay(pll_28nm->vco_delay);
> -
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0,   sdm_cfg0);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0,   0x12);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6,   0x30);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7,   0x00);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8,   0x60);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9,   0x00);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10,  cal_cfg10 & 0xff);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11,  cal_cfg11 & 0xff);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG,  0x20);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
> -					POLL_TIMEOUT_US);
> -}
> -
> -static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
> -		unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	void __iomem *base = pll_28nm->mmio;
> -	u32 sdm0, doubler, sdm_byp_div;
> -	u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
> -	u32 ref_clk = VCO_REF_CLK_RATE;
> -	unsigned long vco_rate;
> -
> -	VERB("parent_rate=%lu", parent_rate);
> -
> -	/* Check to see if the ref clk doubler is enabled */
> -	doubler = pll_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) &
> -			DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
> -	ref_clk += (doubler * VCO_REF_CLK_RATE);
> -
> -	/* see if it is integer mode or sdm mode */
> -	sdm0 = pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0);
> -	if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) {
> -		/* integer mode */
> -		sdm_byp_div = FIELD(
> -				pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0),
> -				DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1;
> -		vco_rate = ref_clk * sdm_byp_div;
> -	} else {
> -		/* sdm mode */
> -		sdm_dc_off = FIELD(
> -				pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1),
> -				DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET);
> -		DBG("sdm_dc_off = %d", sdm_dc_off);
> -		sdm2 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2),
> -				DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0);
> -		sdm3 = FIELD(pll_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3),
> -				DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8);
> -		sdm_freq_seed = (sdm3 << 8) | sdm2;
> -		DBG("sdm_freq_seed = %d", sdm_freq_seed);
> -
> -		vco_rate = (ref_clk * (sdm_dc_off + 1)) +
> -			mult_frac(ref_clk, sdm_freq_seed, BIT(16));
> -		DBG("vco rate = %lu", vco_rate);
> -	}
> -
> -	DBG("returning vco rate = %lu", vco_rate);
> -
> -	return vco_rate;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
> -	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> -	.set_rate = dsi_pll_28nm_clk_set_rate,
> -	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
> -	.prepare = msm_dsi_pll_helper_clk_prepare,
> -	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> -	.is_enabled = dsi_pll_28nm_clk_is_enabled,
> -};
> -
> -/*
> - * PLL Callbacks
> - */
> -static int dsi_pll_28nm_enable_seq_hpm(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	void __iomem *base = pll_28nm->mmio;
> -	u32 max_reads = 5, timeout_us = 100;
> -	bool locked;
> -	u32 val;
> -	int i;
> -
> -	DBG("id=%d", pll_28nm->id);
> -
> -	pll_28nm_software_reset(pll_28nm);
> -
> -	/*
> -	 * PLL power up sequence.
> -	 * Add necessary delays recommended by hardware.
> -	 */
> -	val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
> -
> -	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> -
> -	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> -
> -	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
> -
> -	for (i = 0; i < 2; i++) {
> -		/* DSI Uniphy lock detect setting */
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,
> -				0x0c, 100);
> -		pll_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
> -
> -		/* poll for PLL ready status */
> -		locked = pll_28nm_poll_for_ready(pll_28nm,
> -						max_reads, timeout_us);
> -		if (locked)
> -			break;
> -
> -		pll_28nm_software_reset(pll_28nm);
> -
> -		/*
> -		 * PLL power up sequence.
> -		 * Add necessary delays recommended by hardware.
> -		 */
> -		val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
> -
> -		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> -
> -		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250);
> -
> -		val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
> -
> -		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> -
> -		val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> -		pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
> -	}
> -
> -	if (unlikely(!locked))
> -		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> -	else
> -		DBG("DSI PLL Lock success");
> -
> -	return locked ? 0 : -EINVAL;
> -}
> -
> -static int dsi_pll_28nm_enable_seq_lp(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	void __iomem *base = pll_28nm->mmio;
> -	bool locked;
> -	u32 max_reads = 10, timeout_us = 50;
> -	u32 val;
> -
> -	DBG("id=%d", pll_28nm->id);
> -
> -	pll_28nm_software_reset(pll_28nm);
> -
> -	/*
> -	 * PLL power up sequence.
> -	 * Add necessary delays recommended by hardware.
> -	 */
> -	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500);
> -
> -	val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
> -	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> -
> -	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
> -	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> -
> -	val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B |
> -		DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
> -	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
> -
> -	/* DSI PLL toggle lock detect setting */
> -	pll_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500);
> -	pll_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512);
> -
> -	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
> -
> -	if (unlikely(!locked))
> -		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> -	else
> -		DBG("DSI PLL lock success");
> -
> -	return locked ? 0 : -EINVAL;
> -}
> -
> -static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	DBG("id=%d", pll_28nm->id);
> -	pll_write(pll_28nm->mmio + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00);
> -}
> -
> -static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> -	void __iomem *base = pll_28nm->mmio;
> -
> -	cached_state->postdiv3 =
> -			pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG);
> -	cached_state->postdiv1 =
> -			pll_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG);
> -	cached_state->byte_mux = pll_read(base + 
> REG_DSI_28nm_PHY_PLL_VREG_CFG);
> -	if (dsi_pll_28nm_clk_is_enabled(&pll->clk_hw))
> -		cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> -	else
> -		cached_state->vco_rate = 0;
> -}
> -
> -static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> -	void __iomem *base = pll_28nm->mmio;
> -	int ret;
> -
> -	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
> -					cached_state->vco_rate, 0);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
> -			"restore vco rate failed. ret=%d\n", ret);
> -		return ret;
> -	}
> -
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
> -			cached_state->postdiv3);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
> -			cached_state->postdiv1);
> -	pll_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG,
> -			cached_state->byte_mux);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
> -				struct clk **byte_clk_provider,
> -				struct clk **pixel_clk_provider)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	if (byte_clk_provider)
> -		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
> -	if (pixel_clk_provider)
> -		*pixel_clk_provider =
> -				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
> -
> -	return 0;
> -}
> -
> -static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	int i;
> -
> -	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
> -					pll_28nm->clks, pll_28nm->num_clks);
> -
> -	for (i = 0; i < NUM_PROVIDED_CLKS; i++)
> -		pll_28nm->provided_clks[i] = NULL;
> -
> -	pll_28nm->num_clks = 0;
> -	pll_28nm->clk_data.clks = NULL;
> -	pll_28nm->clk_data.clk_num = 0;
> -}
> -
> -static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
> -{
> -	char clk_name[32], parent1[32], parent2[32], vco_name[32];
> -	struct clk_init_data vco_init = {
> -		.parent_names = (const char *[]){ "xo" },
> -		.num_parents = 1,
> -		.name = vco_name,
> -		.flags = CLK_IGNORE_UNUSED,
> -		.ops = &clk_ops_dsi_pll_28nm_vco,
> -	};
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	struct clk **clks = pll_28nm->clks;
> -	struct clk **provided_clks = pll_28nm->provided_clks;
> -	int num = 0;
> -	int ret;
> -
> -	DBG("%d", pll_28nm->id);
> -
> -	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
> -	pll_28nm->base.clk_hw.init = &vco_init;
> -	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
> -
> -	snprintf(clk_name, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
> -	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> -	clks[num++] = clk_register_divider(dev, clk_name,
> -			parent1, CLK_SET_RATE_PARENT,
> -			pll_28nm->mmio +
> -			REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
> -			0, 4, 0, NULL);
> -
> -	snprintf(clk_name, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
> -	snprintf(parent1, 32, "dsi%danalog_postdiv_clk", pll_28nm->id);
> -	clks[num++] = clk_register_fixed_factor(dev, clk_name,
> -			parent1, CLK_SET_RATE_PARENT,
> -			1, 2);
> -
> -	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
> -	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> -	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
> -			clk_register_divider(dev, clk_name,
> -				parent1, 0, pll_28nm->mmio +
> -				REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
> -				0, 8, 0, NULL);
> -
> -	snprintf(clk_name, 32, "dsi%dbyte_mux", pll_28nm->id);
> -	snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->id);
> -	snprintf(parent2, 32, "dsi%dindirect_path_div2_clk", pll_28nm->id);
> -	clks[num++] = clk_register_mux(dev, clk_name,
> -			((const char *[]){
> -				parent1, parent2
> -			}), 2, CLK_SET_RATE_PARENT, pll_28nm->mmio +
> -			REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL);
> -
> -	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
> -	snprintf(parent1, 32, "dsi%dbyte_mux", pll_28nm->id);
> -	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
> -			clk_register_fixed_factor(dev, clk_name,
> -				parent1, CLK_SET_RATE_PARENT, 1, 4);
> -
> -	pll_28nm->num_clks = num;
> -
> -	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
> -	pll_28nm->clk_data.clks = provided_clks;
> -
> -	ret = of_clk_add_provider(dev->of_node,
> -			of_clk_src_onecell_get, &pll_28nm->clk_data);
> -	if (ret) {
> -		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> -		return ret;
> -	}
> -
> -	return 0;
> -}
> -
> -struct msm_dsi_pll *msm_dsi_pll_28nm_init(struct platform_device 
> *pdev,
> -					enum msm_dsi_phy_type type, int id)
> -{
> -	struct dsi_pll_28nm *pll_28nm;
> -	struct msm_dsi_pll *pll;
> -	int ret;
> -
> -	if (!pdev)
> -		return ERR_PTR(-ENODEV);
> -
> -	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
> -	if (!pll_28nm)
> -		return ERR_PTR(-ENOMEM);
> -
> -	pll_28nm->pdev = pdev;
> -	pll_28nm->id = id;
> -
> -	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> -	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	pll = &pll_28nm->base;
> -	pll->min_rate = VCO_MIN_RATE;
> -	pll->max_rate = VCO_MAX_RATE;
> -	pll->get_provider = dsi_pll_28nm_get_provider;
> -	pll->destroy = dsi_pll_28nm_destroy;
> -	pll->disable_seq = dsi_pll_28nm_disable_seq;
> -	pll->save_state = dsi_pll_28nm_save_state;
> -	pll->restore_state = dsi_pll_28nm_restore_state;
> -
> -	if (type == MSM_DSI_PHY_28NM_HPM) {
> -		pll_28nm->vco_delay = 1;
> -
> -		pll->en_seq_cnt = 3;
> -		pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_hpm;
> -		pll->enable_seqs[1] = dsi_pll_28nm_enable_seq_hpm;
> -		pll->enable_seqs[2] = dsi_pll_28nm_enable_seq_hpm;
> -	} else if (type == MSM_DSI_PHY_28NM_LP) {
> -		pll_28nm->vco_delay = 1000;
> -
> -		pll->en_seq_cnt = 1;
> -		pll->enable_seqs[0] = dsi_pll_28nm_enable_seq_lp;
> -	} else {
> -		DRM_DEV_ERROR(&pdev->dev, "phy type (%d) is not 28nm\n", type);
> -		return ERR_PTR(-EINVAL);
> -	}
> -
> -	ret = pll_28nm_register(pll_28nm);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> -		return ERR_PTR(ret);
> -	}
> -
> -	return pll;
> -}
> -
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm_8960.c
> b/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm_8960.c
> deleted file mode 100644
> index a6e7a2525fe0..000000000000
> --- a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_28nm_8960.c
> +++ /dev/null
> @@ -1,526 +0,0 @@
> -// SPDX-License-Identifier: GPL-2.0-only
> -/*
> - * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
> - */
> -
> -#include <linux/clk-provider.h>
> -
> -#include "dsi_pll.h"
> -#include "dsi.xml.h"
> -
> -/*
> - * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
> - *
> - *
> - *                        +------+
> - *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
> - *  F * byte_clk    |     +------+
> - *                  | bit clock divider (F / 8)
> - *                  |
> - *                  |     +------+
> - *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
> - *                  |     +------+                 | (sets parent 
> rate)
> - *                  | byte clock divider (F)       |
> - *                  |                              |
> - *                  |                              o---> To esc RCG
> - *                  |                                (doesn't set 
> parent rate)
> - *                  |
> - *                  |     +------+
> - *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
> - *                        +------+                 | (sets parent 
> rate)
> - *                  dsi clock divider (F * magic)  |
> - *                                                 |
> - *                                                 o---> To pixel rcg
> - *                                                  (doesn't set 
> parent rate)
> - */
> -
> -#define POLL_MAX_READS		8000
> -#define POLL_TIMEOUT_US		1
> -
> -#define NUM_PROVIDED_CLKS	2
> -
> -#define VCO_REF_CLK_RATE	27000000
> -#define VCO_MIN_RATE		600000000
> -#define VCO_MAX_RATE		1200000000
> -
> -#define DSI_BYTE_PLL_CLK	0
> -#define DSI_PIXEL_PLL_CLK	1
> -
> -#define VCO_PREF_DIV_RATIO	27
> -
> -struct pll_28nm_cached_state {
> -	unsigned long vco_rate;
> -	u8 postdiv3;
> -	u8 postdiv2;
> -	u8 postdiv1;
> -};
> -
> -struct clk_bytediv {
> -	struct clk_hw hw;
> -	void __iomem *reg;
> -};
> -
> -struct dsi_pll_28nm {
> -	struct msm_dsi_pll base;
> -
> -	int id;
> -	struct platform_device *pdev;
> -	void __iomem *mmio;
> -
> -	/* custom byte clock divider */
> -	struct clk_bytediv *bytediv;
> -
> -	/* private clocks: */
> -	struct clk *clks[NUM_DSI_CLOCKS_MAX];
> -	u32 num_clks;
> -
> -	/* clock-provider: */
> -	struct clk *provided_clks[NUM_PROVIDED_CLKS];
> -	struct clk_onecell_data clk_data;
> -
> -	struct pll_28nm_cached_state cached_state;
> -};
> -
> -#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)
> -
> -static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
> -				    int nb_tries, int timeout_us)
> -{
> -	bool pll_locked = false;
> -	u32 val;
> -
> -	while (nb_tries--) {
> -		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY);
> -		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);
> -
> -		if (pll_locked)
> -			break;
> -
> -		udelay(timeout_us);
> -	}
> -	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
> -
> -	return pll_locked;
> -}
> -
> -/*
> - * Clock Callbacks
> - */
> -static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> -				     unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	void __iomem *base = pll_28nm->mmio;
> -	u32 val, temp, fb_divider;
> -
> -	DBG("rate=%lu, parent's=%lu", rate, parent_rate);
> -
> -	temp = rate / 10;
> -	val = VCO_REF_CLK_RATE / 10;
> -	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
> -	fb_divider = fb_divider / 2 - 1;
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
> -			fb_divider & 0xff);
> -
> -	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);
> -
> -	val |= (fb_divider >> 8) & 0x07;
> -
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
> -			val);
> -
> -	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
> -
> -	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;
> -
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
> -			val);
> -
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
> -			0xf);
> -
> -	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> -	val |= 0x7 << 4;
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
> -			val);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
> -					POLL_TIMEOUT_US);
> -}
> -
> -static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
> -						  unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	void __iomem *base = pll_28nm->mmio;
> -	unsigned long vco_rate;
> -	u32 status, fb_divider, temp, ref_divider;
> -
> -	VERB("parent_rate=%lu", parent_rate);
> -
> -	status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);
> -
> -	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
> -		fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
> -		fb_divider &= 0xff;
> -		temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
> -		fb_divider = (temp << 8) | fb_divider;
> -		fb_divider += 1;
> -
> -		ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
> -		ref_divider &= 0x3f;
> -		ref_divider += 1;
> -
> -		/* multiply by 2 */
> -		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
> -	} else {
> -		vco_rate = 0;
> -	}
> -
> -	DBG("returning vco rate = %lu", vco_rate);
> -
> -	return vco_rate;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
> -	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> -	.set_rate = dsi_pll_28nm_clk_set_rate,
> -	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
> -	.prepare = msm_dsi_pll_helper_clk_prepare,
> -	.unprepare = msm_dsi_pll_helper_clk_unprepare,
> -	.is_enabled = dsi_pll_28nm_clk_is_enabled,
> -};
> -
> -/*
> - * Custom byte clock divier clk_ops
> - *
> - * This clock is the entry point to configuring the PLL. The user (dsi 
> host)
> - * will set this clock's rate to the desired byte clock rate. The VCO 
> lock
> - * frequency is a multiple of the byte clock rate. The multiplication 
> factor
> - * (shown as F in the diagram above) is a function of the byte clock 
> rate.
> - *
> - * This custom divider clock ensures that its parent (VCO) is set to 
> the
> - * desired rate, and that the byte clock postdivider (POSTDIV2) is 
> configured
> - * accordingly
> - */
> -#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)
> -
> -static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
> -		unsigned long parent_rate)
> -{
> -	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
> -	unsigned int div;
> -
> -	div = pll_read(bytediv->reg) & 0xff;
> -
> -	return parent_rate / (div + 1);
> -}
> -
> -/* find multiplication factor(wrt byte clock) at which the VCO should 
> be set */
> -static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
> -{
> -	unsigned long bit_mhz;
> -
> -	/* convert to bit clock in Mhz */
> -	bit_mhz = (byte_clk_rate * 8) / 1000000;
> -
> -	if (bit_mhz < 125)
> -		return 64;
> -	else if (bit_mhz < 250)
> -		return 32;
> -	else if (bit_mhz < 600)
> -		return 16;
> -	else
> -		return 8;
> -}
> -
> -static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long 
> rate,
> -				   unsigned long *prate)
> -{
> -	unsigned long best_parent;
> -	unsigned int factor;
> -
> -	factor = get_vco_mul_factor(rate);
> -
> -	best_parent = rate * factor;
> -	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
> -
> -	return *prate / factor;
> -}
> -
> -static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
> -				unsigned long parent_rate)
> -{
> -	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
> -	u32 val;
> -	unsigned int factor;
> -
> -	factor = get_vco_mul_factor(rate);
> -
> -	val = pll_read(bytediv->reg);
> -	val |= (factor - 1) & 0xff;
> -	pll_write(bytediv->reg, val);
> -
> -	return 0;
> -}
> -
> -/* Our special byte clock divider ops */
> -static const struct clk_ops clk_bytediv_ops = {
> -	.round_rate = clk_bytediv_round_rate,
> -	.set_rate = clk_bytediv_set_rate,
> -	.recalc_rate = clk_bytediv_recalc_rate,
> -};
> -
> -/*
> - * PLL Callbacks
> - */
> -static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	void __iomem *base = pll_28nm->mmio;
> -	bool locked;
> -	unsigned int bit_div, byte_div;
> -	int max_reads = 1000, timeout_us = 100;
> -	u32 val;
> -
> -	DBG("id=%d", pll_28nm->id);
> -
> -	/*
> -	 * before enabling the PLL, configure the bit clock divider since we
> -	 * don't expose it as a clock to the outside world
> -	 * 1: read back the byte clock divider that should already be set
> -	 * 2: divide by 8 to get bit clock divider
> -	 * 3: write it to POSTDIV1
> -	 */
> -	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
> -	byte_div = val + 1;
> -	bit_div = byte_div / 8;
> -
> -	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> -	val &= ~0xf;
> -	val |= (bit_div - 1);
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);
> -
> -	/* enable the PLL */
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
> -			DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);
> -
> -	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
> -
> -	if (unlikely(!locked))
> -		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
> -	else
> -		DBG("DSI PLL lock success");
> -
> -	return locked ? 0 : -EINVAL;
> -}
> -
> -static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	DBG("id=%d", pll_28nm->id);
> -	pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
> -}
> -
> -static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> -	void __iomem *base = pll_28nm->mmio;
> -
> -	cached_state->postdiv3 =
> -			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
> -	cached_state->postdiv2 =
> -			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
> -	cached_state->postdiv1 =
> -			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
> -
> -	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
> -}
> -
> -static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
> -	void __iomem *base = pll_28nm->mmio;
> -	int ret;
> -
> -	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
> -					cached_state->vco_rate, 0);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
> -			"restore vco rate failed. ret=%d\n", ret);
> -		return ret;
> -	}
> -
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
> -			cached_state->postdiv3);
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
> -			cached_state->postdiv2);
> -	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
> -			cached_state->postdiv1);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
> -				struct clk **byte_clk_provider,
> -				struct clk **pixel_clk_provider)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	if (byte_clk_provider)
> -		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
> -	if (pixel_clk_provider)
> -		*pixel_clk_provider =
> -				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];
> -
> -	return 0;
> -}
> -
> -static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
> -
> -	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
> -					pll_28nm->clks, pll_28nm->num_clks);
> -}
> -
> -static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
> -{
> -	char *clk_name, *parent_name, *vco_name;
> -	struct clk_init_data vco_init = {
> -		.parent_names = (const char *[]){ "pxo" },
> -		.num_parents = 1,
> -		.flags = CLK_IGNORE_UNUSED,
> -		.ops = &clk_ops_dsi_pll_28nm_vco,
> -	};
> -	struct device *dev = &pll_28nm->pdev->dev;
> -	struct clk **clks = pll_28nm->clks;
> -	struct clk **provided_clks = pll_28nm->provided_clks;
> -	struct clk_bytediv *bytediv;
> -	struct clk_init_data bytediv_init = { };
> -	int ret, num = 0;
> -
> -	DBG("%d", pll_28nm->id);
> -
> -	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
> -	if (!bytediv)
> -		return -ENOMEM;
> -
> -	vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> -	if (!vco_name)
> -		return -ENOMEM;
> -
> -	parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> -	if (!parent_name)
> -		return -ENOMEM;
> -
> -	clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
> -	if (!clk_name)
> -		return -ENOMEM;
> -
> -	pll_28nm->bytediv = bytediv;
> -
> -	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
> -	vco_init.name = vco_name;
> -
> -	pll_28nm->base.clk_hw.init = &vco_init;
> -
> -	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);
> -
> -	/* prepare and register bytediv */
> -	bytediv->hw.init = &bytediv_init;
> -	bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;
> -
> -	snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id);
> -	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);
> -
> -	bytediv_init.name = clk_name;
> -	bytediv_init.ops = &clk_bytediv_ops;
> -	bytediv_init.flags = CLK_SET_RATE_PARENT;
> -	bytediv_init.parent_names = (const char * const *) &parent_name;
> -	bytediv_init.num_parents = 1;
> -
> -	/* DIV2 */
> -	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
> -			clk_register(dev, &bytediv->hw);
> -
> -	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
> -	/* DIV3 */
> -	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
> -			clk_register_divider(dev, clk_name,
> -				parent_name, 0, pll_28nm->mmio +
> -				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
> -				0, 8, 0, NULL);
> -
> -	pll_28nm->num_clks = num;
> -
> -	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
> -	pll_28nm->clk_data.clks = provided_clks;
> -
> -	ret = of_clk_add_provider(dev->of_node,
> -			of_clk_src_onecell_get, &pll_28nm->clk_data);
> -	if (ret) {
> -		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> -		return ret;
> -	}
> -
> -	return 0;
> -}
> -
> -struct msm_dsi_pll *msm_dsi_pll_28nm_8960_init(struct platform_device 
> *pdev,
> -					       int id)
> -{
> -	struct dsi_pll_28nm *pll_28nm;
> -	struct msm_dsi_pll *pll;
> -	int ret;
> -
> -	if (!pdev)
> -		return ERR_PTR(-ENODEV);
> -
> -	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
> -	if (!pll_28nm)
> -		return ERR_PTR(-ENOMEM);
> -
> -	pll_28nm->pdev = pdev;
> -	pll_28nm->id = id + 1;
> -
> -	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> -	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	pll = &pll_28nm->base;
> -	pll->min_rate = VCO_MIN_RATE;
> -	pll->max_rate = VCO_MAX_RATE;
> -	pll->get_provider = dsi_pll_28nm_get_provider;
> -	pll->destroy = dsi_pll_28nm_destroy;
> -	pll->disable_seq = dsi_pll_28nm_disable_seq;
> -	pll->save_state = dsi_pll_28nm_save_state;
> -	pll->restore_state = dsi_pll_28nm_restore_state;
> -
> -	pll->en_seq_cnt = 1;
> -	pll->enable_seqs[0] = dsi_pll_28nm_enable_seq;
> -
> -	ret = pll_28nm_register(pll_28nm);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> -		return ERR_PTR(ret);
> -	}
> -
> -	return pll;
> -}
> diff --git a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_7nm.c
> b/drivers/gpu/drm/msm/dsi/pll/dsi_pll_7nm.c
> deleted file mode 100644
> index e29b3bfd63d1..000000000000
> --- a/drivers/gpu/drm/msm/dsi/pll/dsi_pll_7nm.c
> +++ /dev/null
> @@ -1,913 +0,0 @@
> -/*
> - * SPDX-License-Identifier: GPL-2.0
> - * Copyright (c) 2018, The Linux Foundation
> - */
> -
> -#include <linux/clk.h>
> -#include <linux/clk-provider.h>
> -#include <linux/iopoll.h>
> -
> -#include "dsi_pll.h"
> -#include "dsi.xml.h"
> -
> -/*
> - * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
> - *
> - *           dsi0_pll_out_div_clk  dsi0_pll_bit_clk
> - *                              |                |
> - *                              |                |
> - *                 +---------+  |  +----------+  |  +----+
> - *  dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |--
> dsi0_phy_pll_out_byteclk
> - *                 +---------+  |  +----------+  |  +----+
> - *                              |                |
> - *                              |                |
> dsi0_pll_by_2_bit_clk
> - *                              |                |          |
> - *                              |                |  +----+  |  |\
> dsi0_pclk_mux
> - *                              |                |--| /2 |--o--| \   |
> - *                              |                |  +----+     |  \
> |  +---------+
> - *                              |                --------------|
> |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
> - *                              |------------------------------|  /
>   +---------+
> - *                              |          +-----+             | /
> - *                              -----------| /4? |--o----------|/
> - *                                         +-----+  |           |
> - *                                                  |           
> |dsiclk_sel
> - *                                                  |
> - *                                                  
> dsi0_pll_post_out_div_clk
> - */
> -
> -#define DSI_BYTE_PLL_CLK		0
> -#define DSI_PIXEL_PLL_CLK		1
> -#define NUM_PROVIDED_CLKS		2
> -
> -#define VCO_REF_CLK_RATE		19200000
> -
> -struct dsi_pll_regs {
> -	u32 pll_prop_gain_rate;
> -	u32 pll_lockdet_rate;
> -	u32 decimal_div_start;
> -	u32 frac_div_start_low;
> -	u32 frac_div_start_mid;
> -	u32 frac_div_start_high;
> -	u32 pll_clock_inverters;
> -	u32 ssc_stepsize_low;
> -	u32 ssc_stepsize_high;
> -	u32 ssc_div_per_low;
> -	u32 ssc_div_per_high;
> -	u32 ssc_adjper_low;
> -	u32 ssc_adjper_high;
> -	u32 ssc_control;
> -};
> -
> -struct dsi_pll_config {
> -	u32 ref_freq;
> -	bool div_override;
> -	u32 output_div;
> -	bool ignore_frac;
> -	bool disable_prescaler;
> -	bool enable_ssc;
> -	bool ssc_center;
> -	u32 dec_bits;
> -	u32 frac_bits;
> -	u32 lock_timer;
> -	u32 ssc_freq;
> -	u32 ssc_offset;
> -	u32 ssc_adj_per;
> -	u32 thresh_cycles;
> -	u32 refclk_cycles;
> -};
> -
> -struct pll_7nm_cached_state {
> -	unsigned long vco_rate;
> -	u8 bit_clk_div;
> -	u8 pix_clk_div;
> -	u8 pll_out_div;
> -	u8 pll_mux;
> -};
> -
> -struct dsi_pll_7nm {
> -	struct msm_dsi_pll base;
> -
> -	int id;
> -	struct platform_device *pdev;
> -
> -	void __iomem *phy_cmn_mmio;
> -	void __iomem *mmio;
> -
> -	u64 vco_ref_clk_rate;
> -	u64 vco_current_rate;
> -
> -	/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
> -	spinlock_t postdiv_lock;
> -
> -	int vco_delay;
> -	struct dsi_pll_config pll_configuration;
> -	struct dsi_pll_regs reg_setup;
> -
> -	/* private clocks: */
> -	struct clk_hw *out_div_clk_hw;
> -	struct clk_hw *bit_clk_hw;
> -	struct clk_hw *byte_clk_hw;
> -	struct clk_hw *by_2_bit_clk_hw;
> -	struct clk_hw *post_out_div_clk_hw;
> -	struct clk_hw *pclk_mux_hw;
> -	struct clk_hw *out_dsiclk_hw;
> -
> -	/* clock-provider: */
> -	struct clk_hw_onecell_data *hw_data;
> -
> -	struct pll_7nm_cached_state cached_state;
> -
> -	enum msm_dsi_phy_usecase uc;
> -	struct dsi_pll_7nm *slave;
> -};
> -
> -#define to_pll_7nm(x)	container_of(x, struct dsi_pll_7nm, base)
> -
> -/*
> - * Global list of private DSI PLL struct pointers. We need this for 
> Dual DSI
> - * mode, where the master PLL's clk_ops needs access the slave's 
> private data
> - */
> -static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
> -
> -static void dsi_pll_setup_config(struct dsi_pll_7nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -
> -	config->ref_freq = pll->vco_ref_clk_rate;
> -	config->output_div = 1;
> -	config->dec_bits = 8;
> -	config->frac_bits = 18;
> -	config->lock_timer = 64;
> -	config->ssc_freq = 31500;
> -	config->ssc_offset = 4800;
> -	config->ssc_adj_per = 2;
> -	config->thresh_cycles = 32;
> -	config->refclk_cycles = 256;
> -
> -	config->div_override = false;
> -	config->ignore_frac = false;
> -	config->disable_prescaler = false;
> -
> -	/* TODO: ssc enable */
> -	config->enable_ssc = false;
> -	config->ssc_center = 0;
> -}
> -
> -static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -	u64 fref = pll->vco_ref_clk_rate;
> -	u64 pll_freq;
> -	u64 divider;
> -	u64 dec, dec_multiple;
> -	u32 frac;
> -	u64 multiplier;
> -
> -	pll_freq = pll->vco_current_rate;
> -
> -	if (config->disable_prescaler)
> -		divider = fref;
> -	else
> -		divider = fref * 2;
> -
> -	multiplier = 1 << config->frac_bits;
> -	dec_multiple = div_u64(pll_freq * multiplier, divider);
> -	div_u64_rem(dec_multiple, multiplier, &frac);
> -
> -	dec = div_u64(dec_multiple, multiplier);
> -
> -	if (pll->base.type != MSM_DSI_PHY_7NM_V4_1)
> -		regs->pll_clock_inverters = 0x28;
> -	else if (pll_freq <= 1000000000ULL)
> -		regs->pll_clock_inverters = 0xa0;
> -	else if (pll_freq <= 2500000000ULL)
> -		regs->pll_clock_inverters = 0x20;
> -	else if (pll_freq <= 3020000000ULL)
> -		regs->pll_clock_inverters = 0x00;
> -	else
> -		regs->pll_clock_inverters = 0x40;
> -
> -	regs->pll_lockdet_rate = config->lock_timer;
> -	regs->decimal_div_start = dec;
> -	regs->frac_div_start_low = (frac & 0xff);
> -	regs->frac_div_start_mid = (frac & 0xff00) >> 8;
> -	regs->frac_div_start_high = (frac & 0x30000) >> 16;
> -}
> -
> -#define SSC_CENTER		BIT(0)
> -#define SSC_EN			BIT(1)
> -
> -static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll)
> -{
> -	struct dsi_pll_config *config = &pll->pll_configuration;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -	u32 ssc_per;
> -	u32 ssc_mod;
> -	u64 ssc_step_size;
> -	u64 frac;
> -
> -	if (!config->enable_ssc) {
> -		DBG("SSC not enabled\n");
> -		return;
> -	}
> -
> -	ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 
> 1;
> -	ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
> -	ssc_per -= ssc_mod;
> -
> -	frac = regs->frac_div_start_low |
> -			(regs->frac_div_start_mid << 8) |
> -			(regs->frac_div_start_high << 16);
> -	ssc_step_size = regs->decimal_div_start;
> -	ssc_step_size *= (1 << config->frac_bits);
> -	ssc_step_size += frac;
> -	ssc_step_size *= config->ssc_offset;
> -	ssc_step_size *= (config->ssc_adj_per + 1);
> -	ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
> -	ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
> -
> -	regs->ssc_div_per_low = ssc_per & 0xFF;
> -	regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
> -	regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
> -	regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
> -	regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
> -	regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
> -
> -	regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
> -
> -	pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
> -		 regs->decimal_div_start, frac, config->frac_bits);
> -	pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
> -		 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
> -}
> -
> -static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	struct dsi_pll_regs *regs = &pll->reg_setup;
> -
> -	if (pll->pll_configuration.enable_ssc) {
> -		pr_debug("SSC is enabled\n");
> -
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
> -			  regs->ssc_stepsize_low);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
> -			  regs->ssc_stepsize_high);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
> -			  regs->ssc_div_per_low);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
> -			  regs->ssc_div_per_high);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
> -			  regs->ssc_adjper_low);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
> -			  regs->ssc_adjper_high);
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
> -			  SSC_EN | regs->ssc_control);
> -	}
> -}
> -
> -static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
> -
> -	if (pll->base.type == MSM_DSI_PHY_7NM_V4_1) {
> -		if (pll->vco_current_rate >= 3100000000ULL)
> -			analog_controls_five_1 = 0x03;
> -
> -		if (pll->vco_current_rate < 1520000000ULL)
> -			vco_config_1 = 0x08;
> -		else if (pll->vco_current_rate < 2990000000ULL)
> -			vco_config_1 = 0x01;
> -	}
> -
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
> -		  analog_controls_five_1);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 
> 0xba);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0x84);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 
> 0x82);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 
> 0x4c);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
> -		  pll->base.type == MSM_DSI_PHY_7NM_V4_1 ? 0x3f : 0x22);
> -
> -	if (pll->base.type == MSM_DSI_PHY_7NM_V4_1) {
> -		pll_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
> -		if (pll->slave)
> -			pll_write(pll->slave->mmio + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 
> 0x22);
> -	}
> -}
> -
> -static void dsi_pll_commit(struct dsi_pll_7nm *pll)
> -{
> -	void __iomem *base = pll->mmio;
> -	struct dsi_pll_regs *reg = &pll->reg_setup;
> -
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
> reg->decimal_div_start);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
> reg->frac_div_start_low);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
> reg->frac_div_start_mid);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
> reg->frac_div_start_high);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1,
> reg->pll_lockdet_rate);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, 0x10); /* TODO: 0x00 
> for CPHY */
> -	pll_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
> reg->pll_clock_inverters);
> -}
> -
> -static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long 
> rate,
> -				     unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -
> -	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->id, rate,
> -	    parent_rate);
> -
> -	pll_7nm->vco_current_rate = rate;
> -	pll_7nm->vco_ref_clk_rate = VCO_REF_CLK_RATE;
> -
> -	dsi_pll_setup_config(pll_7nm);
> -
> -	dsi_pll_calc_dec_frac(pll_7nm);
> -
> -	dsi_pll_calc_ssc(pll_7nm);
> -
> -	dsi_pll_commit(pll_7nm);
> -
> -	dsi_pll_config_hzindep_reg(pll_7nm);
> -
> -	dsi_pll_ssc_commit(pll_7nm);
> -
> -	/* flush, ensure all register writes are done*/
> -	wmb();
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
> -{
> -	int rc;
> -	u32 status = 0;
> -	u32 const delay_us = 100;
> -	u32 const timeout_us = 5000;
> -
> -	rc = readl_poll_timeout_atomic(pll->mmio +
> -				       REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
> -				       status,
> -				       ((status & BIT(0)) > 0),
> -				       delay_us,
> -				       timeout_us);
> -	if (rc)
> -		pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
> -		       pll->id, status);
> -
> -	return rc;
> -}
> -
> -static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
> -{
> -	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0);
> -
> -	pll_write(pll->mmio + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0, data & 
> ~BIT(5));
> -	ndelay(250);
> -}
> -
> -static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
> -{
> -	u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0);
> -
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_0, data | 
> BIT(5));
> -	pll_write(pll->mmio + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
> -	ndelay(250);
> -}
> -
> -static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
> -{
> -	u32 data;
> -
> -	data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & 
> ~BIT(5));
> -}
> -
> -static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
> -{
> -	u32 data;
> -
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
> -
> -	data = pll_read(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
> -		  data | BIT(5) | BIT(4));
> -}
> -
> -static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
> -{
> -	/*
> -	 * Reset the PHY digital domain. This would be needed when
> -	 * coming out of a CX or analog rail power collapse while
> -	 * ensuring that the pads maintain LP00 or LP11 state
> -	 */
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 
> BIT(0));
> -	wmb(); /* Ensure that the reset is deasserted */
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 
> 0x0);
> -	wmb(); /* Ensure that the reset is deasserted */
> -}
> -
> -static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	int rc;
> -
> -	dsi_pll_enable_pll_bias(pll_7nm);
> -	if (pll_7nm->slave)
> -		dsi_pll_enable_pll_bias(pll_7nm->slave);
> -
> -	/* Start PLL */
> -	pll_write(pll_7nm->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 
> 0x01);
> -
> -	/*
> -	 * ensure all PLL configurations are written prior to checking
> -	 * for PLL lock.
> -	 */
> -	wmb();
> -
> -	/* Check for PLL lock */
> -	rc = dsi_pll_7nm_lock_status(pll_7nm);
> -	if (rc) {
> -		pr_err("PLL(%d) lock failed\n", pll_7nm->id);
> -		goto error;
> -	}
> -
> -	pll->pll_on = true;
> -
> -	/*
> -	 * assert power on reset for PHY digital in case the PLL is
> -	 * enabled after CX of analog domain power collapse. This needs
> -	 * to be done before enabling the global clk.
> -	 */
> -	dsi_pll_phy_dig_reset(pll_7nm);
> -	if (pll_7nm->slave)
> -		dsi_pll_phy_dig_reset(pll_7nm->slave);
> -
> -	dsi_pll_enable_global_clk(pll_7nm);
> -	if (pll_7nm->slave)
> -		dsi_pll_enable_global_clk(pll_7nm->slave);
> -
> -error:
> -	return rc;
> -}
> -
> -static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
> -{
> -	pll_write(pll->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
> -	dsi_pll_disable_pll_bias(pll);
> -}
> -
> -static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -
> -	/*
> -	 * To avoid any stray glitches while abruptly powering down the PLL
> -	 * make sure to gate the clock using the clock enable bit before
> -	 * powering down the PLL
> -	 */
> -	dsi_pll_disable_global_clk(pll_7nm);
> -	pll_write(pll_7nm->phy_cmn_mmio + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
> -	dsi_pll_disable_sub(pll_7nm);
> -	if (pll_7nm->slave) {
> -		dsi_pll_disable_global_clk(pll_7nm->slave);
> -		dsi_pll_disable_sub(pll_7nm->slave);
> -	}
> -	/* flush, ensure all register writes are done */
> -	wmb();
> -	pll->pll_on = false;
> -}
> -
> -static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
> -						  unsigned long parent_rate)
> -{
> -	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	struct dsi_pll_config *config = &pll_7nm->pll_configuration;
> -	void __iomem *base = pll_7nm->mmio;
> -	u64 ref_clk = pll_7nm->vco_ref_clk_rate;
> -	u64 vco_rate = 0x0;
> -	u64 multiplier;
> -	u32 frac;
> -	u32 dec;
> -	u64 pll_freq, tmp64;
> -
> -	dec = pll_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
> -	dec &= 0xff;
> -
> -	frac = pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
> -	frac |= ((pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
> -		  0xff) << 8);
> -	frac |= ((pll_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) 
> &
> -		  0x3) << 16);
> -
> -	/*
> -	 * TODO:
> -	 *	1. Assumes prescaler is disabled
> -	 */
> -	multiplier = 1 << config->frac_bits;
> -	pll_freq = dec * (ref_clk * 2);
> -	tmp64 = (ref_clk * 2 * frac);
> -	pll_freq += div_u64(tmp64, multiplier);
> -
> -	vco_rate = pll_freq;
> -
> -	DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
> -	    pll_7nm->id, (unsigned long)vco_rate, dec, frac);
> -
> -	return (unsigned long)vco_rate;
> -}
> -
> -static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
> -	.round_rate = msm_dsi_pll_helper_clk_round_rate,
> -	.set_rate = dsi_pll_7nm_vco_set_rate,
> -	.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
> -	.prepare = dsi_pll_7nm_vco_prepare,
> -	.unprepare = dsi_pll_7nm_vco_unprepare,
> -};
> -
> -/*
> - * PLL Callbacks
> - */
> -
> -static void dsi_pll_7nm_save_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
> -	void __iomem *phy_base = pll_7nm->phy_cmn_mmio;
> -	u32 cmn_clk_cfg0, cmn_clk_cfg1;
> -
> -	cached->pll_out_div = pll_read(pll_7nm->mmio +
> -				       REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
> -	cached->pll_out_div &= 0x3;
> -
> -	cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
> -	cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
> -	cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
> -
> -	cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> -	cached->pll_mux = cmn_clk_cfg1 & 0x3;
> -
> -	DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
> -	    pll_7nm->id, cached->pll_out_div, cached->bit_clk_div,
> -	    cached->pix_clk_div, cached->pll_mux);
> -}
> -
> -static int dsi_pll_7nm_restore_state(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
> -	void __iomem *phy_base = pll_7nm->phy_cmn_mmio;
> -	u32 val;
> -	int ret;
> -
> -	val = pll_read(pll_7nm->mmio + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
> -	val &= ~0x3;
> -	val |= cached->pll_out_div;
> -	pll_write(pll_7nm->mmio + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
> -
> -	pll_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> -		  cached->bit_clk_div | (cached->pix_clk_div << 4));
> -
> -	val = pll_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
> -	val &= ~0x3;
> -	val |= cached->pll_mux;
> -	pll_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
> -
> -	ret = dsi_pll_7nm_vco_set_rate(&pll->clk_hw,
> pll_7nm->vco_current_rate, pll_7nm->vco_ref_clk_rate);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pll_7nm->pdev->dev,
> -			"restore vco rate failed. ret=%d\n", ret);
> -		return ret;
> -	}
> -
> -	DBG("DSI PLL%d", pll_7nm->id);
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_7nm_set_usecase(struct msm_dsi_pll *pll,
> -				    enum msm_dsi_phy_usecase uc)
> -{
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	void __iomem *base = pll_7nm->phy_cmn_mmio;
> -	u32 data = 0x0;	/* internal PLL */
> -
> -	DBG("DSI PLL%d", pll_7nm->id);
> -
> -	switch (uc) {
> -	case MSM_DSI_PHY_STANDALONE:
> -		break;
> -	case MSM_DSI_PHY_MASTER:
> -		pll_7nm->slave = pll_7nm_list[(pll_7nm->id + 1) % DSI_MAX];
> -		break;
> -	case MSM_DSI_PHY_SLAVE:
> -		data = 0x1; /* external PLL */
> -		break;
> -	default:
> -		return -EINVAL;
> -	}
> -
> -	/* set PLL src */
> -	pll_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
> -
> -	pll_7nm->uc = uc;
> -
> -	return 0;
> -}
> -
> -static int dsi_pll_7nm_get_provider(struct msm_dsi_pll *pll,
> -				     struct clk **byte_clk_provider,
> -				     struct clk **pixel_clk_provider)
> -{
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	struct clk_hw_onecell_data *hw_data = pll_7nm->hw_data;
> -
> -	DBG("DSI PLL%d", pll_7nm->id);
> -
> -	if (byte_clk_provider)
> -		*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
> -	if (pixel_clk_provider)
> -		*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
> -
> -	return 0;
> -}
> -
> -static void dsi_pll_7nm_destroy(struct msm_dsi_pll *pll)
> -{
> -	struct dsi_pll_7nm *pll_7nm = to_pll_7nm(pll);
> -	struct device *dev = &pll_7nm->pdev->dev;
> -
> -	DBG("DSI PLL%d", pll_7nm->id);
> -	of_clk_del_provider(dev->of_node);
> -
> -	clk_hw_unregister_divider(pll_7nm->out_dsiclk_hw);
> -	clk_hw_unregister_mux(pll_7nm->pclk_mux_hw);
> -	clk_hw_unregister_fixed_factor(pll_7nm->post_out_div_clk_hw);
> -	clk_hw_unregister_fixed_factor(pll_7nm->by_2_bit_clk_hw);
> -	clk_hw_unregister_fixed_factor(pll_7nm->byte_clk_hw);
> -	clk_hw_unregister_divider(pll_7nm->bit_clk_hw);
> -	clk_hw_unregister_divider(pll_7nm->out_div_clk_hw);
> -	clk_hw_unregister(&pll_7nm->base.clk_hw);
> -}
> -
> -/*
> - * The post dividers and mux clocks are created using the standard 
> divider and
> - * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its 
> dividers/mux
> - * state to follow the master PLL's divider/mux state. Therefore, we 
> don't
> - * require special clock ops that also configure the slave PLL 
> registers
> - */
> -static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm)
> -{
> -	char clk_name[32], parent[32], vco_name[32];
> -	char parent2[32], parent3[32], parent4[32];
> -	struct clk_init_data vco_init = {
> -		.parent_names = (const char *[]){ "bi_tcxo" },
> -		.num_parents = 1,
> -		.name = vco_name,
> -		.flags = CLK_IGNORE_UNUSED,
> -		.ops = &clk_ops_dsi_pll_7nm_vco,
> -	};
> -	struct device *dev = &pll_7nm->pdev->dev;
> -	struct clk_hw_onecell_data *hw_data;
> -	struct clk_hw *hw;
> -	int ret;
> -
> -	DBG("DSI%d", pll_7nm->id);
> -
> -	hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
> -			       NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
> -			       GFP_KERNEL);
> -	if (!hw_data)
> -		return -ENOMEM;
> -
> -	snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->id);
> -	pll_7nm->base.clk_hw.init = &vco_init;
> -
> -	ret = clk_hw_register(dev, &pll_7nm->base.clk_hw);
> -	if (ret)
> -		return ret;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->id);
> -
> -	hw = clk_hw_register_divider(dev, clk_name,
> -				     parent, CLK_SET_RATE_PARENT,
> -				     pll_7nm->mmio +
> -				     REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
> -				     0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_base_clk_hw;
> -	}
> -
> -	pll_7nm->out_div_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> -
> -	/* BIT CLK: DIV_CTRL_3_0 */
> -	hw = clk_hw_register_divider(dev, clk_name, parent,
> -				     CLK_SET_RATE_PARENT,
> -				     pll_7nm->phy_cmn_mmio +
> -				     REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> -				     0, 4, CLK_DIVIDER_ONE_BASED,
> -				     &pll_7nm->postdiv_lock);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_out_div_clk_hw;
> -	}
> -
> -	pll_7nm->bit_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> -
> -	/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  CLK_SET_RATE_PARENT, 1, 8);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_bit_clk_hw;
> -	}
> -
> -	pll_7nm->byte_clk_hw = hw;
> -	hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> -
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  0, 1, 2);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_byte_clk_hw;
> -	}
> -
> -	pll_7nm->by_2_bit_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> -
> -	hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
> -					  0, 1, 4);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_by_2_bit_clk_hw;
> -	}
> -
> -	pll_7nm->post_out_div_clk_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->id);
> -	snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->id);
> -	snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->id);
> -	snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->id);
> -
> -	hw = clk_hw_register_mux(dev, clk_name,
> -				 ((const char *[]){
> -				 parent, parent2, parent3, parent4
> -				 }), 4, 0, pll_7nm->phy_cmn_mmio +
> -				 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
> -				 0, 2, 0, NULL);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_post_out_div_clk_hw;
> -	}
> -
> -	pll_7nm->pclk_mux_hw = hw;
> -
> -	snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->id);
> -	snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->id);
> -
> -	/* PIX CLK DIV : DIV_CTRL_7_4*/
> -	hw = clk_hw_register_divider(dev, clk_name, parent,
> -				     0, pll_7nm->phy_cmn_mmio +
> -					REG_DSI_7nm_PHY_CMN_CLK_CFG0,
> -				     4, 4, CLK_DIVIDER_ONE_BASED,
> -				     &pll_7nm->postdiv_lock);
> -	if (IS_ERR(hw)) {
> -		ret = PTR_ERR(hw);
> -		goto err_pclk_mux_hw;
> -	}
> -
> -	pll_7nm->out_dsiclk_hw = hw;
> -	hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
> -
> -	hw_data->num = NUM_PROVIDED_CLKS;
> -	pll_7nm->hw_data = hw_data;
> -
> -	ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
> -				     pll_7nm->hw_data);
> -	if (ret) {
> -		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
> -		goto err_dsiclk_hw;
> -	}
> -
> -	return 0;
> -
> -err_dsiclk_hw:
> -	clk_hw_unregister_divider(pll_7nm->out_dsiclk_hw);
> -err_pclk_mux_hw:
> -	clk_hw_unregister_mux(pll_7nm->pclk_mux_hw);
> -err_post_out_div_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_7nm->post_out_div_clk_hw);
> -err_by_2_bit_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_7nm->by_2_bit_clk_hw);
> -err_byte_clk_hw:
> -	clk_hw_unregister_fixed_factor(pll_7nm->byte_clk_hw);
> -err_bit_clk_hw:
> -	clk_hw_unregister_divider(pll_7nm->bit_clk_hw);
> -err_out_div_clk_hw:
> -	clk_hw_unregister_divider(pll_7nm->out_div_clk_hw);
> -err_base_clk_hw:
> -	clk_hw_unregister(&pll_7nm->base.clk_hw);
> -
> -	return ret;
> -}
> -
> -struct msm_dsi_pll *msm_dsi_pll_7nm_init(struct platform_device *pdev,
> -					enum msm_dsi_phy_type type, int id)
> -{
> -	struct dsi_pll_7nm *pll_7nm;
> -	struct msm_dsi_pll *pll;
> -	int ret;
> -
> -	pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
> -	if (!pll_7nm)
> -		return ERR_PTR(-ENOMEM);
> -
> -	DBG("DSI PLL%d", id);
> -
> -	pll_7nm->pdev = pdev;
> -	pll_7nm->id = id;
> -	pll_7nm_list[id] = pll_7nm;
> -
> -	pll_7nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
> -	if (IS_ERR_OR_NULL(pll_7nm->phy_cmn_mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	pll_7nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
> -	if (IS_ERR_OR_NULL(pll_7nm->mmio)) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n");
> -		return ERR_PTR(-ENOMEM);
> -	}
> -
> -	spin_lock_init(&pll_7nm->postdiv_lock);
> -
> -	pll = &pll_7nm->base;
> -	pll->min_rate = 1000000000UL;
> -	pll->max_rate = 3500000000UL;
> -	if (type == MSM_DSI_PHY_7NM_V4_1) {
> -		pll->min_rate = 600000000UL;
> -		pll->max_rate = (unsigned long)5000000000ULL;
> -		/* workaround for max rate overflowing on 32-bit builds: */
> -		pll->max_rate = max(pll->max_rate, 0xffffffffUL);
> -	}
> -	pll->get_provider = dsi_pll_7nm_get_provider;
> -	pll->destroy = dsi_pll_7nm_destroy;
> -	pll->save_state = dsi_pll_7nm_save_state;
> -	pll->restore_state = dsi_pll_7nm_restore_state;
> -	pll->set_usecase = dsi_pll_7nm_set_usecase;
> -
> -	pll_7nm->vco_delay = 1;
> -
> -	ret = pll_7nm_register(pll_7nm);
> -	if (ret) {
> -		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
> -		return ERR_PTR(ret);
> -	}
> -
> -	/* TODO: Remove this when we have proper display handover support */
> -	msm_dsi_pll_save_state(pll);
> -
> -	return pll;
> -}


More information about the Freedreno mailing list