[igt-dev] [PATCH i-g-t v31 08/40] lib/intel_allocator: Add intel_allocator core
Zbigniew Kempczyński
zbigniew.kempczynski at intel.com
Mon Apr 12 10:31:15 UTC 2021
For discrete gens we have to cease of using relocations when batch
buffers are submitted to GPU. On cards which have ppgtt we can use
softpin establishing addresses on our own.
We added simple allocator (taken from Mesa; works on lists) and
random allocator to exercise batches with different addresses. All
of that works for single VM (context) so we have to add additional
layer (intel_allocator) to support multiprocessing / multithreading.
For main IGT process (also for threads created in it) intel_allocator
resolves addresses "locally", just by mutexing access to global
allocator data (ctx/vm map). When fork() is in use children cannot
establish addresses on they own and have to contact to the thread
spawned within main IGT process. Currently SysV IPC message queue was
chosen as a communication channel between children and allocator thread.
Child calls same functions as main IGT process, only communication path
will be chosen instead of acquiring addresses locally.
v2:
Add intel_allocator_open_full() to allow user pass vm range.
Add strategy: NONE, LOW_TO_HIGH, HIGH_TO_LOW passed to allocator backend.
v3:
Child is now able to use allocator directly as standalone. It only need
to call intel_allocator_init() to reinitialize appropriate structures.
v4:
Add pseudo allocator - INTEL_ALLOCATOR_RELOC which just increments
offsets to avoid unnecessary conditional code.
v5:
Alter allocator core according to igt_map changes.
v6:
Add internal version __intel_allocator_alloc() to return
ALLOC_INVALID_ADDRESS without assertion.
Signed-off-by: Zbigniew Kempczyński <zbigniew.kempczynski at intel.com>
Signed-off-by: Dominik Grzegorzek <dominik.grzegorzek at intel.com>
Cc: Chris Wilson <chris at chris-wilson.co.uk>
Cc: Petri Latvala <petri.latvala at intel.com>
Acked-by: Daniel Vetter <daniel.vetter at ffwll.ch>
---
.../igt-gpu-tools/igt-gpu-tools-docs.xml | 1 +
lib/Makefile.sources | 6 +
lib/igt_core.c | 14 +
lib/intel_allocator.c | 1352 +++++++++++++++++
lib/intel_allocator.h | 223 +++
lib/intel_allocator_msgchannel.c | 187 +++
lib/intel_allocator_msgchannel.h | 156 ++
lib/meson.build | 5 +
8 files changed, 1944 insertions(+)
create mode 100644 lib/intel_allocator.c
create mode 100644 lib/intel_allocator.h
create mode 100644 lib/intel_allocator_msgchannel.c
create mode 100644 lib/intel_allocator_msgchannel.h
diff --git a/docs/reference/igt-gpu-tools/igt-gpu-tools-docs.xml b/docs/reference/igt-gpu-tools/igt-gpu-tools-docs.xml
index bf5ac5428..192d1df7a 100644
--- a/docs/reference/igt-gpu-tools/igt-gpu-tools-docs.xml
+++ b/docs/reference/igt-gpu-tools/igt-gpu-tools-docs.xml
@@ -43,6 +43,7 @@
<xi:include href="xml/igt_vc4.xml"/>
<xi:include href="xml/igt_vgem.xml"/>
<xi:include href="xml/igt_x86.xml"/>
+ <xi:include href="xml/intel_allocator.xml"/>
<xi:include href="xml/intel_batchbuffer.xml"/>
<xi:include href="xml/intel_bufops.xml"/>
<xi:include href="xml/intel_chipset.xml"/>
diff --git a/lib/Makefile.sources b/lib/Makefile.sources
index 84fd7b49c..d11876cce 100644
--- a/lib/Makefile.sources
+++ b/lib/Makefile.sources
@@ -121,6 +121,12 @@ lib_source_list = \
surfaceformat.h \
sw_sync.c \
sw_sync.h \
+ intel_allocator.c \
+ intel_allocator.h \
+ intel_allocator_random.c \
+ intel_allocator_simple.c \
+ intel_allocator_msgchannel.c \
+ intel_allocator_msgchannel.h \
intel_aux_pgtable.c \
intel_reg_map.c \
intel_iosf.c \
diff --git a/lib/igt_core.c b/lib/igt_core.c
index 2b4182f16..6597acfaa 100644
--- a/lib/igt_core.c
+++ b/lib/igt_core.c
@@ -58,6 +58,7 @@
#include <glib.h>
#include "drmtest.h"
+#include "intel_allocator.h"
#include "intel_chipset.h"
#include "intel_io.h"
#include "igt_debugfs.h"
@@ -1412,6 +1413,19 @@ __noreturn static void exit_subtest(const char *result)
}
num_test_children = 0;
+ /*
+ * When test completes - mostly in fail state it can leave allocated
+ * objects. An allocator is not an exception as it is global IGT
+ * entity and when test will allocate some ranges and then it will
+ * fail no free/close likely will be called (controling potential
+ * fails and clearing before assertions in IGT is not common).
+ *
+ * We call intel_allocator_init() then to prepare the allocator
+ * infrastructure from scratch for each test. Init also removes
+ * remnants from previous allocator run (if any).
+ */
+ intel_allocator_init();
+
if (!in_dynamic_subtest)
_igt_dynamic_tests_executed = -1;
diff --git a/lib/intel_allocator.c b/lib/intel_allocator.c
new file mode 100644
index 000000000..b1ec69e45
--- /dev/null
+++ b/lib/intel_allocator.c
@@ -0,0 +1,1352 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/ipc.h>
+#include <sys/msg.h>
+#include <fcntl.h>
+#include <pthread.h>
+#include <signal.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include "igt.h"
+#include "igt_map.h"
+#include "intel_allocator.h"
+#include "intel_allocator_msgchannel.h"
+
+//#define ALLOCDBG
+#ifdef ALLOCDBG
+#define alloc_info igt_info
+#define alloc_debug igt_debug
+static const char *reqtype_str[] = {
+ [REQ_STOP] = "stop",
+ [REQ_OPEN] = "open",
+ [REQ_OPEN_AS] = "open as",
+ [REQ_CLOSE] = "close",
+ [REQ_ADDRESS_RANGE] = "address range",
+ [REQ_ALLOC] = "alloc",
+ [REQ_FREE] = "free",
+ [REQ_IS_ALLOCATED] = "is allocated",
+ [REQ_RESERVE] = "reserve",
+ [REQ_UNRESERVE] = "unreserve",
+ [REQ_RESERVE_IF_NOT_ALLOCATED] = "reserve-ina",
+ [REQ_IS_RESERVED] = "is reserved",
+};
+static inline const char *reqstr(enum reqtype request_type)
+{
+ igt_assert(request_type >= REQ_STOP && request_type <= REQ_IS_RESERVED);
+ return reqtype_str[request_type];
+}
+#else
+#define alloc_info(...) {}
+#define alloc_debug(...) {}
+#endif
+
+struct allocator {
+ int fd;
+ uint32_t ctx;
+ uint32_t vm;
+ _Atomic(int32_t) refcount;
+ struct intel_allocator *ial;
+};
+
+struct handle_entry {
+ uint64_t handle;
+ struct allocator *al;
+};
+
+struct intel_allocator *intel_allocator_reloc_create(int fd);
+struct intel_allocator *intel_allocator_random_create(int fd);
+struct intel_allocator *intel_allocator_simple_create(int fd);
+struct intel_allocator *
+intel_allocator_simple_create_full(int fd, uint64_t start, uint64_t end,
+ enum allocator_strategy strategy);
+
+/*
+ * Instead of trying to find first empty handle just get new one. Assuming
+ * our counter is incremented 2^32 times per second (4GHz clock and handle
+ * assignment takes single clock) 64-bit counter would wrap around after
+ * ~68 years.
+ *
+ * allocator
+ * handles <fd, ctx> intel allocator
+ * +-----+ +--------+ +-------------+
+ * | 1 +---------->+ fd: 3 +--------->+ data: ... |
+ * +-----+ +---->+ ctx: 1 | | refcount: 2 |
+ * | 2 +-----+ | ref: 2 | +-------------+
+ * +-----+ +--------+
+ * | 3 +--+ +--------+ intel allocator
+ * +-----+ | | fd: 3 | +-------------+
+ * | ... | +------->| ctx: 2 +--------->+ data: ... |
+ * +-----+ | ref: 1 | | refcount: 1 |
+ * | n +--------+ +--------+ +-------------+
+ * +-----+ |
+ * | ... +-----+ | allocator
+ * +-----+ | | <fd, vm> intel allocator
+ * | ... +--+ | | +--------+ +-------------+
+ * + + | | +->+ fd: 3 +-----+--->+ data: ... |
+ * | +---->+ vm: 1 | | | refcount: 3 |
+ * | | ref: 2 | | +-------------+
+ * | +--------+ |
+ * | +--------+ |
+ * | | fd: 3 | |
+ * +------->+ vm: 2 +-----+
+ * | ref: 1 |
+ * +--------+
+ */
+static _Atomic(uint64_t) next_handle;
+static struct igt_map *handles;
+static struct igt_map *ctx_map;
+static struct igt_map *vm_map;
+static pthread_mutex_t map_mutex = PTHREAD_MUTEX_INITIALIZER;
+#define GET_MAP(vm) ((vm) ? vm_map : ctx_map)
+
+static bool multiprocess;
+static pthread_t allocator_thread;
+
+static bool warn_if_not_empty;
+
+/* For allocator purposes we need to track pid/tid */
+static pid_t allocator_pid = -1;
+extern pid_t child_pid;
+extern __thread pid_t child_tid;
+
+/*
+ * - for parent process we have child_pid == -1
+ * - for child which calls intel_allocator_init() allocator_pid == child_pid
+ */
+static inline bool is_same_process(void)
+{
+ return child_pid == -1 || allocator_pid == child_pid;
+}
+
+static struct msg_channel *channel;
+
+static int send_alloc_stop(struct msg_channel *msgchan)
+{
+ struct alloc_req req = {0};
+
+ req.request_type = REQ_STOP;
+
+ return msgchan->send_req(msgchan, &req);
+}
+
+static int send_req(struct msg_channel *msgchan, pid_t tid,
+ struct alloc_req *request)
+{
+ request->tid = tid;
+ return msgchan->send_req(msgchan, request);
+}
+
+static int recv_req(struct msg_channel *msgchan, struct alloc_req *request)
+{
+ return msgchan->recv_req(msgchan, request);
+}
+
+static int send_resp(struct msg_channel *msgchan,
+ pid_t tid, struct alloc_resp *response)
+{
+ response->tid = tid;
+ return msgchan->send_resp(msgchan, response);
+}
+
+static int recv_resp(struct msg_channel *msgchan,
+ pid_t tid, struct alloc_resp *response)
+{
+ response->tid = tid;
+ return msgchan->recv_resp(msgchan, response);
+}
+
+static inline void map_entry_free_func(struct igt_map_entry *entry)
+{
+ free(entry->data);
+}
+
+static uint64_t __handle_create(struct allocator *al)
+{
+ struct handle_entry *h = malloc(sizeof(*h));
+
+ igt_assert(h);
+ h->handle = atomic_fetch_add(&next_handle, 1);
+ h->al = al;
+ igt_map_insert(handles, h, h);
+
+ return h->handle;
+}
+
+static void __handle_destroy(uint64_t handle)
+{
+ struct handle_entry he = { .handle = handle };
+
+ igt_map_remove(handles, &he, map_entry_free_func);
+}
+
+static struct allocator *__allocator_find(int fd, uint32_t ctx, uint32_t vm)
+{
+ struct allocator al = { .fd = fd, .ctx = ctx, .vm = vm };
+ struct igt_map *map = GET_MAP(vm);
+
+ return igt_map_search(map, &al);
+}
+
+static struct allocator *__allocator_find_by_handle(uint64_t handle)
+{
+ struct handle_entry *h, he = { .handle = handle };
+
+ h = igt_map_search(handles, &he);
+ if (!h)
+ return NULL;
+
+ return h->al;
+}
+
+static struct allocator *__allocator_create(int fd, uint32_t ctx, uint32_t vm,
+ struct intel_allocator *ial)
+{
+ struct igt_map *map = GET_MAP(vm);
+ struct allocator *al = malloc(sizeof(*al));
+
+ igt_assert(al);
+ igt_assert(fd == ial->fd);
+ al->fd = fd;
+ al->ctx = ctx;
+ al->vm = vm;
+ atomic_init(&al->refcount, 0);
+ al->ial = ial;
+
+ igt_map_insert(map, al, al);
+
+ return al;
+}
+
+static void __allocator_destroy(struct allocator *al)
+{
+ struct igt_map *map = GET_MAP(al->vm);
+
+ igt_map_remove(map, al, map_entry_free_func);
+}
+
+static int __allocator_get(struct allocator *al)
+{
+ struct intel_allocator *ial = al->ial;
+ int refcount;
+
+ atomic_fetch_add(&al->refcount, 1);
+ refcount = atomic_fetch_add(&ial->refcount, 1);
+ igt_assert(refcount >= 0);
+
+ return refcount;
+}
+
+static bool __allocator_put(struct allocator *al)
+{
+ struct intel_allocator *ial = al->ial;
+ bool released = false;
+ int refcount, al_refcount;
+
+ al_refcount = atomic_fetch_sub(&al->refcount, 1);
+ refcount = atomic_fetch_sub(&ial->refcount, 1);
+ igt_assert(refcount >= 1);
+ if (refcount == 1) {
+ if (!ial->is_empty(ial) && warn_if_not_empty)
+ igt_warn("Allocator not clear before destroy!\n");
+
+ /* Check allocator has also refcount == 1 */
+ igt_assert_eq(al_refcount, 1);
+
+ released = true;
+ }
+
+ return released;
+}
+
+static struct intel_allocator *intel_allocator_create(int fd,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ uint8_t allocator_strategy)
+{
+ struct intel_allocator *ial = NULL;
+
+ switch (allocator_type) {
+ /*
+ * Few words of explanation is required here.
+ *
+ * INTEL_ALLOCATOR_NONE allows keeping information in the code (intel-bb
+ * is an example) we're not using IGT allocator itself and likely
+ * we rely on relocations.
+ * So trying to create NONE allocator doesn't makes sense and below
+ * assertion catches such invalid usage.
+ */
+ case INTEL_ALLOCATOR_NONE:
+ igt_assert_f(allocator_type != INTEL_ALLOCATOR_NONE,
+ "We cannot use NONE allocator\n");
+ break;
+ case INTEL_ALLOCATOR_RELOC:
+ ial = intel_allocator_reloc_create(fd);
+ break;
+ case INTEL_ALLOCATOR_RANDOM:
+ ial = intel_allocator_random_create(fd);
+ break;
+ case INTEL_ALLOCATOR_SIMPLE:
+ if (!start && !end)
+ ial = intel_allocator_simple_create(fd);
+ else
+ ial = intel_allocator_simple_create_full(fd, start, end,
+ allocator_strategy);
+ break;
+ default:
+ igt_assert_f(ial, "Allocator type %d not implemented\n",
+ allocator_type);
+ break;
+ }
+
+ igt_assert(ial);
+
+ ial->type = allocator_type;
+ ial->strategy = allocator_strategy;
+ pthread_mutex_init(&ial->mutex, NULL);
+
+ return ial;
+}
+
+static void intel_allocator_destroy(struct intel_allocator *ial)
+{
+ alloc_info("Destroying allocator (empty: %d)\n", ial->is_empty(ial));
+
+ ial->destroy(ial);
+}
+
+static struct allocator *allocator_open(int fd, uint32_t ctx, uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ uint8_t allocator_strategy,
+ uint64_t *ahndp)
+{
+ struct intel_allocator *ial;
+ struct allocator *al;
+ const char *idstr = vm ? "vm" : "ctx";
+
+ igt_assert(ahndp);
+
+ al = __allocator_find(fd, ctx, vm);
+ if (!al) {
+ alloc_info("Allocator fd: %d, ctx: %u, vm: %u, <0x%llx : 0x%llx> "
+ "not found, creating one\n",
+ fd, ctx, vm, (long long) start, (long long) end);
+ ial = intel_allocator_create(fd, start, end, allocator_type,
+ allocator_strategy);
+ al = __allocator_create(fd, ctx, vm, ial);
+ }
+
+ ial = al->ial;
+
+ igt_assert_f(ial->type == allocator_type,
+ "Allocator type must be same for fd/%s\n", idstr);
+
+ igt_assert_f(ial->strategy == allocator_strategy,
+ "Allocator strategy must be same or fd/%s\n", idstr);
+
+ __allocator_get(al);
+ *ahndp = __handle_create(al);
+
+ return al;
+}
+
+static struct allocator *allocator_open_as(struct allocator *base,
+ uint32_t new_vm, uint64_t *ahndp)
+{
+ struct allocator *al;
+
+ igt_assert(ahndp);
+ al = __allocator_create(base->fd, base->ctx, new_vm, base->ial);
+ __allocator_get(al);
+ *ahndp = __handle_create(al);
+
+ return al;
+}
+
+static bool allocator_close(uint64_t ahnd)
+{
+ struct allocator *al;
+ bool released, is_empty = false;
+
+ al = __allocator_find_by_handle(ahnd);
+ if (!al) {
+ igt_warn("Cannot find handle: %llx\n", (long long) ahnd);
+ return false;
+ }
+
+ released = __allocator_put(al);
+ if (released) {
+ is_empty = al->ial->is_empty(al->ial);
+ intel_allocator_destroy(al->ial);
+ }
+
+ if (!atomic_load(&al->refcount))
+ __allocator_destroy(al);
+
+ __handle_destroy(ahnd);
+
+ return is_empty;
+}
+
+static int send_req_recv_resp(struct msg_channel *msgchan,
+ struct alloc_req *request,
+ struct alloc_resp *response)
+{
+ int ret;
+
+ ret = send_req(msgchan, child_tid, request);
+ if (ret < 0) {
+ igt_warn("Error sending request [type: %d]: err = %d [%s]\n",
+ request->request_type, errno, strerror(errno));
+
+ return ret;
+ }
+
+ ret = recv_resp(msgchan, child_tid, response);
+ if (ret < 0)
+ igt_warn("Error receiving response [type: %d]: err = %d [%s]\n",
+ request->request_type, errno, strerror(errno));
+
+ /*
+ * This is main assumption - we receive message which size must be > 0.
+ * If this is fulfilled we return 0 as a success.
+ */
+ if (ret > 0)
+ ret = 0;
+
+ return ret;
+}
+
+static int handle_request(struct alloc_req *req, struct alloc_resp *resp)
+{
+ int ret;
+ long refcnt;
+
+ memset(resp, 0, sizeof(*resp));
+
+ if (is_same_process()) {
+ struct intel_allocator *ial;
+ struct allocator *al;
+ uint64_t start, end, size, ahnd;
+ uint32_t ctx, vm;
+ bool allocated, reserved, unreserved;
+ /* Used when debug is on, so avoid compilation warnings */
+ (void) ctx;
+ (void) vm;
+ (void) refcnt;
+
+ /*
+ * Mutex only work on allocator instance, not stop/open/close
+ */
+ if (req->request_type > REQ_CLOSE) {
+ /*
+ * We have to lock map mutex because concurrent open
+ * can lead to resizing the map.
+ */
+ pthread_mutex_lock(&map_mutex);
+ al = __allocator_find_by_handle(req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ igt_assert(al);
+
+ ial = al->ial;
+ igt_assert(ial);
+ pthread_mutex_lock(&ial->mutex);
+ }
+
+ switch (req->request_type) {
+ case REQ_STOP:
+ alloc_info("<stop>\n");
+ break;
+
+ case REQ_OPEN:
+ pthread_mutex_lock(&map_mutex);
+ al = allocator_open(req->open.fd,
+ req->open.ctx, req->open.vm,
+ req->open.start, req->open.end,
+ req->open.allocator_type,
+ req->open.allocator_strategy,
+ &ahnd);
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ pthread_mutex_unlock(&map_mutex);
+
+ resp->response_type = RESP_OPEN;
+ resp->open.allocator_handle = ahnd;
+
+ alloc_info("<open> [tid: %ld] fd: %d, ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", alloc_type: %u, al->refcnt: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, req->open.fd, ahnd,
+ req->open.ctx,
+ req->open.vm, req->open.allocator_type,
+ refcnt - 1, refcnt, ret - 1, ret);
+ break;
+
+ case REQ_OPEN_AS:
+ /* lock first to avoid concurrent close */
+ pthread_mutex_lock(&map_mutex);
+
+ al = __allocator_find_by_handle(req->allocator_handle);
+ resp->response_type = RESP_OPEN_AS;
+
+ if (!al) {
+ alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64
+ " -> no handle\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+ if (!al->vm) {
+ alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64
+ " -> only open as for <fd, vm> is possible\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+
+ al = allocator_open_as(al, req->open_as.new_vm, &ahnd);
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ pthread_mutex_unlock(&map_mutex);
+
+ resp->response_type = RESP_OPEN_AS;
+ resp->open.allocator_handle = ahnd;
+
+ alloc_info("<open as> [tid: %ld] fd: %d, ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", alloc_type: %u, al->refcnt: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, al->fd, ahnd,
+ al->ctx, al->vm, al->ial->type,
+ refcnt - 1, refcnt, ret - 1, ret);
+ break;
+
+ case REQ_CLOSE:
+ pthread_mutex_lock(&map_mutex);
+ al = __allocator_find_by_handle(req->allocator_handle);
+ resp->response_type = RESP_CLOSE;
+
+ if (!al) {
+ alloc_info("<close> [tid: %ld] ahnd: %" PRIx64
+ " -> no handle\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+ resp->response_type = RESP_CLOSE;
+ ctx = al->ctx;
+ vm = al->vm;
+
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ resp->close.is_empty = allocator_close(req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+
+ alloc_info("<close> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", is_empty: %d, al->refcount: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, req->allocator_handle,
+ ctx, vm, resp->close.is_empty,
+ refcnt, refcnt - 1, ret, ret - 1);
+
+ break;
+
+ case REQ_ADDRESS_RANGE:
+ resp->response_type = RESP_ADDRESS_RANGE;
+ ial->get_address_range(ial, &start, &end);
+ resp->address_range.start = start;
+ resp->address_range.end = end;
+ alloc_info("<address range> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRId64 "\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, start, end);
+ break;
+
+ case REQ_ALLOC:
+ resp->response_type = RESP_ALLOC;
+ resp->alloc.offset = ial->alloc(ial,
+ req->alloc.handle,
+ req->alloc.size,
+ req->alloc.alignment);
+ alloc_info("<alloc> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", size: 0x%" PRIx64 ", offset: 0x%" PRIx64
+ ", alignment: 0x%" PRIx64 "\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->alloc.handle, req->alloc.size,
+ resp->alloc.offset, req->alloc.alignment);
+ break;
+
+ case REQ_FREE:
+ resp->response_type = RESP_FREE;
+ resp->free.freed = ial->free(ial, req->free.handle);
+ alloc_info("<free> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", handle: %u, freed: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->free.handle, resp->free.freed);
+ break;
+
+ case REQ_IS_ALLOCATED:
+ resp->response_type = RESP_IS_ALLOCATED;
+ allocated = ial->is_allocated(ial,
+ req->is_allocated.handle,
+ req->is_allocated.size,
+ req->is_allocated.offset);
+ resp->is_allocated.allocated = allocated;
+ alloc_info("<is allocated> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", offset: 0x%" PRIx64
+ ", allocated: %d\n", (long) req->tid,
+ req->allocator_handle, al->ctx, al->vm,
+ req->is_allocated.offset, allocated);
+ break;
+
+ case REQ_RESERVE:
+ resp->response_type = RESP_RESERVE;
+ reserved = ial->reserve(ial,
+ req->reserve.handle,
+ req->reserve.start,
+ req->reserve.end);
+ resp->reserve.reserved = reserved;
+ alloc_info("<reserve> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->reserve.handle,
+ req->reserve.start, req->reserve.end, reserved);
+ break;
+
+ case REQ_UNRESERVE:
+ resp->response_type = RESP_UNRESERVE;
+ unreserved = ial->unreserve(ial,
+ req->unreserve.handle,
+ req->unreserve.start,
+ req->unreserve.end);
+ resp->unreserve.unreserved = unreserved;
+ alloc_info("<unreserve> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", unreserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->unreserve.handle,
+ req->unreserve.start, req->unreserve.end,
+ unreserved);
+ break;
+
+ case REQ_IS_RESERVED:
+ resp->response_type = RESP_IS_RESERVED;
+ reserved = ial->is_reserved(ial,
+ req->is_reserved.start,
+ req->is_reserved.end);
+ resp->is_reserved.reserved = reserved;
+ alloc_info("<is reserved> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->is_reserved.start,
+ req->is_reserved.end, reserved);
+ break;
+
+ case REQ_RESERVE_IF_NOT_ALLOCATED:
+ resp->response_type = RESP_RESERVE_IF_NOT_ALLOCATED;
+ size = req->reserve.end - req->reserve.start;
+
+ allocated = ial->is_allocated(ial, req->reserve.handle,
+ size, req->reserve.start);
+ if (allocated) {
+ resp->reserve_if_not_allocated.allocated = allocated;
+ alloc_info("<reserve if not allocated> [tid: %ld] "
+ "ahnd: %" PRIx64 ", ctx: %u, vm: %u"
+ ", handle: %u, size: 0x%lx"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", allocated: %d, reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->reserve.handle,
+ (long) size, req->reserve.start,
+ req->reserve.end, allocated, false);
+ break;
+ }
+
+ reserved = ial->reserve(ial,
+ req->reserve.handle,
+ req->reserve.start,
+ req->reserve.end);
+ resp->reserve_if_not_allocated.reserved = reserved;
+ alloc_info("<reserve if not allocated> [tid: %ld] "
+ "ahnd: %" PRIx64 ", ctx: %u, vm: %u"
+ ", handle: %u, start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", allocated: %d, reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->reserve.handle,
+ req->reserve.start, req->reserve.end,
+ false, reserved);
+ break;
+ }
+
+ if (req->request_type > REQ_CLOSE)
+ pthread_mutex_unlock(&ial->mutex);
+
+ return 0;
+ }
+
+ ret = send_req_recv_resp(channel, req, resp);
+
+ if (ret < 0)
+ exit(0);
+
+ return ret;
+}
+
+static void kill_children(int sig)
+{
+ sighandler_t old;
+
+ old = signal(sig, SIG_IGN);
+ igt_assert(old != SIG_ERR);
+ kill(-getpgrp(), sig);
+ igt_assert(signal(sig, old) != SIG_ERR);
+}
+
+static void *allocator_thread_loop(void *data)
+{
+ struct alloc_req req;
+ struct alloc_resp resp;
+ int ret;
+ (void) data;
+
+ alloc_info("Allocator pid: %ld, tid: %ld\n",
+ (long) allocator_pid, (long) gettid());
+ alloc_info("Entering allocator loop\n");
+
+ while (1) {
+ ret = recv_req(channel, &req);
+
+ if (ret == -1) {
+ igt_warn("Error receiving request in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+ kill_children(SIGINT);
+ return (void *) -1;
+ }
+
+ /* Fake message to stop the thread */
+ if (req.request_type == REQ_STOP) {
+ alloc_info("<stop request>\n");
+ break;
+ }
+
+ ret = handle_request(&req, &resp);
+ if (ret) {
+ igt_warn("Error handling request in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+ break;
+ }
+
+ ret = send_resp(channel, req.tid, &resp);
+ if (ret) {
+ igt_warn("Error sending response in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+
+ kill_children(SIGINT);
+ return (void *) -1;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ * intel_allocator_multiprocess_start:
+ *
+ * Function turns on intel_allocator multiprocess mode what means
+ * all allocations from children processes are performed in a separate thread
+ * within main igt process. Children are aware of the situation and use
+ * some interprocess communication channel to send/receive messages
+ * (open, close, alloc, free, ...) to/from allocator thread.
+ *
+ * Must be used when you want to use an allocator in non single-process code.
+ * All allocations in threads spawned in main igt process are handled by
+ * mutexing, not by sending/receiving messages to/from allocator thread.
+ *
+ * Note. This destroys all previously created allocators and theirs content.
+ */
+void intel_allocator_multiprocess_start(void)
+{
+ alloc_info("allocator multiprocess start\n");
+
+ igt_assert_f(child_pid == -1,
+ "Allocator thread can be spawned only in main IGT process\n");
+ intel_allocator_init();
+
+ multiprocess = true;
+ channel->init(channel);
+
+ pthread_create(&allocator_thread, NULL,
+ allocator_thread_loop, NULL);
+}
+
+/**
+ * intel_allocator_multiprocess_stop:
+ *
+ * Function turns off intel_allocator multiprocess mode what means
+ * stopping allocator thread and deinitializing its data.
+ */
+void intel_allocator_multiprocess_stop(void)
+{
+ alloc_info("allocator multiprocess stop\n");
+
+ if (multiprocess) {
+ send_alloc_stop(channel);
+ /* Deinit, this should stop all blocked syscalls, if any */
+ channel->deinit(channel);
+ pthread_join(allocator_thread, NULL);
+ /* But we're not sure does child will stuck */
+ kill_children(SIGINT);
+ igt_waitchildren_timeout(5, "Stopping children");
+ multiprocess = false;
+ }
+}
+
+static uint64_t __intel_allocator_open_full(int fd, uint32_t ctx,
+ uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ struct alloc_req req = { .request_type = REQ_OPEN,
+ .open.fd = fd,
+ .open.ctx = ctx,
+ .open.vm = vm,
+ .open.start = start,
+ .open.end = end,
+ .open.allocator_type = allocator_type,
+ .open.allocator_strategy = strategy };
+ struct alloc_resp resp;
+
+ /* Get child_tid only once at open() */
+ if (child_tid == -1)
+ child_tid = gettid();
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.open.allocator_handle);
+ igt_assert(resp.response_type == RESP_OPEN);
+
+ return resp.open.allocator_handle;
+}
+
+/**
+ * intel_allocator_open_full:
+ * @fd: i915 descriptor
+ * @ctx: context
+ * @start: address of the beginning
+ * @end: address of the end
+ * @allocator_type: one of INTEL_ALLOCATOR_* define
+ * @strategy: passed to the allocator to define the strategy (like order
+ * of allocation, see notes below).
+ *
+ * Function opens an allocator instance within <@start, @end) vm for given
+ * @fd and @ctx and returns its handle. If the allocator for such pair
+ * doesn't exist it is created with refcount = 1.
+ * Parallel opens returns same handle bumping its refcount.
+ *
+ * Returns: unique handle to the currently opened allocator.
+ *
+ * Notes:
+ * Strategy is generally used internally by the underlying allocator:
+ *
+ * For SIMPLE allocator:
+ * - ALLOC_STRATEGY_HIGH_TO_LOW means topmost addresses are allocated first,
+ * - ALLOC_STRATEGY_LOW_TO_HIGH opposite, allocation starts from lowest
+ * addresses.
+ *
+ * For RANDOM allocator:
+ * - none of strategy is currently implemented.
+ */
+uint64_t intel_allocator_open_full(int fd, uint32_t ctx,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ return __intel_allocator_open_full(fd, ctx, 0, start, end,
+ allocator_type, strategy);
+}
+
+uint64_t intel_allocator_open_vm_full(int fd, uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ igt_assert(vm != 0);
+ return __intel_allocator_open_full(fd, 0, vm, start, end,
+ allocator_type, strategy);
+}
+
+/**
+ * intel_allocator_open:
+ * @fd: i915 descriptor
+ * @ctx: context
+ * @allocator_type: one of INTEL_ALLOCATOR_* define
+ *
+ * Function opens an allocator instance for given @fd and @ctx and returns
+ * its handle. If the allocator for such pair doesn't exist it is created
+ * with refcount = 1. Parallel opens returns same handle bumping its refcount.
+ *
+ * Returns: unique handle to the currently opened allocator.
+ *
+ * Notes: we pass ALLOC_STRATEGY_HIGH_TO_LOW as default, playing with higher
+ * addresses makes easier to find addressing issues (like passing non-canonical
+ * offsets, which won't be catched unless 47-bit is set).
+ */
+uint64_t intel_allocator_open(int fd, uint32_t ctx, uint8_t allocator_type)
+{
+ return intel_allocator_open_full(fd, ctx, 0, 0, allocator_type,
+ ALLOC_STRATEGY_HIGH_TO_LOW);
+}
+
+uint64_t intel_allocator_open_vm(int fd, uint32_t vm, uint8_t allocator_type)
+{
+ return intel_allocator_open_vm_full(fd, vm, 0, 0, allocator_type,
+ ALLOC_STRATEGY_HIGH_TO_LOW);
+}
+
+uint64_t intel_allocator_open_vm_as(uint64_t allocator_handle, uint32_t new_vm)
+{
+ struct alloc_req req = { .request_type = REQ_OPEN_AS,
+ .allocator_handle = allocator_handle,
+ .open_as.new_vm = new_vm };
+ struct alloc_resp resp;
+
+ /* Get child_tid only once at open() */
+ if (child_tid == -1)
+ child_tid = gettid();
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.open_as.allocator_handle);
+ igt_assert(resp.response_type == RESP_OPEN_AS);
+
+ return resp.open.allocator_handle;
+}
+
+/**
+ * intel_allocator_close:
+ * @allocator_handle: handle to the allocator that will be closed
+ *
+ * Function decreases an allocator refcount for the given @handle.
+ * When refcount reaches zero allocator is closed (destroyed) and all
+ * allocated / reserved areas are freed.
+ *
+ * Returns: true if closed allocator was empty, false otherwise.
+ */
+bool intel_allocator_close(uint64_t allocator_handle)
+{
+ struct alloc_req req = { .request_type = REQ_CLOSE,
+ .allocator_handle = allocator_handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_CLOSE);
+
+ return resp.close.is_empty;
+}
+
+/**
+ * intel_allocator_get_address_range:
+ * @allocator_handle: handle to an allocator
+ * @startp: pointer to the variable where function writes starting offset
+ * @endp: pointer to the variable where function writes ending offset
+ *
+ * Function fills @startp, @endp with respectively, starting and ending offset
+ * of the allocator working virtual address space range.
+ *
+ * Note. Allocators working ranges can differ depending on the device or
+ * the allocator type so before reserving a specific offset a good practise
+ * is to ensure that address is between accepted range.
+ */
+void intel_allocator_get_address_range(uint64_t allocator_handle,
+ uint64_t *startp, uint64_t *endp)
+{
+ struct alloc_req req = { .request_type = REQ_ADDRESS_RANGE,
+ .allocator_handle = allocator_handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_ADDRESS_RANGE);
+
+ if (startp)
+ *startp = resp.address_range.start;
+
+ if (endp)
+ *endp = resp.address_range.end;
+}
+
+/**
+ * __intel_allocator_alloc:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @alignment: determines object alignment
+ *
+ * Function finds and returns the most suitable offset with given @alignment
+ * for an object with @size identified by the @handle.
+ *
+ * Returns: currently assigned address for a given object. If an object was
+ * already allocated returns same address. If allocator can't find suitable
+ * range returns ALLOC_INVALID_ADDRESS.
+ */
+uint64_t __intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment)
+{
+ struct alloc_req req = { .request_type = REQ_ALLOC,
+ .allocator_handle = allocator_handle,
+ .alloc.handle = handle,
+ .alloc.size = size,
+ .alloc.alignment = alignment };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_ALLOC);
+
+ return resp.alloc.offset;
+}
+
+/**
+ * intel_allocator_alloc:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @alignment: determines object alignment
+ *
+ * Same as __intel_allocator_alloc() but asserts if allocator can't return
+ * valid address.
+ */
+uint64_t intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment)
+{
+ uint64_t offset;
+
+ offset = __intel_allocator_alloc(allocator_handle, handle,
+ size, alignment);
+ igt_assert(offset != ALLOC_INVALID_ADDRESS);
+
+ return offset;
+}
+
+/**
+ * intel_allocator_free:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object to be freed
+ *
+ * Function free object identified by the @handle in allocator what makes it
+ * offset again allocable.
+ *
+ * Note. Reserved objects can only be freed by an #intel_allocator_unreserve
+ * function.
+ *
+ * Returns: true if the object was successfully freed, otherwise false.
+ */
+bool intel_allocator_free(uint64_t allocator_handle, uint32_t handle)
+{
+ struct alloc_req req = { .request_type = REQ_FREE,
+ .allocator_handle = allocator_handle,
+ .free.handle = handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_FREE);
+
+ return resp.free.freed;
+}
+
+/**
+ * intel_allocator_is_allocated:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function checks whether the object identified by the @handle and @size
+ * is allocated at the @offset.
+ *
+ * Returns: true if the object is currently allocated at the @offset,
+ * otherwise false.
+ */
+bool intel_allocator_is_allocated(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_IS_ALLOCATED,
+ .allocator_handle = allocator_handle,
+ .is_allocated.handle = handle,
+ .is_allocated.size = size,
+ .is_allocated.offset = offset };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_IS_ALLOCATED);
+
+ return resp.is_allocated.allocated;
+}
+
+/**
+ * intel_allocator_reserve:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function reserves space that starts at the @offset and has @size.
+ * Optionally we can pass @handle to mark that space is for a specific
+ * object, otherwise pass -1.
+ *
+ * Note. Reserved space is identified by offset and size, not a handle.
+ * So an object can have multiple reserved spaces with its handle.
+ *
+ * Returns: true if space is successfully reserved, otherwise false.
+ */
+bool intel_allocator_reserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_RESERVE,
+ .allocator_handle = allocator_handle,
+ .reserve.handle = handle,
+ .reserve.start = offset,
+ .reserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_RESERVE);
+
+ return resp.reserve.reserved;
+}
+
+/**
+ * intel_allocator_unreserve:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function unreserves space that starts at the @offset, @size and @handle.
+ *
+ * Note. @handle, @size and @offset have to match those used in reservation.
+ * i.e. check with the same offset but even smaller size will fail.
+ *
+ * Returns: true if the space is successfully unreserved, otherwise false.
+ */
+bool intel_allocator_unreserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_UNRESERVE,
+ .allocator_handle = allocator_handle,
+ .unreserve.handle = handle,
+ .unreserve.start = offset,
+ .unreserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_UNRESERVE);
+
+ return resp.unreserve.unreserved;
+}
+
+/**
+ * intel_allocator_is_reserved:
+ * @allocator_handle: handle to an allocator
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function checks whether space starting at the @offset and @size is
+ * currently under reservation.
+ *
+ * Note. @size and @offset have to match those used in reservation,
+ * i.e. check with the same offset but even smaller size will fail.
+ *
+ * Returns: true if space is reserved, othwerise false.
+ */
+bool intel_allocator_is_reserved(uint64_t allocator_handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_IS_RESERVED,
+ .allocator_handle = allocator_handle,
+ .is_reserved.start = offset,
+ .is_reserved.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_IS_RESERVED);
+
+ return resp.is_reserved.reserved;
+}
+
+/**
+ * intel_allocator_reserve_if_not_allocated:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ * @is_allocatedp: if not NULL function writes there object allocation status
+ * (true/false)
+ *
+ * Function checks whether the object identified by the @handle and @size
+ * is allocated at the @offset and writes the result to @is_allocatedp.
+ * If it's not it reserves it at the given @offset.
+ *
+ * Returns: true if the space for an object was reserved, otherwise false.
+ */
+bool intel_allocator_reserve_if_not_allocated(uint64_t allocator_handle,
+ uint32_t handle,
+ uint64_t size, uint64_t offset,
+ bool *is_allocatedp)
+{
+ struct alloc_req req = { .request_type = REQ_RESERVE_IF_NOT_ALLOCATED,
+ .allocator_handle = allocator_handle,
+ .reserve.handle = handle,
+ .reserve.start = offset,
+ .reserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_RESERVE_IF_NOT_ALLOCATED);
+
+ if (is_allocatedp)
+ *is_allocatedp = resp.reserve_if_not_allocated.allocated;
+
+ return resp.reserve_if_not_allocated.reserved;
+}
+
+/**
+ * intel_allocator_print:
+ * @allocator_handle: handle to an allocator
+ *
+ * Function prints statistics and content of the allocator.
+ * Mainly for debugging purposes.
+ *
+ * Note. Printing possible only in the main process.
+ **/
+void intel_allocator_print(uint64_t allocator_handle)
+{
+ igt_assert(allocator_handle);
+
+ if (!multiprocess || is_same_process()) {
+ struct allocator *al;
+
+ al = __allocator_find_by_handle(allocator_handle);
+ pthread_mutex_lock(&map_mutex);
+ al->ial->print(al->ial, true);
+ pthread_mutex_unlock(&map_mutex);
+ } else {
+ igt_warn("Print stats is in main process only\n");
+ }
+}
+
+static int equal_handles(const void *key1, const void *key2)
+{
+ const struct handle_entry *h1 = key1, *h2 = key2;
+
+ alloc_debug("h1: %llx, h2: %llx\n",
+ (long long) h1->handle, (long long) h2->handle);
+
+ return h1->handle == h2->handle;
+}
+
+static int equal_ctx(const void *key1, const void *key2)
+{
+ const struct allocator *a1 = key1, *a2 = key2;
+
+ alloc_debug("a1: <fd: %d, ctx: %u>, a2 <fd: %d, ctx: %u>\n",
+ a1->fd, a1->ctx, a2->fd, a2->ctx);
+
+ return a1->fd == a2->fd && a1->ctx == a2->ctx;
+}
+
+static int equal_vm(const void *key1, const void *key2)
+{
+ const struct allocator *a1 = key1, *a2 = key2;
+
+ alloc_debug("a1: <fd: %d, vm: %u>, a2 <fd: %d, vm: %u>\n",
+ a1->fd, a1->vm, a2->fd, a2->vm);
+
+ return a1->fd == a2->fd && a1->vm == a2->vm;
+}
+
+/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
+#define GOLDEN_RATIO_PRIME_32 0x9e370001UL
+
+static inline uint32_t hash_handles(const void *val)
+{
+ uint32_t hash = ((struct handle_entry *) val)->handle;
+
+ hash = hash * GOLDEN_RATIO_PRIME_32;
+ return hash;
+}
+
+static inline uint32_t hash_instance(const void *val)
+{
+ uint64_t hash = ((struct allocator *) val)->fd;
+
+ hash = hash * GOLDEN_RATIO_PRIME_32;
+ return hash;
+}
+
+static void __free_maps(struct igt_map *map, bool close_allocators)
+{
+ struct igt_map_entry *pos;
+ const struct handle_entry *h;
+
+ if (!map)
+ return;
+
+ if (close_allocators)
+ igt_map_foreach(map, pos) {
+ h = pos->key;
+ allocator_close(h->handle);
+ }
+
+ igt_map_destroy(map, map_entry_free_func);
+}
+
+/**
+ * intel_allocator_init:
+ *
+ * Function initializes the allocators infrastructure. The second call will
+ * override current infra and destroy existing there allocators. It is called
+ * in igt_constructor.
+ **/
+void intel_allocator_init(void)
+{
+ alloc_info("Prepare an allocator infrastructure\n");
+
+ allocator_pid = getpid();
+ alloc_info("Allocator pid: %ld\n", (long) allocator_pid);
+
+ __free_maps(handles, true);
+ __free_maps(ctx_map, false);
+ __free_maps(vm_map, false);
+
+ atomic_init(&next_handle, 1);
+ handles = igt_map_create(hash_handles, equal_handles);
+ ctx_map = igt_map_create(hash_instance, equal_ctx);
+ vm_map = igt_map_create(hash_instance, equal_vm);
+ igt_assert(handles && ctx_map && vm_map);
+
+ channel = intel_allocator_get_msgchannel(CHANNEL_SYSVIPC_MSGQUEUE);
+}
+
+igt_constructor {
+ intel_allocator_init();
+}
diff --git a/lib/intel_allocator.h b/lib/intel_allocator.h
new file mode 100644
index 000000000..440c5992d
--- /dev/null
+++ b/lib/intel_allocator.h
@@ -0,0 +1,223 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#ifndef __INTEL_ALLOCATOR_H__
+#define __INTEL_ALLOCATOR_H__
+
+#include <stdint.h>
+#include <stdbool.h>
+#include <pthread.h>
+#include <stdint.h>
+#include <stdatomic.h>
+
+/**
+ * SECTION:intel_allocator
+ * @short_description: igt implementation of allocator
+ * @title: Intel allocator
+ * @include: intel_allocator.h
+ *
+ * # Introduction
+ *
+ * With the era of discrete cards we requested to adopt IGT to handle
+ * addresses in userspace only (softpin, without support of relocations).
+ * Writing an allocator for single purpose would be relatively easy
+ * but supporting different tests with different requirements became
+ * quite complicated task where couple of scenarios may be not covered yet.
+ *
+ * # Assumptions
+ *
+ * - Allocator has to work in multiprocess / multithread environment.
+ * - Allocator backend (algorithm) should be plugable. Currently we support
+ * SIMPLE (borrowed from Mesa allocator), RELOC (pseudo allocator which
+ * returns incremented addresses without checking overlapping)
+ * and RANDOM (pseudo allocator which randomize addresses without
+ * checking overlapping).
+ * - Has to integrate in intel-bb (our simpler libdrm replacement used in
+ * couple of tests).
+ *
+ * # Implementation
+ *
+ * ## Single process (allows multiple threads)
+ *
+ * For single process we don't need to create dedicated
+ * entity (kind of arbiter) to solve allocations. Simple locking over
+ * allocator data structure is enough. As basic usage example would be:
+ *
+ * |[<!-- language="c" -->
+ * struct object {
+ * uint32_t handle;
+ * uint64_t offset;
+ * uint64_t size;
+ * };
+ *
+ * struct object obj1, obj2;
+ * uint64_t ahnd, startp, endp, size = 4096, align = 1 << 13;
+ * int fd = -1;
+ *
+ * fd = drm_open_driver(DRIVER_INTEL);
+ * ahnd = intel_allocator_open(fd, 0, INTEL_ALLOCATOR_SIMPLE);
+ *
+ * obj1.handle = gem_create(4096);
+ * obj2.handle = gem_create(4096);
+ *
+ * // Reserve hole for an object in given address.
+ * // In this example the first possible address.
+ * intel_allocator_get_address_range(ahnd, &startp, &endp);
+ * obj1.offset = startp;
+ * igt_assert(intel_allocator_reserve(ahnd, obj1.handle, size, startp));
+ *
+ * // Get the most suitable offset for the object. Preferred way.
+ * obj2.offset = intel_allocator_alloc(ahnd, obj2.handle, size, align);
+ *
+ * ...
+ *
+ * // Reserved addresses can be only freed by unreserve.
+ * intel_allocator_unreserve(ahnd, obj1.handle, size, obj1.offset);
+ * intel_allocator_free(ahnd, obj2.handle);
+ *
+ * gem_close(obj1.handle);
+ * gem_close(obj2.handle);
+ * ]|
+ *
+ * Description:
+ * - ahnd is allocator handle (vm space handled by it)
+ * - we call get_address_range() to get start/end range provided by the
+ * allocator (we haven't specified its range in open so allocator code will
+ * assume some safe address range - we don't want to exercise some potential
+ * HW bugs on the last page)
+ * - alloc() / free() pair just gets address for gem object proposed by the
+ * allocator
+ * - reserve() / unreserve() pair gives us full control of acquire/return
+ * range we're interested in
+ *
+ * ## Multiple processes
+ *
+ * When process forks and its child uses same fd vm its address space is also
+ * the same. Some coordination - in this case interprocess communication -
+ * is required to assign proper addresses for gem objects and avoid collision.
+ * Additional thread is spawned for such case to cover child processes needs.
+ * It uses some form of communication channel to receive, perform action
+ * (alloc, free...) and send response to requesting process. Currently
+ * SYSVIPC message queue was chosen for this but it can replaced by other
+ * mechanism. Allocation techniques are same as for single process, we
+ * just need to wrap such code with:
+ *
+ *
+ * |[<!-- language="c" -->
+ *
+ *
+ * intel_allocator_multiprocess_start();
+ *
+ * ... allocation code (open, close, alloc, free, ...)
+ *
+ * intel_allocator_multiprocess_stop();
+ * ]|
+ *
+ * Calling start() spawns additional allocator thread ready for handling
+ * incoming allocation requests (open / close are also requests in that case).
+ *
+ * Calling stop() request to stop allocator thread unblocking all pending
+ * children (if any).
+ */
+
+enum allocator_strategy {
+ ALLOC_STRATEGY_NONE,
+ ALLOC_STRATEGY_LOW_TO_HIGH,
+ ALLOC_STRATEGY_HIGH_TO_LOW
+};
+
+struct intel_allocator {
+ int fd;
+ uint8_t type;
+ enum allocator_strategy strategy;
+ _Atomic(int32_t) refcount;
+ pthread_mutex_t mutex;
+
+ /* allocator's private structure */
+ void *priv;
+
+ void (*get_address_range)(struct intel_allocator *ial,
+ uint64_t *startp, uint64_t *endp);
+ uint64_t (*alloc)(struct intel_allocator *ial, uint32_t handle,
+ uint64_t size, uint64_t alignment);
+ bool (*is_allocated)(struct intel_allocator *ial, uint32_t handle,
+ uint64_t size, uint64_t alignment);
+ bool (*reserve)(struct intel_allocator *ial,
+ uint32_t handle, uint64_t start, uint64_t size);
+ bool (*unreserve)(struct intel_allocator *ial,
+ uint32_t handle, uint64_t start, uint64_t size);
+ bool (*is_reserved)(struct intel_allocator *ial,
+ uint64_t start, uint64_t size);
+ bool (*free)(struct intel_allocator *ial, uint32_t handle);
+
+ void (*destroy)(struct intel_allocator *ial);
+
+ bool (*is_empty)(struct intel_allocator *ial);
+
+ void (*print)(struct intel_allocator *ial, bool full);
+};
+
+void intel_allocator_init(void);
+void intel_allocator_multiprocess_start(void);
+void intel_allocator_multiprocess_stop(void);
+
+uint64_t intel_allocator_open(int fd, uint32_t ctx, uint8_t allocator_type);
+uint64_t intel_allocator_open_full(int fd, uint32_t ctx,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy);
+uint64_t intel_allocator_open_vm(int fd, uint32_t vm, uint8_t allocator_type);
+uint64_t intel_allocator_open_vm_full(int fd, uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy);
+
+uint64_t intel_allocator_open_vm_as(uint64_t allocator_handle, uint32_t new_vm);
+bool intel_allocator_close(uint64_t allocator_handle);
+void intel_allocator_get_address_range(uint64_t allocator_handle,
+ uint64_t *startp, uint64_t *endp);
+uint64_t __intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment);
+uint64_t intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment);
+bool intel_allocator_free(uint64_t allocator_handle, uint32_t handle);
+bool intel_allocator_is_allocated(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset);
+bool intel_allocator_reserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset);
+bool intel_allocator_unreserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset);
+bool intel_allocator_is_reserved(uint64_t allocator_handle,
+ uint64_t size, uint64_t offset);
+bool intel_allocator_reserve_if_not_allocated(uint64_t allocator_handle,
+ uint32_t handle,
+ uint64_t size, uint64_t offset,
+ bool *is_allocatedp);
+
+void intel_allocator_print(uint64_t allocator_handle);
+
+#define ALLOC_INVALID_ADDRESS (-1ull)
+#define INTEL_ALLOCATOR_NONE 0
+#define INTEL_ALLOCATOR_RELOC 1
+#define INTEL_ALLOCATOR_RANDOM 2
+#define INTEL_ALLOCATOR_SIMPLE 3
+
+#define GEN8_GTT_ADDRESS_WIDTH 48
+
+static inline uint64_t sign_extend64(uint64_t x, int high)
+{
+ int shift = 63 - high;
+
+ return (int64_t)(x << shift) >> shift;
+}
+
+static inline uint64_t CANONICAL(uint64_t offset)
+{
+ return sign_extend64(offset, GEN8_GTT_ADDRESS_WIDTH - 1);
+}
+
+#define DECANONICAL(offset) (offset & ((1ull << GEN8_GTT_ADDRESS_WIDTH) - 1))
+
+#endif
diff --git a/lib/intel_allocator_msgchannel.c b/lib/intel_allocator_msgchannel.c
new file mode 100644
index 000000000..8280bc4ec
--- /dev/null
+++ b/lib/intel_allocator_msgchannel.c
@@ -0,0 +1,187 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#include <sys/types.h>
+#include <sys/ipc.h>
+#include <sys/msg.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include "igt.h"
+#include "intel_allocator_msgchannel.h"
+
+extern __thread pid_t child_tid;
+
+/* ----- SYSVIPC MSGQUEUE ----- */
+
+#define FTOK_IGT_ALLOCATOR_KEY "/tmp/igt.allocator.key"
+#define FTOK_IGT_ALLOCATOR_PROJID 2020
+
+#define ALLOCATOR_REQUEST 1
+
+struct msgqueue_data {
+ key_t key;
+ int queue;
+};
+
+struct msgqueue_buf {
+ long mtype;
+ union {
+ struct alloc_req request;
+ struct alloc_resp response;
+ } data;
+};
+
+static void msgqueue_init(struct msg_channel *channel)
+{
+ struct msgqueue_data *msgdata;
+ struct msqid_ds qstat;
+ key_t key;
+ int fd, queue;
+
+ igt_debug("Init msgqueue\n");
+
+ /* Create ftok key only if not exists */
+ fd = open(FTOK_IGT_ALLOCATOR_KEY, O_CREAT | O_EXCL | O_WRONLY, 0600);
+ igt_assert(fd >= 0 || errno == EEXIST);
+ if (fd >= 0)
+ close(fd);
+
+ key = ftok(FTOK_IGT_ALLOCATOR_KEY, FTOK_IGT_ALLOCATOR_PROJID);
+ igt_assert(key != -1);
+ igt_debug("Queue key: %x\n", (int) key);
+
+ queue = msgget(key, 0);
+ if (queue != -1) {
+ igt_assert(msgctl(queue, IPC_STAT, &qstat) == 0);
+ igt_debug("old messages: %lu\n", qstat.msg_qnum);
+ igt_assert(msgctl(queue, IPC_RMID, NULL) == 0);
+ }
+
+ queue = msgget(key, IPC_CREAT);
+ igt_debug("msg queue: %d\n", queue);
+
+ msgdata = calloc(1, sizeof(*msgdata));
+ igt_assert(msgdata);
+ msgdata->key = key;
+ msgdata->queue = queue;
+ channel->priv = msgdata;
+}
+
+static void msgqueue_deinit(struct msg_channel *channel)
+{
+ struct msgqueue_data *msgdata = channel->priv;
+
+ igt_debug("Deinit msgqueue\n");
+ msgctl(msgdata->queue, IPC_RMID, NULL);
+ free(channel->priv);
+}
+
+static int msgqueue_send_req(struct msg_channel *channel,
+ struct alloc_req *request)
+{
+ struct msgqueue_data *msgdata = channel->priv;
+ struct msgqueue_buf buf = {0};
+ int ret;
+
+ buf.mtype = ALLOCATOR_REQUEST;
+ buf.data.request.request_type = 1;
+ memcpy(&buf.data.request, request, sizeof(*request));
+
+retry:
+ ret = msgsnd(msgdata->queue, &buf, sizeof(buf) - sizeof(long), 0);
+ if (ret == -1 && errno == EINTR)
+ goto retry;
+
+ if (ret == -1)
+ igt_warn("Error: %s\n", strerror(errno));
+
+ return ret;
+}
+
+static int msgqueue_recv_req(struct msg_channel *channel,
+ struct alloc_req *request)
+{
+ struct msgqueue_data *msgdata = channel->priv;
+ struct msgqueue_buf buf = {0};
+ int ret, size = sizeof(buf) - sizeof(long);
+
+retry:
+ ret = msgrcv(msgdata->queue, &buf, size, ALLOCATOR_REQUEST, 0);
+ if (ret == -1 && errno == EINTR)
+ goto retry;
+
+ if (ret == size)
+ memcpy(request, &buf.data.request, sizeof(*request));
+ else if (ret == -1)
+ igt_warn("Error: %s\n", strerror(errno));
+
+ return ret;
+}
+
+static int msgqueue_send_resp(struct msg_channel *channel,
+ struct alloc_resp *response)
+{
+ struct msgqueue_data *msgdata = channel->priv;
+ struct msgqueue_buf buf = {0};
+ int ret;
+
+ buf.mtype = response->tid;
+ memcpy(&buf.data.response, response, sizeof(*response));
+
+retry:
+ ret = msgsnd(msgdata->queue, &buf, sizeof(buf) - sizeof(long), 0);
+ if (ret == -1 && errno == EINTR)
+ goto retry;
+
+ if (ret == -1)
+ igt_warn("Error: %s\n", strerror(errno));
+
+ return ret;
+}
+
+static int msgqueue_recv_resp(struct msg_channel *channel,
+ struct alloc_resp *response)
+{
+ struct msgqueue_data *msgdata = channel->priv;
+ struct msgqueue_buf buf = {0};
+ int ret, size = sizeof(buf) - sizeof(long);
+
+retry:
+ ret = msgrcv(msgdata->queue, &buf, sizeof(buf) - sizeof(long),
+ response->tid, 0);
+ if (ret == -1 && errno == EINTR)
+ goto retry;
+
+ if (ret == size)
+ memcpy(response, &buf.data.response, sizeof(*response));
+ else if (ret == -1)
+ igt_warn("Error: %s\n", strerror(errno));
+
+ return ret;
+}
+
+static struct msg_channel msgqueue_channel = {
+ .priv = NULL,
+ .init = msgqueue_init,
+ .deinit = msgqueue_deinit,
+ .send_req = msgqueue_send_req,
+ .recv_req = msgqueue_recv_req,
+ .send_resp = msgqueue_send_resp,
+ .recv_resp = msgqueue_recv_resp,
+};
+
+struct msg_channel *intel_allocator_get_msgchannel(enum msg_channel_type type)
+{
+ struct msg_channel *channel = NULL;
+
+ switch (type) {
+ case CHANNEL_SYSVIPC_MSGQUEUE:
+ channel = &msgqueue_channel;
+ }
+
+ igt_assert(channel);
+
+ return channel;
+}
diff --git a/lib/intel_allocator_msgchannel.h b/lib/intel_allocator_msgchannel.h
new file mode 100644
index 000000000..ac6edfb9e
--- /dev/null
+++ b/lib/intel_allocator_msgchannel.h
@@ -0,0 +1,156 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#ifndef __INTEL_ALLOCATOR_MSGCHANNEL_H__
+#define __INTEL_ALLOCATOR_MSGCHANNEL_H__
+
+#include <sys/types.h>
+#include <unistd.h>
+#include <stdint.h>
+
+enum reqtype {
+ REQ_STOP,
+ REQ_OPEN,
+ REQ_OPEN_AS,
+ REQ_CLOSE,
+ REQ_ADDRESS_RANGE,
+ REQ_ALLOC,
+ REQ_FREE,
+ REQ_IS_ALLOCATED,
+ REQ_RESERVE,
+ REQ_UNRESERVE,
+ REQ_RESERVE_IF_NOT_ALLOCATED,
+ REQ_IS_RESERVED,
+};
+
+enum resptype {
+ RESP_OPEN,
+ RESP_OPEN_AS,
+ RESP_CLOSE,
+ RESP_ADDRESS_RANGE,
+ RESP_ALLOC,
+ RESP_FREE,
+ RESP_IS_ALLOCATED,
+ RESP_RESERVE,
+ RESP_UNRESERVE,
+ RESP_IS_RESERVED,
+ RESP_RESERVE_IF_NOT_ALLOCATED,
+};
+
+struct alloc_req {
+ enum reqtype request_type;
+
+ /* Common */
+ pid_t tid;
+ uint64_t allocator_handle;
+
+ union {
+ struct {
+ int fd;
+ uint32_t ctx;
+ uint32_t vm;
+ uint64_t start;
+ uint64_t end;
+ uint8_t allocator_type;
+ uint8_t allocator_strategy;
+ } open;
+
+ struct {
+ uint32_t new_vm;
+ } open_as;
+
+ struct {
+ uint32_t handle;
+ uint64_t size;
+ uint64_t alignment;
+ } alloc;
+
+ struct {
+ uint32_t handle;
+ } free;
+
+ struct {
+ uint32_t handle;
+ uint64_t size;
+ uint64_t offset;
+ } is_allocated;
+
+ struct {
+ uint32_t handle;
+ uint64_t start;
+ uint64_t end;
+ } reserve, unreserve;
+
+ struct {
+ uint64_t start;
+ uint64_t end;
+ } is_reserved;
+
+ };
+};
+
+struct alloc_resp {
+ enum resptype response_type;
+ pid_t tid;
+
+ union {
+ struct {
+ uint64_t allocator_handle;
+ } open, open_as;
+
+ struct {
+ bool is_empty;
+ } close;
+
+ struct {
+ uint64_t start;
+ uint64_t end;
+ uint8_t direction;
+ } address_range;
+
+ struct {
+ uint64_t offset;
+ } alloc;
+
+ struct {
+ bool freed;
+ } free;
+
+ struct {
+ bool allocated;
+ } is_allocated;
+
+ struct {
+ bool reserved;
+ } reserve, is_reserved;
+
+ struct {
+ bool unreserved;
+ } unreserve;
+
+ struct {
+ bool allocated;
+ bool reserved;
+ } reserve_if_not_allocated;
+ };
+};
+
+struct msg_channel {
+ void *priv;
+ void (*init)(struct msg_channel *channel);
+ void (*deinit)(struct msg_channel *channel);
+ int (*send_req)(struct msg_channel *channel, struct alloc_req *request);
+ int (*recv_req)(struct msg_channel *channel, struct alloc_req *request);
+ int (*send_resp)(struct msg_channel *channel, struct alloc_resp *response);
+ int (*recv_resp)(struct msg_channel *channel, struct alloc_resp *response);
+};
+
+enum msg_channel_type {
+ CHANNEL_SYSVIPC_MSGQUEUE
+};
+
+struct msg_channel *intel_allocator_get_msgchannel(enum msg_channel_type type);
+
+#endif
diff --git a/lib/meson.build b/lib/meson.build
index 7254faeac..216231761 100644
--- a/lib/meson.build
+++ b/lib/meson.build
@@ -34,6 +34,11 @@ lib_sources = [
'igt_vgem.c',
'igt_x86.c',
'instdone.c',
+ 'intel_allocator.c',
+ 'intel_allocator_msgchannel.c',
+ 'intel_allocator_random.c',
+ 'intel_allocator_reloc.c',
+ 'intel_allocator_simple.c',
'intel_batchbuffer.c',
'intel_bufops.c',
'intel_chipset.c',
--
2.26.0
More information about the igt-dev
mailing list