[PATCH i-g-t 22/27] tools/xe-perf: Add xe_perf_recorder

Ashutosh Dixit ashutosh.dixit at intel.com
Fri Jun 7 20:08:42 UTC 2024


Add xe_perf_recorder. The recorder exercises the Xe OA uapi to capture OAG
data in a specific format, similar to i915_perf_recorder.

Signed-off-by: Ashutosh Dixit <ashutosh.dixit at intel.com>
---
 tools/meson.build                         |    1 +
 tools/xe-perf/meson.build                 |    5 +
 tools/xe-perf/xe_perf_recorder.c          | 1227 +++++++++++++++++++++
 tools/xe-perf/xe_perf_recorder_commands.h |   31 +
 4 files changed, 1264 insertions(+)
 create mode 100644 tools/xe-perf/meson.build
 create mode 100644 tools/xe-perf/xe_perf_recorder.c
 create mode 100644 tools/xe-perf/xe_perf_recorder_commands.h

diff --git a/tools/meson.build b/tools/meson.build
index ac79d8b584..7ff40450b1 100644
--- a/tools/meson.build
+++ b/tools/meson.build
@@ -112,4 +112,5 @@ if libudev.found()
 endif
 
 subdir('i915-perf')
+subdir('xe-perf')
 subdir('null_state_gen')
diff --git a/tools/xe-perf/meson.build b/tools/xe-perf/meson.build
new file mode 100644
index 0000000000..a5f59a67fe
--- /dev/null
+++ b/tools/xe-perf/meson.build
@@ -0,0 +1,5 @@
+executable('xe-perf-recorder',
+           [ 'xe_perf_recorder.c' ],
+           include_directories: inc,
+           dependencies: [lib_igt, lib_igt_xe_oa],
+           install: true)
diff --git a/tools/xe-perf/xe_perf_recorder.c b/tools/xe-perf/xe_perf_recorder.c
new file mode 100644
index 0000000000..bd2d645fa1
--- /dev/null
+++ b/tools/xe-perf/xe_perf_recorder.c
@@ -0,0 +1,1227 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2024 Intel Corporation
+ */
+
+#include <assert.h>
+#include <dirent.h>
+#include <errno.h>
+#include <fcntl.h>
+#include <getopt.h>
+#include <inttypes.h>
+#include <limits.h>
+#include <poll.h>
+#include <signal.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/ioctl.h>
+#include <sys/stat.h>
+#include <sys/sysmacros.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <time.h>
+#include <unistd.h>
+
+#include "igt_core.h"
+#include "intel_chipset.h"
+#include "ioctl_wrappers.h"
+#include "linux_scaffold.h"
+#include "xe/xe_oa.h"
+#include "xe/xe_oa_data.h"
+#include "xe/xe_query.h"
+
+#include "xe_perf_recorder_commands.h"
+
+#define ALIGN(v, a) (((v) + (a)-1) & ~((a)-1))
+#define ARRAY_SIZE(arr) (sizeof(arr)/sizeof((arr)[0]))
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+
+struct circular_buffer {
+	char   *data;
+	size_t  allocated_size;
+	size_t  size;
+	size_t  beginpos;
+	size_t  endpos;
+};
+
+struct chunk {
+	char *data;
+	size_t len;
+};
+
+static size_t
+circular_available_size(const struct circular_buffer *buffer)
+{
+	assert(buffer->size <= buffer->allocated_size);
+	return buffer->allocated_size - buffer->size;
+}
+
+static void
+get_chunks(struct chunk *chunks, struct circular_buffer *buffer, bool write, size_t len)
+{
+	size_t offset = write ? buffer->endpos : buffer->beginpos;
+
+	if (write)
+		assert(circular_available_size(buffer) >= len);
+	else
+		assert(buffer->size >= len);
+
+	chunks[0].data = &buffer->data[offset];
+
+	if ((offset + len) > buffer->allocated_size) {
+		chunks[0].len = buffer->allocated_size - offset;
+		chunks[1].data = buffer->data;
+		chunks[1].len = len - (buffer->allocated_size - offset);
+	} else {
+		chunks[0].len = len;
+		chunks[1].data = NULL;
+		chunks[1].len = 0;
+	}
+}
+
+static ssize_t
+circular_buffer_read(void *c, char *buf, size_t size)
+{
+	struct circular_buffer *buffer = c;
+	struct chunk chunks[2];
+
+	if (buffer->size < size)
+		return -1;
+
+	get_chunks(chunks, buffer, false, size);
+
+	memcpy(buf, chunks[0].data, chunks[0].len);
+	memcpy(buf + chunks[0].len, chunks[1].data, chunks[1].len);
+	buffer->beginpos = (buffer->beginpos + size) % buffer->allocated_size;
+	buffer->size -= size;
+
+	return size;
+}
+
+static size_t
+peek_item_size(struct circular_buffer *buffer)
+{
+	struct intel_xe_perf_record_header header;
+	struct chunk chunks[2];
+
+	if (!buffer->size)
+		return 0;
+
+	assert(buffer->size >= sizeof(header));
+
+	get_chunks(chunks, buffer, false, sizeof(header));
+	memcpy(&header, chunks[0].data, chunks[0].len);
+	memcpy((char *) &header + chunks[0].len, chunks[1].data, chunks[1].len);
+
+	return header.size;
+}
+
+static void
+circular_shrink(struct circular_buffer *buffer, size_t size)
+{
+	size_t shrank = 0, item_size;
+
+	assert(size <= buffer->allocated_size);
+
+	while (shrank < size && buffer->size > (item_size = peek_item_size(buffer))) {
+		assert(item_size > 0 && item_size <= buffer->allocated_size);
+
+		buffer->beginpos = (buffer->beginpos + item_size) % buffer->allocated_size;
+		buffer->size -= item_size;
+
+		shrank += item_size;
+	}
+}
+
+static ssize_t
+circular_buffer_write(void *c, const char *buf, size_t _size)
+{
+	struct circular_buffer *buffer = c;
+	size_t size = _size;
+
+	while (size) {
+		size_t avail = circular_available_size(buffer), item_size;
+		struct chunk chunks[2];
+
+		/* Make space in the buffer if there is too much data. */
+		if (avail < size)
+			circular_shrink(buffer, size - avail);
+
+		item_size = MIN(circular_available_size(buffer), size);
+
+		get_chunks(chunks, buffer, true, item_size);
+
+		memcpy(chunks[0].data, buf, chunks[0].len);
+		memcpy(chunks[1].data, buf + chunks[0].len, chunks[1].len);
+
+		buf += item_size;
+		size -= item_size;
+
+		buffer->endpos = (buffer->endpos + item_size) % buffer->allocated_size;
+		buffer->size += item_size;
+	}
+
+	return _size;
+}
+
+static int
+circular_buffer_seek(void *c, off64_t *offset, int whence)
+{
+	return -1;
+}
+
+static int
+circular_buffer_close(void *c)
+{
+	return 0;
+}
+
+cookie_io_functions_t circular_buffer_functions = {
+	.read  = circular_buffer_read,
+	.write = circular_buffer_write,
+	.seek  = circular_buffer_seek,
+	.close = circular_buffer_close,
+};
+
+
+static bool
+read_file_uint64(const char *file, uint64_t *value)
+{
+	char buf[32];
+	int fd, n;
+
+	fd = open(file, 0);
+	if (fd < 0)
+		return false;
+	n = read(fd, buf, sizeof (buf) - 1);
+	close(fd);
+	if (n < 0)
+		return false;
+
+	buf[n] = '\0';
+	*value = strtoull(buf, 0, 0);
+
+	return true;
+}
+
+static uint32_t
+read_device_param(const char *stem, int id, const char *param)
+{
+	char *name;
+	int ret = asprintf(&name, "/sys/class/drm/%s%u/device/%s", stem, id, param);
+	uint64_t value;
+	bool success;
+
+	assert(ret != -1);
+
+	success = read_file_uint64(name, &value);
+	free(name);
+
+	return success ? value : 0;
+}
+
+static int
+find_intel_render_node(void)
+{
+	for (int i = 128; i < (128 + 16); i++) {
+		if (read_device_param("renderD", i, "vendor") == 0x8086)
+			return i;
+	}
+
+	return -1;
+}
+
+static void
+print_intel_devices(void)
+{
+	fprintf(stdout, "Available devices:\n");
+	for (int i = 0; i < 128; i++) {
+		if (read_device_param("card", i, "vendor") == 0x8086) {
+			uint32_t devid = read_device_param("card", i, "device");
+			const struct intel_device_info *devinfo =
+				intel_get_device_info(devid);
+			fprintf(stdout, "   %i: %s (0x%04hx)\n", i,
+				devinfo ? devinfo->codename : "unknwon",
+				devid);
+		}
+	}
+}
+
+static int
+open_render_node(uint32_t *devid, int card)
+{
+	char *name;
+	int ret;
+	int fd;
+	int render;
+
+	if (card < 0) {
+		render = find_intel_render_node();
+		if (render < 0)
+			return -1;
+	} else {
+		render = 128 + card;
+	}
+
+	ret = asprintf(&name, "/dev/dri/renderD%u", render);
+	assert(ret != -1);
+
+	*devid = read_device_param("renderD", render, "device");
+
+	fd = open(name, O_RDWR);
+	free(name);
+
+	return fd;
+}
+
+static uint32_t
+oa_exponent_for_period(uint64_t device_timestamp_frequency, double period)
+{
+	uint64_t period_ns = 1000 * 1000 * 1000 * period;
+	uint64_t device_periods[32];
+
+	for (uint32_t i = 0; i < ARRAY_SIZE(device_periods); i++)
+		device_periods[i] = 1000000000ull * (1u << i) / device_timestamp_frequency;
+
+	for (uint32_t i = 1; i < ARRAY_SIZE(device_periods); i++) {
+		if (period_ns >= device_periods[i - 1] &&
+		    period_ns < device_periods[i]) {
+			if ((device_periods[i] - period_ns) >
+			    (period_ns - device_periods[i - 1]))
+				return i - 1;
+			return i;
+		}
+	}
+
+	return -1;
+}
+
+static int
+perf_ioctl(int fd, unsigned long request, void *arg)
+{
+	int ret;
+
+	do {
+		ret = ioctl(fd, request, arg);
+	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
+
+	return ret;
+}
+
+static uint64_t
+get_device_cs_timestamp_frequency(int drm_fd)
+{
+	return xe_gt_list(drm_fd)->gt_list[0].reference_clock;
+}
+
+static uint64_t
+get_device_oa_timestamp_frequency(int drm_fd)
+{
+	struct drm_xe_query_oa_units *qoa = xe_oa_units(drm_fd);
+	struct drm_xe_oa_unit *oau = (struct drm_xe_oa_unit *)&qoa->oa_units[0];
+
+	return oau->oa_timestamp_freq;
+}
+
+struct recording_context {
+	int drm_fd;
+	int perf_fd;
+
+	uint32_t devid;
+	uint64_t oa_timestamp_frequency;
+	uint64_t cs_timestamp_frequency;
+
+	const struct intel_device_info *devinfo;
+
+	struct intel_xe_topology_info *topology;
+	uint32_t topology_size;
+
+	struct intel_xe_perf *perf;
+	struct intel_xe_perf_metric_set *metric_set;
+
+	uint32_t oa_exponent;
+
+	struct circular_buffer circular_buffer;
+	FILE *output_stream;
+
+	const char *command_fifo;
+	int command_fifo_fd;
+
+	int gt;
+	struct drm_xe_engine_class_instance eci;
+	struct drm_xe_engine_class_instance *hwe;
+	struct drm_xe_oa_unit *oa_unit;
+};
+
+static void set_fd_flags(int fd, int flags)
+{
+	int old = fcntl(fd, F_GETFL, 0);
+
+	igt_assert_lte(0, old);
+	igt_assert_eq(0, fcntl(fd, F_SETFL, old | flags));
+}
+
+enum xe_oa_report_header {
+	HDR_32_BIT = 0,
+	HDR_64_BIT,
+};
+
+struct xe_oa_format {
+	uint32_t counter_select;
+	int size;
+	int oa_type;
+	enum xe_oa_report_header header;
+	uint16_t counter_size;
+	uint16_t bc_report;
+};
+
+#define DRM_FMT(x) DRM_XE_OA_FMT_TYPE_##x
+
+static const struct xe_oa_format oa_formats[] = {
+	[XE_OA_FORMAT_C4_B8]			= { 7, 64,  DRM_FMT(OAG) },
+	[XE_OA_FORMAT_A12]			= { 0, 64,  DRM_FMT(OAG) },
+	[XE_OA_FORMAT_A12_B8_C8]		= { 2, 128, DRM_FMT(OAG) },
+	[XE_OA_FORMAT_A32u40_A4u32_B8_C8]	= { 5, 256, DRM_FMT(OAG) },
+	[XE_OAR_FORMAT_A32u40_A4u32_B8_C8]	= { 5, 256, DRM_FMT(OAR) },
+	[XE_OA_FORMAT_A24u40_A14u32_B8_C8]	= { 5, 256, DRM_FMT(OAG) },
+	[XE_OAC_FORMAT_A24u64_B8_C8]		= { 1, 320, DRM_FMT(OAC), HDR_64_BIT },
+	[XE_OAC_FORMAT_A22u32_R2u32_B8_C8]	= { 2, 192, DRM_FMT(OAC), HDR_64_BIT },
+	[XE_OAM_FORMAT_MPEC8u64_B8_C8]		= { 1, 192, DRM_FMT(OAM_MPEC), HDR_64_BIT },
+	[XE_OAM_FORMAT_MPEC8u32_B8_C8]		= { 2, 128, DRM_FMT(OAM_MPEC), HDR_64_BIT },
+	[XE_OA_FORMAT_PEC64u64]			= { 1, 576, DRM_FMT(PEC), HDR_64_BIT, 1, 0 },
+	[XE_OA_FORMAT_PEC64u64_B8_C8]		= { 1, 640, DRM_FMT(PEC), HDR_64_BIT, 1, 1 },
+	[XE_OA_FORMAT_PEC64u32]			= { 1, 320, DRM_FMT(PEC), HDR_64_BIT },
+	[XE_OA_FORMAT_PEC32u64_G1]		= { 5, 320, DRM_FMT(PEC), HDR_64_BIT, 1, 0 },
+	[XE_OA_FORMAT_PEC32u32_G1]		= { 5, 192, DRM_FMT(PEC), HDR_64_BIT },
+	[XE_OA_FORMAT_PEC32u64_G2]		= { 6, 320, DRM_FMT(PEC), HDR_64_BIT, 1, 0 },
+	[XE_OA_FORMAT_PEC32u32_G2]		= { 6, 192, DRM_FMT(PEC), HDR_64_BIT },
+	[XE_OA_FORMAT_PEC36u64_G1_32_G2_4]	= { 3, 320, DRM_FMT(PEC), HDR_64_BIT, 1, 0 },
+	[XE_OA_FORMAT_PEC36u64_G1_4_G2_32]	= { 4, 320, DRM_FMT(PEC), HDR_64_BIT, 1, 0 },
+};
+
+static uint64_t oa_format_fields(uint64_t name)
+{
+#define FIELD_PREP_ULL(_mask, _val) \
+	(((_val) << (__builtin_ffsll(_mask) - 1)) & (_mask))
+
+	struct xe_oa_format f = oa_formats[name];
+
+	/* 0 format name is invalid */
+	if (!name)
+		memset(&f, 0xff, sizeof(f));
+
+	return FIELD_PREP_ULL(DRM_XE_OA_FORMAT_MASK_FMT_TYPE, (u64)f.oa_type) |
+		FIELD_PREP_ULL(DRM_XE_OA_FORMAT_MASK_COUNTER_SEL, (u64)f.counter_select) |
+		FIELD_PREP_ULL(DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE, (u64)f.counter_size) |
+		FIELD_PREP_ULL(DRM_XE_OA_FORMAT_MASK_BC_REPORT, (u64)f.bc_report);
+#undef FIELD_PREP_ULL
+}
+#define __ff oa_format_fields
+
+static int
+perf_open(struct recording_context *ctx)
+{
+	int stream_fd;
+
+	uint64_t properties[] = {
+		DRM_XE_OA_PROPERTY_OA_UNIT_ID, ctx->oa_unit->oa_unit_id,
+
+		/* Include OA reports in samples */
+		DRM_XE_OA_PROPERTY_SAMPLE_OA, true,
+
+		/* OA unit configuration */
+		DRM_XE_OA_PROPERTY_OA_METRIC_SET, ctx->metric_set->perf_oa_metrics_set,
+		DRM_XE_OA_PROPERTY_OA_FORMAT, __ff(ctx->metric_set->perf_oa_format),
+		DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT, ctx->oa_exponent,
+	};
+	struct intel_xe_oa_open_prop param = {
+		.num_properties = ARRAY_SIZE(properties) / 2,
+		.properties_ptr = to_user_pointer(properties),
+	};
+
+	stream_fd = intel_xe_perf_ioctl(ctx->drm_fd, DRM_XE_PERF_OP_STREAM_OPEN, &param);
+	if (stream_fd < 0) {
+		errno = 0;
+		goto exit;
+	}
+
+	set_fd_flags(stream_fd, O_CLOEXEC | O_NONBLOCK);
+exit:
+	return stream_fd;
+}
+
+static bool quit = false;
+
+static void
+sigint_handler(int val)
+{
+	quit = true;
+}
+
+static bool
+write_version(FILE *output, struct recording_context *ctx)
+{
+	struct intel_xe_perf_record_version version = {
+		.version = INTEL_XE_PERF_RECORD_VERSION,
+	};
+	struct intel_xe_perf_record_header header = {
+		.type = INTEL_XE_PERF_RECORD_TYPE_VERSION,
+		.size = sizeof(header) + sizeof(version),
+	};
+
+	if (fwrite(&header, sizeof(header), 1, output) != 1)
+		return false;
+
+	if (fwrite(&version, sizeof(version), 1, output) != 1)
+		return false;
+
+	return true;
+}
+
+static bool
+write_header(FILE *output, struct recording_context *ctx)
+{
+	struct intel_xe_perf_record_device_info info = {
+		.timestamp_frequency = ctx->oa_timestamp_frequency,
+		.device_id = ctx->perf->devinfo.devid,
+		.device_revision = ctx->perf->devinfo.revision,
+		.gt_min_frequency = ctx->perf->devinfo.gt_min_freq,
+		.gt_max_frequency = ctx->perf->devinfo.gt_max_freq,
+		.oa_format = ctx->metric_set->perf_oa_format,
+		.engine_class = ctx->hwe->engine_class,
+		.engine_instance = ctx->hwe->engine_instance,
+	};
+	struct intel_xe_perf_record_header header = {
+		.type = INTEL_XE_PERF_RECORD_TYPE_DEVICE_INFO,
+		.size = sizeof(header) + sizeof(info),
+	};
+
+	snprintf(info.metric_set_name, sizeof(info.metric_set_name),
+		 "%s", ctx->metric_set->symbol_name);
+	snprintf(info.metric_set_uuid, sizeof(info.metric_set_uuid),
+		 "%s", ctx->metric_set->hw_config_guid);
+
+	if (fwrite(&header, sizeof(header), 1, output) != 1)
+		return false;
+
+	if (fwrite(&info, sizeof(info), 1, output) != 1)
+		return false;
+
+	return true;
+}
+
+static struct intel_xe_topology_info *get_topology(struct recording_context *ctx)
+{
+	return xe_fill_topology_info(ctx->drm_fd, ctx->devid, &ctx->topology_size);
+}
+
+static bool
+write_topology(FILE *output, struct recording_context *ctx)
+{
+	struct intel_xe_perf_record_header header = {
+		.type = INTEL_XE_PERF_RECORD_TYPE_DEVICE_TOPOLOGY,
+	};
+
+	header.size = sizeof(header) + ctx->topology_size;
+	if (fwrite(&header, sizeof(header), 1, output) != 1)
+		return false;
+
+	if (fwrite(ctx->topology, ctx->topology_size, 1, output) != 1)
+		return false;
+
+	return true;
+}
+
+static int get_stream_status(int perf_fd, u32 *oa_status)
+{
+	struct drm_xe_oa_stream_status status;
+	int ret;
+
+	ret = perf_ioctl(perf_fd, DRM_XE_PERF_IOCTL_STATUS, &status);
+	if (ret)
+		return ret;
+
+	*oa_status = status.oa_status;
+	return 0;
+}
+
+static bool write_stream_status(struct recording_context *ctx, FILE *output)
+{
+	u32 oa_status;
+
+	if (!get_stream_status(ctx->perf_fd, &oa_status)) {
+		struct intel_xe_perf_record_header header = { .size = sizeof(header) };
+
+		if (oa_status & DRM_XE_OASTATUS_REPORT_LOST)
+			header.type = INTEL_XE_PERF_RECORD_OA_TYPE_REPORT_LOST;
+		else if (oa_status & DRM_XE_OASTATUS_BUFFER_OVERFLOW)
+			header.type = INTEL_XE_PERF_RECORD_OA_TYPE_BUFFER_LOST;
+		else
+			return true;
+
+		if (fwrite(&header, sizeof(header), 1, output) != 1)
+			return false;
+	}
+
+	return true;
+}
+
+static bool write_stream_data(struct recording_context *ctx,
+			      char *data, ssize_t size, FILE *output)
+{
+	ssize_t format_size = oa_formats[ctx->metric_set->perf_oa_format].size;
+
+	assert(!(size % format_size));
+
+	for (int i = 0; i < size / format_size; i++) {
+		struct intel_xe_perf_record_header header = {
+			.type = INTEL_XE_PERF_RECORD_TYPE_SAMPLE,
+			.size = sizeof(header) + format_size,
+		};
+
+		if (fwrite(&header, sizeof(header), 1, output) != 1)
+			return false;
+
+		if (fwrite(data, format_size, 1, output) != 1)
+			return false;
+	}
+
+	return true;
+}
+
+static bool write_perf_data(FILE *output, struct recording_context *ctx)
+{
+	char data[4096];
+	ssize_t len;
+	bool ret;
+
+	while (1) {
+		len = read(ctx->perf_fd, data, sizeof(data));
+
+		if (len < 0) {
+			switch (errno) {
+			case EIO:
+				ret = write_stream_status(ctx, output);
+				if (!ret)
+					return ret;
+				break;
+			case EAGAIN:
+			case EINTR:
+				return true;
+			default:
+				/* Not expecting -EFAULT, -ENOSPC, -EINVAL */
+				assert(0);
+			}
+		} else {
+			ret = write_stream_data(ctx, data, len, output);
+			if (!ret)
+				return ret;
+		}
+	}
+
+	/* Should not reach here */
+	return false;
+}
+
+static clock_t correlation_clock_id = CLOCK_MONOTONIC;
+
+static const char *
+get_correlation_clock_name(clock_t clock_id)
+{
+	switch (clock_id) {
+	case CLOCK_BOOTTIME:      return "bootime";
+	case CLOCK_MONOTONIC:     return "monotonic";
+	case CLOCK_MONOTONIC_RAW: return "monotonic_raw";
+	default:                  return "*unknown*";
+	}
+}
+
+static int query_engine_cycles(int fd, struct drm_xe_query_engine_cycles *ts)
+{
+	struct drm_xe_device_query query = {
+		.extensions = 0,
+		.query = DRM_XE_DEVICE_QUERY_ENGINE_CYCLES,
+		.size = sizeof(*ts),
+		.data = (uintptr_t)ts,
+	};
+
+	return perf_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
+}
+
+static bool get_correlation_timestamps(struct recording_context *ctx,
+				       struct intel_xe_perf_record_timestamp_correlation *corr)
+{
+	struct drm_xe_query_engine_cycles ts = {};
+
+	ts.eci = *ctx->hwe;
+	ts.clockid = correlation_clock_id;
+
+	if (query_engine_cycles(ctx->drm_fd, &ts))
+		return false;
+
+	corr->cpu_timestamp = ts.cpu_timestamp + ts.cpu_delta / 2;
+	corr->gpu_timestamp = ts.engine_cycles;
+
+	return true;
+}
+
+static bool
+write_saved_correlation_timestamps(FILE *output,
+				   const struct intel_xe_perf_record_timestamp_correlation *corr)
+{
+	struct intel_xe_perf_record_header header = {
+		.type = INTEL_XE_PERF_RECORD_TYPE_TIMESTAMP_CORRELATION,
+		.size = sizeof(header) + sizeof(*corr),
+	};
+
+	if (fwrite(&header, sizeof(header), 1, output) != 1)
+		return false;
+
+	if (fwrite(corr, sizeof(*corr), 1, output) != 1)
+		return false;
+
+	return true;
+}
+
+static bool
+write_correlation_timestamps(struct recording_context *ctx, FILE *output)
+{
+	struct intel_xe_perf_record_timestamp_correlation corr;
+
+	if (!get_correlation_timestamps(ctx, &corr))
+		return false;
+
+	return write_saved_correlation_timestamps(output, &corr);
+}
+
+static void
+read_command_file(struct recording_context *ctx)
+{
+	struct recorder_command_base header;
+	ssize_t ret = read(ctx->command_fifo_fd, &header, sizeof(header));
+
+	if (ret < 0)
+		return;
+
+	switch (header.command) {
+	case RECORDER_COMMAND_DUMP: {
+		uint32_t len = header.size - sizeof(header), offset = 0;
+		uint8_t *dump = malloc(len);
+		FILE *file;
+
+		while (offset < len &&
+		       ((ret = read(ctx->command_fifo_fd,
+				    (void *) dump + offset, len - offset)) > 0
+			|| errno == EAGAIN)) {
+			if (ret > 0)
+				offset += ret;
+		}
+
+		fprintf(stdout, "Writing circular buffer to %s\n", dump);
+
+		file = fopen((const char *) dump, "w+");
+		if (file) {
+			struct chunk chunks[2];
+
+			fflush(ctx->output_stream);
+			get_chunks(chunks, &ctx->circular_buffer,
+				   false, ctx->circular_buffer.size);
+
+			if (!write_version(file, ctx) ||
+			    !write_header(file, ctx) ||
+			    !write_topology(file, ctx) ||
+			    fwrite(chunks[0].data, chunks[0].len, 1, file) != 1 ||
+			    (chunks[1].len > 0 &&
+			     fwrite(chunks[1].data, chunks[1].len, 1, file) != 1) ||
+			    !write_correlation_timestamps(ctx, file)) {
+				fprintf(stderr, "Unable to write circular buffer data in file '%s'\n",
+					dump);
+			}
+			fclose(file);
+		} else
+			fprintf(stderr, "Unable to write dump file '%s'\n", dump);
+
+		free(dump);
+		break;
+	}
+	case RECORDER_COMMAND_QUIT:
+		quit = true;
+		break;
+	default:
+		fprintf(stderr, "Unknown command 0x%x\n", header.command);
+		break;
+	}
+}
+
+static void
+print_metric_sets(const struct intel_xe_perf *perf)
+{
+	struct intel_xe_perf_metric_set *metric_set;
+	uint32_t longest_name = 0;
+
+	igt_list_for_each_entry(metric_set, &perf->metric_sets, link) {
+		longest_name = MAX(longest_name, strlen(metric_set->symbol_name));
+	}
+
+	igt_list_for_each_entry(metric_set, &perf->metric_sets, link) {
+		fprintf(stdout, "%s:%*s%s\n",
+			metric_set->symbol_name,
+			(int) (longest_name - strlen(metric_set->symbol_name) + 1), " ",
+			metric_set->name);
+	}
+}
+
+static void
+print_metric_set_counters(const struct intel_xe_perf_metric_set *metric_set)
+{
+	uint32_t longest_name = 0;
+
+	for (uint32_t i = 0; i < metric_set->n_counters; i++) {
+		longest_name = MAX(longest_name, strlen(metric_set->counters[i].name));
+	}
+
+	fprintf(stdout, "%s (%s):\n", metric_set->symbol_name, metric_set->name);
+	for (uint32_t i = 0; i < metric_set->n_counters; i++) {
+		struct intel_xe_perf_logical_counter *counter = &metric_set->counters[i];
+
+		fprintf(stdout, "  %s:%*s%s\n",
+			counter->name,
+			(int)(longest_name - strlen(counter->name) + 1), " ",
+			counter->desc);
+	}
+}
+
+static void
+print_metric_sets_counters(struct intel_xe_perf *perf)
+{
+	struct intel_xe_perf_metric_set *metric_set;
+
+	igt_list_for_each_entry(metric_set, &perf->metric_sets, link)
+		print_metric_set_counters(metric_set);
+}
+
+static void
+usage(const char *name)
+{
+	fprintf(stdout,
+		"Usage: %s [options]\n"
+		"Recording tool for xe-oa\n"
+		"\n"
+		"     --help,               -h          Print this screen\n"
+		"     --device,             -d <value>  Device to use\n"
+		"                                       (value=list to list devices\n"
+		"                                        value=1 to use /dev/dri/card1)\n"
+		"     --correlation-period, -c <value>  Time period of timestamp correlation in seconds\n"
+		"                                       (default = 1.0)\n"
+		"     --perf-period,        -p <value>  Time period of xe-oa reports in seconds\n"
+		"                                       (default = 0.001)\n"
+		"     --metric,             -m <value>  xe-oa metric to sample with (use value=list to list all metrics)\n"
+		"     --counters,           -C          List counters for a given metric and exit\n"
+		"     --size,               -s <value>  Size of circular buffer to use in kilobytes\n"
+		"                                       If specified, a maximum amount of <value> data will\n"
+		"                                       be recorded.\n"
+		"     --command-fifo,       -f <path>   Path to a command fifo, implies circular buffer\n"
+		"                                       (To use with xe-perf-control)\n"
+		"     --output,             -o <path>   Output file (default = xe_perf.record)\n"
+		"     --cpu-clock,          -k <path>   Cpu clock to use for correlations\n"
+		"                                       Values: boot, mono, mono_raw (default = mono)\n"
+		"     --engine-class        -e <value>  Engine class used for the OA capture.\n"
+		"     --engine-instance     -i <value>  Engine instance used for the OA capture.\n",
+		name);
+}
+
+static void
+teardown_recording_context(struct recording_context *ctx)
+{
+	if (ctx->topology)
+		free(ctx->topology);
+
+	if (ctx->perf)
+		intel_xe_perf_free(ctx->perf);
+
+	if (ctx->command_fifo)
+		unlink(ctx->command_fifo);
+	if (ctx->command_fifo_fd != -1)
+		close(ctx->command_fifo_fd);
+
+	if (ctx->output_stream)
+		fclose(ctx->output_stream);
+
+	free(ctx->circular_buffer.data);
+
+	if (ctx->perf_fd != -1)
+		close(ctx->perf_fd);
+	if (ctx->drm_fd != -1)
+		close(ctx->drm_fd);
+}
+
+static int assign_oa_unit(int fd, struct recording_context *ctx)
+{
+	struct drm_xe_query_oa_units *qoa = xe_oa_units(fd);
+	struct drm_xe_oa_unit *oau;
+	uint8_t *poau;
+
+	poau = (uint8_t *)&qoa->oa_units[0];
+	for (int i = 0; i < qoa->num_oa_units; i++) {
+		oau = (struct drm_xe_oa_unit *)poau;
+
+		for (int j = 0; j < oau->num_engines; j++) {
+			if (oau->eci[j].engine_class == ctx->eci.engine_class &&
+			    oau->eci[j].engine_instance == ctx->eci.engine_instance) {
+				ctx->hwe = &oau->eci[j];
+				ctx->oa_unit = oau;
+				return 0;
+			}
+		}
+
+		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
+	}
+
+	return -1;
+}
+
+int
+main(int argc, char *argv[])
+{
+	const struct option long_options[] = {
+		{"help",		no_argument, 0, 'h'},
+		{"device",		required_argument, 0, 'd'},
+		{"correlation-period",	required_argument, 0, 'c'},
+		{"perf-period",		required_argument, 0, 'p'},
+		{"metric",		required_argument, 0, 'm'},
+		{"counters",		no_argument, 0, 'C'},
+		{"output",		required_argument, 0, 'o'},
+		{"size",		required_argument, 0, 's'},
+		{"command-fifo",	required_argument, 0, 'f'},
+		{"cpu-clock",		required_argument, 0, 'k'},
+		{"engine-class",	required_argument, 0, 'e'},
+		{"engine-instance",	required_argument, 0, 'i'},
+		{0, 0, 0, 0}
+	};
+	const struct {
+		clock_t id;
+		const char *name;
+	} clock_names[] = {
+		{ CLOCK_BOOTTIME,	"boot" },
+		{ CLOCK_MONOTONIC,	"mono" },
+		{ CLOCK_MONOTONIC_RAW,	"mono_raw" },
+	};
+	double corr_period = 1.0, perf_period = 0.001;
+	const char *metric_name = NULL, *output_file = "xe_perf.record";
+	struct intel_xe_perf_metric_set *metric_set;
+	struct intel_xe_perf_record_timestamp_correlation initial_correlation;
+	struct timespec now;
+	uint64_t corr_period_ns, poll_time_ns;
+	uint32_t circular_size = 0;
+	int opt, dev_node_id = -1;
+	bool list_counters = false;
+	FILE *output = NULL;
+	struct recording_context ctx = {
+		.drm_fd = -1,
+		.perf_fd = -1,
+
+		.command_fifo = XE_PERF_RECORD_FIFO_PATH,
+		.command_fifo_fd = -1,
+
+		.eci = { DRM_XE_ENGINE_CLASS_RENDER, 0 },
+	};
+
+	while ((opt = getopt_long(argc, argv, "hc:d:p:m:Co:s:f:k:P:e:i:", long_options, NULL)) != -1) {
+		switch (opt) {
+		case 'h':
+			usage(argv[0]);
+			return EXIT_SUCCESS;
+		case 'c':
+			corr_period = atof(optarg);
+			break;
+		case 'd':
+			if (!strcmp(optarg, "list"))
+				dev_node_id = -2;
+			else
+				dev_node_id = atoi(optarg);
+			break;
+		case 'p':
+			perf_period = atof(optarg);
+			break;
+		case 'm':
+			metric_name = optarg;
+			break;
+		case 'C':
+			list_counters = true;
+			break;
+		case 'o':
+			output_file = optarg;
+			break;
+		case 's':
+			circular_size = MAX(8, atoi(optarg)) * 1024;
+			break;
+		case 'f':
+			ctx.command_fifo = optarg;
+			circular_size = 8 * 1024 * 1024;
+			break;
+		case 'k': {
+			bool found = false;
+			for (uint32_t i = 0; i < ARRAY_SIZE(clock_names); i++) {
+				if (!strcmp(clock_names[i].name, optarg)) {
+					correlation_clock_id = clock_names[i].id;
+					found = true;
+					break;
+				}
+			}
+			if (!found) {
+				fprintf(stderr, "Unknown clock name '%s'\n", optarg);
+				return EXIT_FAILURE;
+			}
+			break;
+		}
+		case 'e':
+			ctx.eci.engine_class = atoi(optarg);
+			break;
+		case 'i':
+			ctx.eci.engine_instance = atoi(optarg);
+			break;
+		default:
+			fprintf(stderr, "Internal error: "
+				"unexpected getopt value: %d\n", opt);
+			usage(argv[0]);
+			return EXIT_FAILURE;
+		}
+	}
+
+	if (dev_node_id == -2) {
+		print_intel_devices();
+		return EXIT_SUCCESS;
+	}
+
+	ctx.drm_fd = open_render_node(&ctx.devid, dev_node_id);
+	if (ctx.drm_fd < 0) {
+		fprintf(stderr, "Unable to open device.\n");
+		return EXIT_FAILURE;
+	}
+
+	xe_device_get(ctx.drm_fd);
+
+	ctx.devinfo = intel_get_device_info(ctx.devid);
+	if (!ctx.devinfo) {
+		fprintf(stderr, "No device info found.\n");
+		goto fail;
+	}
+
+	if (assign_oa_unit(ctx.drm_fd, &ctx) < 0) {
+		fprintf(stderr, "assign_oa_unit failed\n");
+		goto fail;
+	}
+
+	fprintf(stdout, "Device name=%s gen=%i id=0x%x oa_unit=%i gt=%i\n",
+		ctx.devinfo->codename, ctx.devinfo->graphics_ver, ctx.devid,
+		ctx.oa_unit->oa_unit_id, ctx.hwe->gt_id);
+
+	ctx.topology = get_topology(&ctx);
+	if (!ctx.topology) {
+		fprintf(stderr, "Unable to retrieve GPU topology\n");
+		goto fail;
+	}
+
+	ctx.perf = intel_xe_perf_for_fd(ctx.drm_fd, ctx.hwe->gt_id);
+	if (!ctx.perf) {
+		fprintf(stderr, "No perf data found.\n");
+		goto fail;
+	}
+
+	intel_xe_perf_load_perf_configs(ctx.perf, ctx.drm_fd);
+
+	if (metric_name) {
+		if (!strcmp(metric_name, "list")) {
+			print_metric_sets(ctx.perf);
+			return EXIT_SUCCESS;
+		}
+
+		igt_list_for_each_entry(metric_set, &ctx.perf->metric_sets, link) {
+			if (!strcasecmp(metric_set->symbol_name, metric_name)) {
+				ctx.metric_set = metric_set;
+				break;
+			}
+		}
+	}
+
+	if (list_counters) {
+		if (!ctx.metric_set)
+			print_metric_sets_counters(ctx.perf);
+		else
+			print_metric_set_counters(ctx.metric_set);
+		teardown_recording_context(&ctx);
+		return EXIT_SUCCESS;
+	}
+
+	if (!ctx.metric_set) {
+		if (!metric_name)
+			fprintf(stderr, "No metric set specified.\n");
+		else
+			fprintf(stderr, "Unknown metric set '%s'.\n", metric_name);
+		print_metric_sets(ctx.perf);
+		goto fail;
+	}
+
+	intel_xe_perf_load_perf_configs(ctx.perf, ctx.drm_fd);
+
+	ctx.oa_timestamp_frequency = get_device_oa_timestamp_frequency(ctx.drm_fd);
+	ctx.cs_timestamp_frequency = get_device_cs_timestamp_frequency(ctx.drm_fd);
+
+	signal(SIGINT, sigint_handler);
+
+	if (ctx.command_fifo) {
+		if (mkfifo(ctx.command_fifo,
+			   S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH) != 0) {
+			fprintf(stderr, "Unable to create command fifo '%s': %s\n",
+				ctx.command_fifo, strerror(errno));
+			goto fail;
+		}
+
+		ctx.command_fifo_fd = open(ctx.command_fifo, O_RDWR);
+		if (ctx.command_fifo_fd < 0) {
+			fprintf(stderr, "Unable to open command fifo '%s': %s\n",
+				ctx.command_fifo, strerror(errno));
+			goto fail;
+		}
+	}
+
+	if (circular_size) {
+		ctx.circular_buffer.allocated_size = circular_size;
+		ctx.circular_buffer.data = malloc(circular_size);
+		if (!ctx.circular_buffer.data) {
+			fprintf(stderr, "Unable to allocate circular buffer\n");
+			goto fail;
+		}
+
+		ctx.output_stream = fopencookie(&ctx.circular_buffer, "w+",
+						circular_buffer_functions);
+		if (!ctx.output_stream) {
+			fprintf(stderr, "Unable to create circular buffer\n");
+			goto fail;
+		}
+
+		if (!get_correlation_timestamps(&ctx, &initial_correlation)) {
+			fprintf(stderr, "Unable to correlation timestamps\n");
+			goto fail;
+		}
+
+		write_correlation_timestamps(&ctx, ctx.output_stream);
+		fprintf(stdout,
+			"Recoding in internal circular buffer.\n"
+			"Use xe-perf-control to snapshot into file.\n");
+	} else {
+		output = fopen(output_file, "w+");
+		if (!output) {
+			fprintf(stderr, "Unable to open output file '%s'\n",
+				output_file);
+			goto fail;
+		}
+
+		if (!write_version(output, &ctx) ||
+		    !write_header(output, &ctx) ||
+		    !write_topology(output, &ctx) ||
+		    !write_correlation_timestamps(&ctx, output)) {
+			fprintf(stderr, "Unable to write header in file '%s'\n",
+				output_file);
+			goto fail;
+		}
+
+		ctx.output_stream = output;
+		fprintf(stdout, "Writing recoding to %s\n", output_file);
+	}
+
+	if (ctx.metric_set->perf_oa_metrics_set == 0) {
+		fprintf(stderr,
+			"Unable to load performance configuration, consider running:\n"
+			"   sysctl dev.xe.perf_stream_paranoid=0\n");
+		goto fail;
+	}
+
+	fprintf(stdout, "Using correlation clock: %s\n",
+		get_correlation_clock_name(correlation_clock_id));
+
+	ctx.oa_exponent = oa_exponent_for_period(ctx.oa_timestamp_frequency, perf_period);
+	fprintf(stdout, "Opening perf stream with metric_id=%"PRIu64" oa_exponent=%u oa_format=%u\n",
+		ctx.metric_set->perf_oa_metrics_set, ctx.oa_exponent,
+		ctx.metric_set->perf_oa_format);
+
+	ctx.perf_fd = perf_open(&ctx);
+	if (ctx.perf_fd < 0) {
+		fprintf(stderr, "Unable to open xe oa stream: %s\n",
+			strerror(errno));
+		goto fail;
+	}
+
+	corr_period_ns = corr_period * 1000000000ul;
+	poll_time_ns = corr_period_ns;
+
+	while (!quit) {
+		struct pollfd pollfd[2] = {
+			{         ctx.perf_fd, POLLIN, 0 },
+			{ ctx.command_fifo_fd, POLLIN, 0 },
+		};
+		uint64_t elapsed_ns;
+		int ret;
+
+		igt_gettime(&now);
+		ret = poll(pollfd, ctx.command_fifo_fd != -1 ? 2 : 1, poll_time_ns / 1000000);
+		if (ret < 0 && errno != EINTR) {
+			fprintf(stderr, "Failed to poll xe-oa stream: %s\n",
+				strerror(errno));
+			break;
+		}
+
+		if (ret > 0) {
+			if (pollfd[0].revents & POLLIN) {
+				if (!write_perf_data(ctx.output_stream, &ctx)) {
+					fprintf(stderr, "Failed to write xe-oa data: %s\n",
+						strerror(errno));
+					break;
+				}
+			}
+
+			if (pollfd[1].revents & POLLIN) {
+				read_command_file(&ctx);
+			}
+		}
+
+		elapsed_ns = igt_nsec_elapsed(&now);
+		if (elapsed_ns > poll_time_ns) {
+			poll_time_ns = corr_period_ns;
+			if (!write_correlation_timestamps(&ctx, ctx.output_stream)) {
+				fprintf(stderr,
+					"Failed to write xe timestamp correlation data: %s\n",
+					strerror(errno));
+				break;
+			}
+		} else {
+			poll_time_ns -= elapsed_ns;
+		}
+	}
+
+	fprintf(stdout, "Exiting...\n");
+
+	if (!write_perf_data(ctx.output_stream, &ctx)) {
+		fprintf(stderr, "Failed to write xe-oa data: %s\n",
+			strerror(errno));
+	}
+
+	if (!write_correlation_timestamps(&ctx, ctx.output_stream)) {
+		fprintf(stderr,
+			"Failed to write final xe timestamp correlation data: %s\n",
+			strerror(errno));
+	}
+
+	teardown_recording_context(&ctx);
+
+	return EXIT_SUCCESS;
+
+ fail:
+	teardown_recording_context(&ctx);
+
+	return EXIT_FAILURE;
+}
diff --git a/tools/xe-perf/xe_perf_recorder_commands.h b/tools/xe-perf/xe_perf_recorder_commands.h
new file mode 100644
index 0000000000..528813d2dc
--- /dev/null
+++ b/tools/xe-perf/xe_perf_recorder_commands.h
@@ -0,0 +1,31 @@
+/* SPDX-License-Identifier: MIT */
+/*
+ * Copyright © 2023 Intel Corporation
+ */
+
+#ifndef XE_PERF_RECORDER_COMMANDS_H
+#define XE_PERF_RECORDER_COMMANDS_H
+
+#include <stdint.h>
+
+#define XE_PERF_RECORD_FIFO_PATH "/tmp/.xe-perf-record"
+
+enum recorder_command {
+	RECORDER_COMMAND_DUMP = 1,
+	RECORDER_COMMAND_QUIT,
+};
+
+struct recorder_command_base {
+	uint32_t command;
+	uint32_t size; /* size of recorder_command_base + dump in bytes */
+};
+
+/*
+ The dump after the recorder_command_base header:
+
+struct recorder_command_dump {
+	uint8_t path[0];
+};
+*/
+
+#endif
-- 
2.41.0



More information about the igt-dev mailing list