[Intel-gfx] [PATCH v4 4/4] drm/i915/icl: Add Multi-segmented gamma support

Ville Syrjälä ville.syrjala at linux.intel.com
Thu May 9 13:40:50 UTC 2019


On Thu, May 09, 2019 at 01:05:26AM +0530, Shashank Sharma wrote:
> ICL introduces a new gamma correction mode in display engine, called
> multi-segmented-gamma mode. This mode allows users to program the
> darker region of the gamma curve with sueprfine precision. An
> example use case for this is HDR curves (like PQ ST-2084).
> 
> If we plot a gamma correction curve from value range between 0.0 to 1.0,
> ICL's multi-segment has 3 different sections:
> - superfine segment: 9 values, ranges between 0 - 1/(128 * 256)
> - fine segment: 257 values, ranges between 0 - 1/(128)
> - corase segment: 257 values, ranges between 0 - 1
> 
> This patch:
> - Changes gamma LUTs size for ICL/GEN11 to 262144 entries (8 * 128 * 256),
>   so that userspace can program with highest precision supported.
> - Changes default gamma mode (non-legacy) to multi-segmented-gamma mode.
> - Adds functions to program/detect multi-segment gamma.
> 
> V2: Addressed review comments from Ville
>     - separate function for superfine and fine segments.
>     - remove enum for segments.
>     - reuse last entry of the LUT as gc_max value.
>     - replace if() ....cond with switch...case in icl_load_luts.
>     - add an entry variable, instead of 'word'
> 
> V3: Addressed review comments from Ville
>     - extra newline
>     - s/entry/color/
>     - remove LUT size checks
>     - program ilk_lut_12p4_ldw value before ilk_lut_12p4_udw
>     - Change the comments in description of fine and coarse segments,
>       and try to make more sense.
>     - use 8 * 128 instead of 1024
>     - add 1 entry in LUT for GCMAX
> 
> V4: Addressed review comments from Ville
>     - Remove unused macro
>     - missing shift entry in blue
>     - pick correct entry for GCMAX
>     - Added Ville's R-B
> Note: Tested and confirmed the programming sequence of odd/even
> registers in the HW. The correct sequence should be:
> 	ilk_lut_12p4_udw
> 	ilk_lut_12p4_ldw
> 
> Cc: Ville Syrjälä <ville.syrjala at linux.intel.com>
> Cc: Maarten Lankhorst <maarten.lankhorst at linux.intel.com>
> Cc: Daniel Vetter <daniel.vetter at ffwll.ch>
> 
> Reviewed-by: Ville Syrjälä <ville.syrjala at linux.intel.com>
> Suggested-by: Ville Syrjälä <ville.syrjala at linux.intel.com>
> Signed-off-by: Shashank Sharma <shashank.sharma at intel.com>
> Signed-off-by: Uma Shankar <uma.shankar at intel.com>
> ---
>  drivers/gpu/drm/i915/i915_pci.c    |   2 +-
>  drivers/gpu/drm/i915/intel_color.c | 126 ++++++++++++++++++++++++++++-
>  2 files changed, 123 insertions(+), 5 deletions(-)
> 
> diff --git a/drivers/gpu/drm/i915/i915_pci.c b/drivers/gpu/drm/i915/i915_pci.c
> index d7c07a947497..24305238b4ea 100644
> --- a/drivers/gpu/drm/i915/i915_pci.c
> +++ b/drivers/gpu/drm/i915/i915_pci.c
> @@ -747,7 +747,7 @@ static const struct intel_device_info intel_cannonlake_info = {
>  	GEN(11), \
>  	.ddb_size = 2048, \
>  	.has_logical_ring_elsq = 1, \
> -	.color = { .degamma_lut_size = 33, .gamma_lut_size = 1024 }
> +	.color = { .degamma_lut_size = 33, .gamma_lut_size = 262145 }
>  
>  static const struct intel_device_info intel_icelake_11_info = {
>  	GEN11_FEATURES,
> diff --git a/drivers/gpu/drm/i915/intel_color.c b/drivers/gpu/drm/i915/intel_color.c
> index 6c341bea514c..22ccbeacbee2 100644
> --- a/drivers/gpu/drm/i915/intel_color.c
> +++ b/drivers/gpu/drm/i915/intel_color.c
> @@ -41,6 +41,7 @@
>  #define CTM_COEFF_ABS(coeff)		((coeff) & (CTM_COEFF_SIGN - 1))
>  
>  #define LEGACY_LUT_LENGTH		256
> +
>  /*
>   * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
>   * format). This macro takes the coefficient we want transformed and the
> @@ -767,6 +768,116 @@ static void glk_load_luts(const struct intel_crtc_state *crtc_state)
>  	}
>  }
>  
> +/* ilk+ "12.4" interpolated format (high 10 bits) */
> +static u32 ilk_lut_12p4_ldw(const struct drm_color_lut *color)
> +{
> +	return (color->red >> 6) << 20 | (color->green >> 6) << 10 |
> +		(color->blue >> 6);
> +}
> +
> +/* ilk+ "12.4" interpolated format (low 6 bits) */
> +static u32 ilk_lut_12p4_udw(const struct drm_color_lut *color)
> +{
> +	return (color->red & 0x3f) << 24 | (color->green & 0x3f) << 14 |
> +		(color->blue & 0x3f << 4);

Wrong placement of the closing paren.

> +}
> +
> +static void
> +icl_load_gcmax(const struct intel_crtc_state *crtc_state,
> +	       const struct drm_color_lut *color)
> +{
> +	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
> +	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
> +	enum pipe pipe = crtc->pipe;
> +
> +	/* Fixme: LUT entries are 16 bit only, so we can prog 0xFFFF max */
> +	I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), color->red);
> +	I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), color->green);
> +	I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), color->blue);
> +}
> +
> +static void
> +icl_program_gamma_superfine_segment(const struct intel_crtc_state *crtc_state)
> +{
> +	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
> +	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
> +	const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
> +	const struct drm_color_lut *lut = blob->data;
> +	enum pipe pipe = crtc->pipe;
> +	u32 i;
> +
> +	/*
> +	 * Every entry in the multi-segment LUT is corresponding to a superfine
> +	 * segment step which is 1/(8 * 128 * 256).
> +	 *
> +	 * Superfine segment has 9 entries, corresponding to values
> +	 * 0, 1/(8 * 128 * 256), 2/(8 * 128 * 256) .... 8/(8 * 128 * 256).
> +	 */
> +	I915_WRITE(PREC_PAL_MULTI_SEG_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
> +
> +	for (i = 0; i < 9; i++) {
> +		const struct drm_color_lut *entry = &lut[i];
> +
> +		I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
> +			   ilk_lut_12p4_udw(entry));
> +		I915_WRITE(PREC_PAL_MULTI_SEG_DATA(pipe),
> +			   ilk_lut_12p4_ldw(entry));

If this is correct then the functions are named wrong.

> +	}
> +}
> +
> +static void
> +icl_program_gamma_multi_segment(const struct intel_crtc_state *crtc_state)
> +{
> +	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
> +	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
> +	const struct drm_property_blob *blob = crtc_state->base.gamma_lut;
> +	const struct drm_color_lut *lut = blob->data;
> +	const struct drm_color_lut *entry;
> +	enum pipe pipe = crtc->pipe;
> +	u32 i;
> +
> +	/*
> +	 *
> +	 * Program Fine segment (let's call it seg2)...
> +	 *
> +	 * Fine segment's step is 1/(128 * 256) ie 1/(128 * 256),  2/(128*256)
> +	 * ... 256/(128*256). So in order to program fine segment of LUT we
> +	 * need to pick every 8'th entry in LUT, and program 256 indexes.
> +	 *
> +	 * PAL_PREC_INDEX[0] and PAL_PREC_INDEX[1] map to seg2[1],
> +	 * with seg2[0] being unused by the hardware.
> +	 */
> +	I915_WRITE(PREC_PAL_INDEX(pipe), PAL_PREC_AUTO_INCREMENT);
> +	for (i = 1; i < 257; i++) {
> +		entry = &lut[i * 8];
> +		I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
> +		I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
> +	}
> +
> +	/*
> +	 * Program Coarse segment (let's call it seg3)...
> +	 *
> +	 * Coarse segment's starts from index 0 and it's step is 1/256 ie 0,
> +	 * 1/256, 2/256 ...256/256. As per the description of each entry in LUT
> +	 * above, we need to pick every (8 * 128)th entry in LUT, and
> +	 * program 256 of those.
> +	 *
> +	 * Spec is not very clear about if entries seg3[0] and seg3[1] are
> +	 * being used or not, but we still need to program these to advance
> +	 * the index.
> +	 */
> +	for (i = 0; i < 256; i++) {
> +		entry = &lut[i * 8 * 128];
> +		I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_udw(entry));
> +		I915_WRITE(PREC_PAL_DATA(pipe), ilk_lut_12p4_ldw(entry));
> +	}
> +
> +	/* The last entry in the LUT is to be programmed in GCMAX */
> +	entry = &lut[256 * 8 * 128];
> +	icl_load_gcmax(crtc_state, entry);
> +	ivb_load_lut_ext_max(crtc);
> +}
> +
>  static void icl_load_luts(const struct intel_crtc_state *crtc_state)
>  {
>  	const struct drm_property_blob *gamma_lut = crtc_state->base.gamma_lut;
> @@ -775,10 +886,17 @@ static void icl_load_luts(const struct intel_crtc_state *crtc_state)
>  	if (crtc_state->base.degamma_lut)
>  		glk_load_degamma_lut(crtc_state);
>  
> -	if ((crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) ==
> -	    GAMMA_MODE_MODE_8BIT) {
> +	switch (crtc_state->gamma_mode & GAMMA_MODE_MODE_MASK) {
> +	case GAMMA_MODE_MODE_8BIT:
>  		i9xx_load_luts(crtc_state);
> -	} else {
> +		break;
> +
> +	case GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED:
> +		icl_program_gamma_superfine_segment(crtc_state);
> +		icl_program_gamma_multi_segment(crtc_state);
> +		break;
> +
> +	default:
>  		bdw_load_lut_10(crtc, gamma_lut, PAL_PREC_INDEX_VALUE(0));
>  		ivb_load_lut_ext_max(crtc);
>  	}
> @@ -1209,7 +1327,7 @@ static u32 icl_gamma_mode(const struct intel_crtc_state *crtc_state)
>  	    crtc_state_is_legacy_gamma(crtc_state))
>  		gamma_mode |= GAMMA_MODE_MODE_8BIT;
>  	else
> -		gamma_mode |= GAMMA_MODE_MODE_10BIT;
> +		gamma_mode |= GAMMA_MODE_MODE_12BIT_MULTI_SEGMENTED;
>  
>  	return gamma_mode;
>  }
> -- 
> 2.17.1

-- 
Ville Syrjälä
Intel


More information about the Intel-gfx mailing list