[Mesa-dev] [PATCH (gles3) 15/20] glsl: Add lowering pass for GLSL ES 3.00 pack/unpack operations (v2)

Matt Turner mattst88 at gmail.com
Tue Jan 22 19:36:43 PST 2013


On Mon, Jan 21, 2013 at 12:49 AM, Chad Versace
<chad.versace at linux.intel.com> wrote:
> Lower them to arithmetic and bit manipulation expressions.
>
> v2:
>   - Rewrite using ir_builder. [for idr]
>   - In lowering packHalf2x16, don't truncate subnormal float16 values to zero.
>     And round to even rather than to zero.  [for stereotype441]
>
> CC: Ian Romanick <idr at freedesktop.org>
> CC: Paul Berry <stereotype441 at gmail.com>
> Signed-off-by: Chad Versace <chad.versace at linux.intel.com>
> ---
>  src/glsl/Makefile.sources           |    1 +
>  src/glsl/ir_optimization.h          |   20 +
>  src/glsl/lower_packing_builtins.cpp | 1043 +++++++++++++++++++++++++++++++++++
>  3 files changed, 1064 insertions(+)
>  create mode 100644 src/glsl/lower_packing_builtins.cpp
>
> diff --git a/src/glsl/Makefile.sources b/src/glsl/Makefile.sources
> index 2227c5e..ef71715 100644
> --- a/src/glsl/Makefile.sources
> +++ b/src/glsl/Makefile.sources
> @@ -59,6 +59,7 @@ LIBGLSL_FILES = \
>         $(GLSL_SRCDIR)/lower_mat_op_to_vec.cpp \
>         $(GLSL_SRCDIR)/lower_noise.cpp \
>         $(GLSL_SRCDIR)/lower_packed_varyings.cpp \
> +       $(GLSL_SRCDIR)/lower_packing_builtins.cpp \
>         $(GLSL_SRCDIR)/lower_texture_projection.cpp \
>         $(GLSL_SRCDIR)/lower_variable_index_to_cond_assign.cpp \
>         $(GLSL_SRCDIR)/lower_vec_index_to_cond_assign.cpp \
> diff --git a/src/glsl/ir_optimization.h b/src/glsl/ir_optimization.h
> index 6b95191..ac90b87 100644
> --- a/src/glsl/ir_optimization.h
> +++ b/src/glsl/ir_optimization.h
> @@ -37,6 +37,25 @@
>  #define MOD_TO_FRACT       0x20
>  #define INT_DIV_TO_MUL_RCP 0x40
>
> +/**
> + * \see class lower_packing_builtins_visitor
> + */
> +enum lower_packing_builtins_op {
> +   LOWER_PACK_UNPACK_NONE               = 0x0000,
> +
> +   LOWER_PACK_SNORM_2x16                = 0x0001,
> +   LOWER_UNPACK_SNORM_2x16              = 0x0002,
> +
> +   LOWER_PACK_UNORM_2x16                = 0x0004,
> +   LOWER_UNPACK_UNORM_2x16              = 0x0008,
> +
> +   LOWER_PACK_HALF_2x16                 = 0x0010,
> +   LOWER_UNPACK_HALF_2x16               = 0x0020,
> +
> +   LOWER_PACK_HALF_2x16_TO_SPLIT        = 0x0040,
> +   LOWER_UNPACK_HALF_2x16_TO_SPLIT      = 0x0080,
> +};
> +
>  bool do_common_optimization(exec_list *ir, bool linked,
>                             bool uniform_locations_assigned,
>                             unsigned max_unroll_iterations);
> @@ -74,6 +93,7 @@ bool lower_variable_index_to_cond_assign(exec_list *instructions,
>  bool lower_quadop_vector(exec_list *instructions, bool dont_lower_swz);
>  bool lower_clip_distance(gl_shader *shader);
>  void lower_output_reads(exec_list *instructions);
> +bool lower_packing_builtins(exec_list *instructions, int op_mask);
>  void lower_ubo_reference(struct gl_shader *shader, exec_list *instructions);
>  void lower_packed_varyings(void *mem_ctx, unsigned location_base,
>                             unsigned locations_used, ir_variable_mode mode,
> diff --git a/src/glsl/lower_packing_builtins.cpp b/src/glsl/lower_packing_builtins.cpp
> new file mode 100644
> index 0000000..49176cc
> --- /dev/null
> +++ b/src/glsl/lower_packing_builtins.cpp
> @@ -0,0 +1,1043 @@
> +/*
> + * Copyright © 2012 Intel Corporation
> + *
> + * Permission is hereby granted, free of charge, to any person obtaining a
> + * copy of this software and associated documentation files (the "Software"),
> + * to deal in the Software without restriction, including without limitation
> + * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> + * and/or sell copies of the Software, and to permit persons to whom the
> + * Software is furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice (including the next
> + * paragraph) shall be included in all copies or substantial portions of the
> + * Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
> + * DEALINGS IN THE SOFTWARE.
> + */
> +
> +#include "ir.h"
> +#include "ir_builder.h"
> +#include "ir_optimization.h"
> +#include "ir_rvalue_visitor.h"
> +
> +namespace {
> +
> +using namespace ir_builder;
> +
> +/**
> + * A visitor that lowers built-in floating-point pack/unpack expressions
> + * such packSnorm2x16.
> + */
> +class lower_packing_builtins_visitor : public ir_rvalue_visitor {
> +public:
> +   /**
> +    * \param op_mask is a bitmask of `enum lower_packing_builtins_op`
> +    */
> +   explicit lower_packing_builtins_visitor(int op_mask)
> +      : op_mask(op_mask),
> +        progress(false)
> +   {
> +      /* Mutually exclusive options. */
> +      assert(!((op_mask & LOWER_PACK_HALF_2x16) &&
> +               (op_mask & LOWER_PACK_HALF_2x16_TO_SPLIT)));
> +
> +      assert(!((op_mask & LOWER_UNPACK_HALF_2x16) &&
> +               (op_mask & LOWER_UNPACK_HALF_2x16_TO_SPLIT)));
> +   }
> +
> +   virtual ~lower_packing_builtins_visitor()
> +   {
> +      assert(factory.instructions == NULL ||
> +             factory.instructions->is_empty());
> +
> +      delete factory.instructions;
> +   }
> +
> +   bool get_progress() { return progress; }
> +
> +   void handle_rvalue(ir_rvalue **rvalue)
> +   {
> +      if (!*rvalue)
> +        return;
> +
> +      ir_expression *expr = (*rvalue)->as_expression();
> +      if (!expr)
> +        return;
> +
> +      enum lower_packing_builtins_op lowering_op =
> +         choose_lowering_op(expr->operation);
> +
> +      if (lowering_op == LOWER_PACK_UNPACK_NONE)
> +         return;
> +
> +      setup_factory(ralloc_parent(expr));
> +
> +      ir_rvalue *op0 = expr->operands[0];
> +      ralloc_steal(factory.mem_ctx, op0);
> +
> +      switch (lowering_op) {
> +      case LOWER_PACK_SNORM_2x16:
> +         *rvalue = lower_pack_snorm_2x16(op0);
> +         break;
> +      case LOWER_PACK_UNORM_2x16:
> +         *rvalue = lower_pack_unorm_2x16(op0);
> +         break;
> +      case LOWER_PACK_HALF_2x16:
> +         *rvalue = lower_pack_half_2x16(op0);
> +         break;
> +      case LOWER_PACK_HALF_2x16_TO_SPLIT:
> +         *rvalue = split_pack_half_2x16(op0);
> +         break;
> +      case LOWER_UNPACK_SNORM_2x16:
> +         *rvalue = lower_unpack_snorm_2x16(op0);
> +         break;
> +      case LOWER_UNPACK_UNORM_2x16:
> +         *rvalue = lower_unpack_unorm_2x16(op0);
> +         break;
> +      case LOWER_UNPACK_HALF_2x16:
> +         *rvalue = lower_unpack_half_2x16(op0);
> +         break;
> +      case LOWER_UNPACK_HALF_2x16_TO_SPLIT:
> +         *rvalue = split_unpack_half_2x16(op0);
> +         break;
> +      case LOWER_PACK_UNPACK_NONE:
> +         assert(!"not reached");
> +         break;
> +      }
> +
> +      teardown_factory();
> +      progress = true;
> +   }
> +
> +private:
> +   const int op_mask;
> +   bool progress;
> +   ir_factory factory;
> +
> +   /**
> +    * Determine the needed lowering operation by filtering \a expr_op
> +    * through \ref op_mask.
> +    */
> +   enum lower_packing_builtins_op
> +   choose_lowering_op(ir_expression_operation expr_op)
> +   {
> +      /* C++ regards int and enum as fundamentally different types.
> +       * So, we can't simply return from each case; we must cast the return
> +       * value.
> +       */
> +      int result;
> +
> +      switch (expr_op) {
> +      case ir_unop_pack_snorm_2x16:
> +         result = op_mask & LOWER_PACK_SNORM_2x16;
> +         break;
> +      case ir_unop_pack_unorm_2x16:
> +         result = op_mask & LOWER_PACK_UNORM_2x16;
> +         break;
> +      case ir_unop_pack_half_2x16:
> +         result = op_mask & (LOWER_PACK_HALF_2x16 | LOWER_PACK_HALF_2x16_TO_SPLIT);
> +         break;
> +      case ir_unop_unpack_snorm_2x16:
> +         result = op_mask & LOWER_UNPACK_SNORM_2x16;
> +         break;
> +      case ir_unop_unpack_unorm_2x16:
> +         result = op_mask & LOWER_UNPACK_UNORM_2x16;
> +         break;
> +      case ir_unop_unpack_half_2x16:
> +         result = op_mask & (LOWER_UNPACK_HALF_2x16 | LOWER_UNPACK_HALF_2x16_TO_SPLIT);
> +         break;
> +      default:
> +         result = LOWER_PACK_UNPACK_NONE;
> +         break;
> +      }
> +
> +      return static_cast<enum lower_packing_builtins_op>(result);
> +   }
> +
> +   void
> +   setup_factory(void *mem_ctx)
> +   {
> +      assert(factory.mem_ctx == NULL);
> +      factory.mem_ctx = mem_ctx;
> +
> +      /* Avoid making a new list for each call to handle_rvalue(). Make a
> +       * single list and reuse it.
> +       */
> +      if (factory.instructions == NULL) {
> +         factory.instructions = new(NULL) exec_list();
> +      } else {
> +         assert(factory.instructions->is_empty());
> +      }
> +   }
> +
> +   void
> +   teardown_factory()
> +   {
> +      base_ir->insert_before(factory.instructions);
> +      assert(factory.instructions->is_empty());
> +      factory.mem_ctx = NULL;
> +   }
> +
> +   template <typename T>
> +   ir_constant*
> +   constant(T x)
> +   {
> +      return factory.constant(x);
> +   }
> +
> +   /**
> +    * \brief Pack two uint16's into a single uint32.
> +    *
> +    * Interpret the given uvec2 as a uint16 pair. Pack the pair into a uint32
> +    * where the least significant bits specify the first element of the pair.
> +    * Return the uint32.
> +    */
> +   ir_rvalue*
> +   pack_uvec2_to_uint(ir_rvalue *uvec2_rval)
> +   {
> +      assert(uvec2_rval->type == glsl_type::uvec2_type);
> +
> +      /* uvec2 u = UVEC2_RVAL; */
> +      ir_variable *u = factory.make_temp(glsl_type::uvec2_type,
> +                                          "tmp_pack_uvec2_to_uint");
> +      factory.emit(assign(u, uvec2_rval));
> +
> +      /* return (u.y << 16) | (u.x & 0xffff); */
> +      return bit_or(lshift(swizzle_y(u), constant(16u)),
> +                    bit_and(swizzle_x(u), constant(0xffffu)));
> +   }
> +
> +   /**
> +    * \brief Unpack a uint32 into two uint16's.
> +    *
> +    * Interpret the given uint32 as a uint16 pair where the uint32's least
> +    * significant bits specify the pair's first element. Return the uint16
> +    * pair as a uvec2.
> +    */
> +   ir_rvalue*
> +   unpack_uint_to_uvec2(ir_rvalue *uint_rval)
> +   {
> +      assert(uint_rval->type == glsl_type::uint_type);
> +
> +      /* uint u = UINT_RVAL; */
> +      ir_variable *u = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_unpack_uint_to_uvec2_u");
> +      factory.emit(assign(u, uint_rval));
> +
> +      /* uvec2 u2; */
> +      ir_variable *u2 = factory.make_temp(glsl_type::uvec2_type,
> +                                           "tmp_unpack_uint_to_uvec2_u2");
> +
> +      /* u2.x = u & 0xffffu; */
> +      factory.emit(assign(u2, bit_and(u, constant(0xffffu)), WRITEMASK_X));
> +
> +      /* u2.y = u >> 16u; */
> +      factory.emit(assign(u2, rshift(u, constant(16u)), WRITEMASK_Y));
> +
> +      return deref(u2).val;
> +   }
> +
> +   /**
> +    * \brief Lower a packSnorm2x16 expression.
> +    *
> +    * \param vec2_rval is packSnorm2x16's input
> +    * \return packSnorm2x16's output as a uint rvalue
> +    */
> +   ir_rvalue*
> +   lower_pack_snorm_2x16(ir_rvalue *vec2_rval)
> +   {
> +      /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    hihgp uint packSnorm2x16(vec2 v)

high.

> +       *    --------------------------------
> +       *    First, converts each component of the normalized floating-point value
> +       *    v into 16-bit integer values. Then, the results are packed into the
> +       *    returned 32-bit unsigned integer.
> +       *
> +       *    The conversion for component c of v to fixed point is done as
> +       *    follows:
> +       *
> +       *       packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)
> +       *
> +       *    The first component of the vector will be written to the least
> +       *    significant bits of the output; the last component will be written to
> +       *    the most significant bits.
> +       *
> +       * This function generates IR that approximates the following pseudo-GLSL:
> +       *
> +       *     return pack_uvec2_to_uint(
> +       *         uvec2(ivec2(
> +       *           round(clamp(VEC2_RVALUE, -1.0f, 1.0f) * 32767.0f))));
> +       *
> +       * It is necessary to first convert the vec2 to ivec2 rather than directly
> +       * converting vec2 to uvec2 because the latter conversion is undefined.
> +       * From page 56 (62 of pdf) of the GLSL ES 3.00 spec: "It is undefined to
> +       * convert a negative floating point value to an uint".
> +       */
> +      assert(vec2_rval->type == glsl_type::vec2_type);
> +
> +      ir_rvalue *result = pack_uvec2_to_uint(
> +            i2u(f2i(round_even(mul(clamp(vec2_rval,
> +                                         constant(-1.0f),
> +                                         constant(1.0f)),
> +                                   constant(32767.0f))))));
> +
> +      assert(result->type == glsl_type::uint_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Lower an unpackSnorm2x16 expression.
> +    *
> +    * \param uint_rval is unpackSnorm2x16's input
> +    * \return unpackSnorm2x16's output as a vec2 rvalue
> +    */
> +   ir_rvalue*
> +   lower_unpack_snorm_2x16(ir_rvalue *uint_rval)
> +   {
> +      /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    highp vec2 unpackSnorm2x16 (highp uint p)
> +       *    -----------------------------------------
> +       *    First, unpacks a single 32-bit unsigned integer p into a pair of
> +       *    16-bit unsigned integers. Then, each component is converted to
> +       *    a normalized floating-point value to generate the returned
> +       *    two-component vector.
> +       *
> +       *    The conversion for unpacked fixed-point value f to floating point is
> +       *    done as follows:
> +       *
> +       *       unpackSnorm2x16: clamp(f / 32767.0, -1,+1)
> +       *
> +       *    The first component of the returned vector will be extracted from the
> +       *    least significant bits of the input; the last component will be
> +       *    extracted from the most significant bits.
> +       *
> +       * This function generates IR that approximates the following pseudo-GLSL:
> +       *
> +       *    return clamp(
> +       *       ((ivec2(unpack_uint_to_uvec2(UINT_RVALUE)) << 16) >> 16) / 32767.0f,
> +       *       -1.0f, 1.0f);
> +       *
> +       * The above IR may appear unnecessarily complex, but the intermediate
> +       * conversion to ivec2 and the bit shifts are necessary to correctly unpack
> +       * negative floats.
> +       *
> +       * To see why, consider packing and then unpacking vec2(-1.0, 0.0).
> +       * packSnorm2x16 encodes -1.0 as the int16 0xffff. During unpacking, we
> +       * place that int16 into an int32, which results in the *positive* integer
> +       * 0x0000ffff.  The int16's sign bit becomes, in the int32, the rather
> +       * unimportant bit 16. We must now extend the int16's sign bit into bits
> +       * 17-32, which is accomplished by left-shifting then right-shifting.
> +       */
> +
> +      assert(uint_rval->type == glsl_type::uint_type);
> +
> +      ir_rvalue *result =
> +        clamp(div(i2f(rshift(lshift(u2i(unpack_uint_to_uvec2(uint_rval)),
> +                                    constant(16)),

constant(16u) instead of constant(16)? All other cases use 16u.

> +                             constant(16u))),
> +                  constant(32767.0f)),
> +              constant(-1.0f),
> +              constant(1.0f));
> +
> +      assert(result->type == glsl_type::vec2_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Lower a packUnorm2x16 expression.
> +    *
> +    * \param vec2_rval is packUnorm2x16's input
> +    * \return packUnorm2x16's as a uint rvalue

Missing the word 'output'.

> +    */
> +   ir_rvalue*
> +   lower_pack_unorm_2x16(ir_rvalue *vec2_rval)
> +   {
> +      /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    highp uint packUnorm2x16 (vec2 v)
> +       *    ---------------------------------
> +       *    First, converts each component of the normalized floating-point value
> +       *    v into 16-bit integer values. Then, the results are packed into the
> +       *    returned 32-bit unsigned integer.
> +       *
> +       *    The conversion for component c of v to fixed point is done as
> +       *    follows:
> +       *
> +       *       packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
> +       *
> +       *    The first component of the vector will be written to the least
> +       *    significant bits of the output; the last component will be written to
> +       *    the most significant bits.
> +       *
> +       * This function generates IR that approximates the following pseudo-GLSL:
> +       *
> +       *     return pack_uvec2_to_uint(uvec2(
> +       *                round(clamp(VEC2_RVALUE, 0.0f, 1.0f) * 65535.0f)));
> +       *
> +       * Here it is safe to directly convert the vec2 to uvec2 because the the
> +       * vec2 has been clamped to a non-negative range.
> +       */
> +
> +      assert(vec2_rval->type == glsl_type::vec2_type);
> +
> +      ir_rvalue *result = pack_uvec2_to_uint(
> +         f2u(round_even(mul(saturate(vec2_rval), constant(65535.0f)))));
> +
> +      assert(result->type == glsl_type::uint_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Lower an unpackUnorm2x16 expression.
> +    *
> +    * \param uint_rval is unpackUnorm2x16's input
> +    * \return unpackUnorm2x16's output as a vec2 rvalue
> +    */
> +   ir_rvalue*
> +   lower_unpack_unorm_2x16(ir_rvalue *uint_rval)
> +   {
> +      /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    highp vec2 unpackUnorm2x16 (highp uint p)
> +       *    -----------------------------------------
> +       *    First, unpacks a single 32-bit unsigned integer p into a pair of
> +       *    16-bit unsigned integers. Then, each component is converted to
> +       *    a normalized floating-point value to generate the returned
> +       *    two-component vector.
> +       *
> +       *    The conversion for unpacked fixed-point value f to floating point is
> +       *    done as follows:
> +       *
> +       *       unpackUnorm2x16: f / 65535.0
> +       *
> +       *    The first component of the returned vector will be extracted from the
> +       *    least significant bits of the input; the last component will be
> +       *    extracted from the most significant bits.
> +       *
> +       * This function generates IR that approximates the following pseudo-GLSL:
> +       *
> +       *     return vec2(unpack_uint_to_uvec2(UINT_RVALUE)) / 65535.0;
> +       */
> +
> +      assert(uint_rval->type == glsl_type::uint_type);
> +
> +      ir_rvalue *result = div(u2f(unpack_uint_to_uvec2(uint_rval)),
> +                              constant(65535.0f));
> +
> +      assert(result->type == glsl_type::vec2_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Lower the component-wise calculation of packHalf2x16.
> +    *
> +    * \param f_rval is one component of packHafl2x16's input
> +    * \param e_rval is the unshifted exponent bits of f_rval
> +    * \param m_rval is the unshifted mantissa bits of f_rval
> +    *
> +    * \return a uint rvalue that encodes a float16 in its lower 16 bits
> +    */
> +   ir_rvalue*
> +   pack_half_1x16_nosign(ir_rvalue *f_rval,
> +                         ir_rvalue *e_rval,
> +                         ir_rvalue *m_rval)
> +   {
> +      assert(e_rval->type == glsl_type::uint_type);
> +      assert(m_rval->type == glsl_type::uint_type);
> +
> +      /* uint u16; */
> +      ir_variable *u16 = factory.make_temp(glsl_type::uint_type,
> +                                           "tmp_pack_half_1x16_u16");
> +
> +      /* float f = FLOAT_RVAL; */
> +      ir_variable *f = factory.make_temp(glsl_type::float_type,
> +                                          "tmp_pack_half_1x16_f");
> +      factory.emit(assign(f, f_rval));
> +
> +      /* uint e = E_RVAL; */
> +      ir_variable *e = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_pack_half_1x16_e");
> +      factory.emit(assign(e, e_rval));
> +
> +      /* uint m = M_RVAL; */
> +      ir_variable *m = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_pack_half_1x16_m");
> +      factory.emit(assign(m, m_rval));
> +
> +      /* Preliminaries
> +       * -------------
> +       *
> +       * For a float16, the bit layout is:
> +       *
> +       *   sign:     15
> +       *   exponent: 10:14
> +       *   mantissa: 0:9
> +       *
> +       * Let f16 be a float16 value. The sign, exponent, and mantissa
> +       * determine its value thus:
> +       *
> +       *   if e16 = 0 and m16 = 0, then zero:       (-1)^s16 * 0                               (1)
> +       *   if e16 = 0 and m16!= 0, then subnormal:  (-1)^s16 * 2^(e16 - 14) * (m16 / 2^10)     (2)
> +       *   if 0 < e16 < 31, then normal:            (-1)^s16 * 2^(e16 - 15) * (1 + m16 / 2^10) (3)
> +       *   if e16 = 31 and m16 = 0, then infinite:  (-1)^s16 * inf                             (4)
> +       *   if e16 = 31 and m16 != 0, then           NaN                                        (5)
> +       *
> +       * where 0 <= m16 < 2^10.
> +       *
> +       * For a float32, the bit layout is:
> +       *
> +       *   sign: 31
> +       *   exponent: 23:30
> +       *   mantissa: 0:22
> +       *
> +       * Let f32 be a float32 value. The sign, exponent, and mantissa
> +       * determine its value thus:
> +       *
> +       *   if e32 = 0 and m32 = 0, then zero:        (-1)^s * 0                                (10)
> +       *   if e32 = 0 and m32 != 0, then subnormal:  (-1)^s * 2^(e32 - 126) * (m32 / 2^23)     (11)
> +       *   if 0 < e32 < 255, then normal:            (-1)^s * 2^(e32 - 127) * (1 + m32 / 2^23) (12)
> +       *   if e32 = 255 and m32 = 0, then infinite:  (-1)^s * inf                              (13)
> +       *   if e32 = 255 and m32 != 0, then           NaN                                       (14)
> +       *
> +       * where 0 <= m32 < 2^23.
> +       *
> +       * The minimum and maximum normal float16 values are
> +       *
> +       *   min_norm16 = 2^(1 - 15) * (1 + 0 / 2^10) = 2^(-14)   (20)
> +       *   max_norm16 = 2^(30 - 15) * (1 + 1023 / 2^10)         (21)
> +       *
> +       * The step at max_norm16 is
> +       *
> +       *   max_step16 = 2^5                                     (22)
> +       *
> +       * Observe that the float16 boundary values in equations 20-21 lie in the
> +       * range of normal float32 values.
> +       *
> +       *
> +       * Rounding Behavior
> +       * -----------------
> +       * Not all float32 values can be exactly represented as a float16. We
> +       * round all such intermediate float32 values to the nearest float16; if
> +       * the float32 is exactly between to float16 values, we round to the one
> +       * with an even mantissa. This rounding behavior has several benefits:
> +       *
> +       *   - It has no sign bias.
> +       *
> +       *   - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
> +       *     GPU ISA.
> +       *
> +       *   - By reproducing the behavior of the GPU (at least on Intel hardware),
> +       *     compile-time evaluation of constant packHalf2x16 GLSL expressions will
> +       *     result in the same value as if the expression were executed on the
> +       *     GPU.
> +       *
> +       * Calculation
> +       * -----------
> +       * Our task is to compute s16, e16, m16 given f32.  Since this function
> +       * ignores the sign bit, assume that s32 = s16 = 0.  There are several
> +       * cases consider.
> +       */
> +
> +      factory.emit(
> +
> +         /* Case 1) f32 is NaN
> +          *
> +          *   The resultant f16 will also be NaN.
> +          */
> +
> +         /* if (e32 == 255 && m32 != 0) { */
> +         if_tree(logic_and(equal(e, constant(0xffu << 23u)),
> +                           logic_not(equal(m, constant(0u)))),
> +
> +            assign(u16, constant(0x7fffu)),
> +
> +         /* Case 2) f32 lies in the range [0, min_norm16).
> +          *
> +          *   The resultant float16 will be either zero, subnormal, or normal.
> +          *
> +          *   Solving
> +          *
> +          *     f32 = min_norm16       (30)
> +          *
> +          *   gives
> +          *
> +          *     e32 = 113 and m32 = 0  (31)
> +          *
> +          *   Therefore this case occurs if and only if
> +          *
> +          *     e32 < 113              (32)
> +          */
> +
> +         /* } else if (e32 < 113) { */
> +         if_tree(less(e, constant(113u << 23u)),
> +
> +            /* u16 = uint(round_to_even(abs(f32) * float(1u << 24u))); */
> +            assign(u16, f2u(round_even(mul(expr(ir_unop_abs, f),
> +                                           constant((float) (1 << 24)))))),
> +
> +         /* Case 3) f32 lies in the range
> +          *         [min_norm16, max_norm16 + max_step16).
> +          *
> +          *   The resultant float16 will be either normal or infinite.
> +          *
> +          *   Solving
> +          *
> +          *     f32 = max_norm16 + max_step16           (40)
> +          *         = 2^15 * (1 + 1023 / 2^10) + 2^5    (41)
> +          *         = 2^16                              (42)
> +          *   gives
> +          *
> +          *     e32 = 142 and m32 = 0                   (43)
> +          *
> +          *   We already solved the boundary condition f32 = min_norm16 above
> +          *   in equation 31. Therefore this case occurs if and only if
> +          *
> +          *     113 <= e32 and e32 < 142
> +          */
> +
> +         /* } else if (e32 < 142) { */
> +         if_tree(lequal(e, constant(142u << 23u)),
> +
> +            /* The addition below handles the case where the mantissa rounds
> +             * up to 1024 and bumps the exponent.
> +             *
> +             * u16 = ((e - (112u << 23u)) >> 13u)
> +             *     + round_to_even((float(m) / (1u << 13u));
> +             */
> +            assign(u16, add(rshift(sub(e, constant(112u << 23u)),
> +                                   constant(13u)),
> +                            f2u(round_even(
> +                                  div(u2f(m), constant((float) (1 << 13))))))),
> +
> +         /* Case 4) f32 lies in the range [max_norm16 + max_step16, inf].
> +          *
> +          *   The resultant float16 will be infinite.
> +          *
> +          *   The cases above caught all float32 values in the range
> +          *   [0, max_norm16 + max_step16), so this is the fall-through case.
> +          */
> +
> +         /* } else { */
> +
> +            assign(u16, constant(31u << 10u))))));
> +
> +         /* } */
> +
> +       return deref(u16).val;
> +   }
> +
> +   /**
> +    * \brief Lower a packHalf2x16 expression.
> +    *
> +    * \param vec2_rval is packHalf2x16's input
> +    * \return packHalf2x16's output as a uint rvalue
> +    */
> +   ir_rvalue*
> +   lower_pack_half_2x16(ir_rvalue *vec2_rval)
> +   {
> +      /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    highp uint packHalf2x16 (mediump vec2 v)
> +       *    ----------------------------------------
> +       *    Returns an unsigned integer obtained by converting the components of
> +       *    a two-component floating-point vector to the 16-bit floating-point
> +       *    representation found in the OpenGL ES Specification, and then packing
> +       *    these two 16-bit integers into a 32-bit unsigned integer.
> +       *
> +       *    The first vector component specifies the 16 least- significant bits
> +       *    of the result; the second component specifies the 16 most-significant
> +       *    bits.
> +       */
> +
> +      assert(vec2_rval->type == glsl_type::vec2_type);
> +
> +      /* vec2 f = VEC2_RVAL; */
> +      ir_variable *f = factory.make_temp(glsl_type::vec2_type,
> +                                         "tmp_pack_half_2x16_f");
> +      factory.emit(assign(f, vec2_rval));
> +
> +      /* uvec2 f32 = bitcast_f2u(f); */
> +      ir_variable *f32 = factory.make_temp(glsl_type::uvec2_type,
> +                                            "tmp_pack_half_2x16_f32");
> +      factory.emit(assign(f32, expr(ir_unop_bitcast_f2u, f)));
> +
> +      /* uvec2 f16; */
> +      ir_variable *f16 = factory.make_temp(glsl_type::uvec2_type,
> +                                        "tmp_pack_half_2x16_f16");
> +
> +      /* Get f32's unshifted exponent bits.
> +       *
> +       *   uvec2 e = f32 & 0x7f800000u;
> +       */
> +      ir_variable *e = factory.make_temp(glsl_type::uvec2_type,
> +                                          "tmp_pack_half_2x16_e");
> +      factory.emit(assign(e, bit_and(f32, constant(0x7f800000u))));
> +
> +      /* Get f32's unshifted mantissa bits.
> +       *
> +       *   uvec2 m = f32 & 0x007fffffu;
> +       */
> +      ir_variable *m = factory.make_temp(glsl_type::uvec2_type,
> +                                          "tmp_pack_half_2x16_m");
> +      factory.emit(assign(m, bit_and(f32, constant(0x007fffffu))));
> +
> +      /* Set f16's exponent and mantissa bits.
> +       *
> +       *   f16.x = pack_half_1x16_nosign(e.x, m.x);
> +       *   f16.y = pack_half_1y16_nosign(e.y, m.y);
> +       */
> +      factory.emit(assign(f16, pack_half_1x16_nosign(swizzle_x(f),
> +                                                     swizzle_x(e),
> +                                                     swizzle_x(m)),
> +                           WRITEMASK_X));
> +      factory.emit(assign(f16, pack_half_1x16_nosign(swizzle_y(f),
> +                                                     swizzle_y(e),
> +                                                     swizzle_y(m)),
> +                           WRITEMASK_Y));
> +
> +      /* Set f16's sign bits.
> +       *
> +       *   f16 |= (f32 & (1u << 31u) >> 16u;
> +       */
> +      factory.emit(
> +         assign(f16, bit_or(f16,
> +                            rshift(bit_and(f32, constant(1u << 31u)),
> +                                   constant(16u)))));
> +
> +
> +      /* return (f16.y << 16u) | f16.x; */
> +      ir_rvalue *result = bit_or(lshift(swizzle_y(f16),
> +                                        constant(16u)),
> +                                 swizzle_x(f16));
> +
> +      assert(result->type == glsl_type::uint_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Split packHalf2x16's vec2 operand into two floats.
> +    *
> +    * \param vec2_rval is packHalf2x16's input
> +    * \return a uint rvalue
> +    *
> +    * Some code generators, such as the i965 fragment shader, require that all
> +    * vector expressions be lowered to a sequence of scalar expressions.
> +    * However, packHalf2x16 cannot be scalarized by the same mechanism as
> +    * a true vector operation because its input and output have a differing
> +    * number of vector components.
> +    *
> +    * This method scalarizes packHalf2x16 by transforming it from an unary
> +    * operation having vector input to a binary operation having scalar input.
> +    * That is, it transforms
> +    *
> +    *    packHalf2x16(VEC2_RVAL);
> +    *
> +    * into
> +    *
> +    *    vec2 v = VEC2_RVAL;
> +    *    return packHalf2x16_split(v.x, v.y);
> +    */
> +   ir_rvalue*
> +   split_pack_half_2x16(ir_rvalue *vec2_rval)
> +   {
> +      assert(vec2_rval->type == glsl_type::vec2_type);
> +
> +      ir_variable *v = factory.make_temp(glsl_type::vec2_type,
> +                                         "tmp_split_pack_half_2x16_v");
> +      factory.emit(assign(v, vec2_rval));
> +
> +      return expr(ir_binop_pack_half_2x16_split, swizzle_x(v), swizzle_y(v));
> +   }
> +
> +   /**
> +    * \brief Lower the component-wise calculation of unpackHalf2x16.
> +    *
> +    * Given a uint that encodes a float16 in its lower 16 bits, this function
> +    * returns a uint that encodes a float32 with the same value. The sign bit
> +    * of the float16 is ignored.
> +    *
> +    * \param e_rval is the unshifted exponent bits of a float16
> +    * \param m_rval is the unshifted mantissa bits of a float16
> +    * \param a uint rvalue that encodes a float32
> +    */
> +   ir_rvalue*
> +   unpack_half_1x16_nosign(ir_rvalue *e_rval, ir_rvalue *m_rval)
> +   {
> +      assert(e_rval->type == glsl_type::uint_type);
> +      assert(m_rval->type == glsl_type::uint_type);
> +
> +      /* uint u32; */
> +      ir_variable *u32 = factory.make_temp(glsl_type::uint_type,
> +                                           "tmp_unpack_half_1x16_u32");
> +
> +      /* uint e = E_RVAL; */
> +      ir_variable *e = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_unpack_half_1x16_e");
> +      factory.emit(assign(e, e_rval));
> +
> +      /* uint m = M_RVAL; */
> +      ir_variable *m = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_unpack_half_1x16_m");
> +      factory.emit(assign(m, m_rval));
> +
> +      /* Preliminaries
> +       * -------------
> +       *
> +       * For a float16, the bit layout is:
> +       *
> +       *   sign:     15
> +       *   exponent: 10:14
> +       *   mantissa: 0:9
> +       *
> +       * Let f16 be a float16 value. The sign, exponent, and mantissa
> +       * determine its value thus:
> +       *
> +       *   if e16 = 0 and m16 = 0, then zero:       (-1)^s16 * 0                               (1)
> +       *   if e16 = 0 and m16!= 0, then subnormal:  (-1)^s16 * 2^(e16 - 14) * (m16 / 2^10)     (2)
> +       *   if 0 < e16 < 31, then normal:            (-1)^s16 * 2^(e16 - 15) * (1 + m16 / 2^10) (3)
> +       *   if e16 = 31 and m16 = 0, then infinite:  (-1)^s16 * inf                             (4)
> +       *   if e16 = 31 and m16 != 0, then           NaN                                        (5)
> +       *
> +       * where 0 <= m16 < 2^10.
> +       *
> +       * For a float32, the bit layout is:
> +       *
> +       *   sign: 31
> +       *   exponent: 23:30
> +       *   mantissa: 0:22
> +       *
> +       * Let f32 be a float32 value. The sign, exponent, and mantissa
> +       * determine its value thus:
> +       *
> +       *   if e32 = 0 and m32 = 0, then zero:        (-1)^s * 0                                (10)
> +       *   if e32 = 0 and m32 != 0, then subnormal:  (-1)^s * 2^(e32 - 126) * (m32 / 2^23)     (11)
> +       *   if 0 < e32 < 255, then normal:            (-1)^s * 2^(e32 - 127) * (1 + m32 / 2^23) (12)
> +       *   if e32 = 255 and m32 = 0, then infinite:  (-1)^s * inf                              (13)
> +       *   if e32 = 255 and m32 != 0, then           NaN                                       (14)
> +       *
> +       * where 0 <= m32 < 2^23.
> +       *
> +       * Calculation
> +       * -----------
> +       * Our task is to compute s32, e32, m32 given f16.  Since this function
> +       * ignores the sign bit, assume that s32 = s16 = 0.  There are several
> +       * cases consider.
> +       */
> +
> +      factory.emit(
> +
> +         /* Case 1) f16 is zero or subnormal.
> +          *
> +          *   The simplest method of calcuating f32 in this case is
> +          *
> +          *     f32 = f16                       (20)
> +          *         = 2^(-14) * (m16 / 2^10)    (21)
> +          *         = m16 / 2^(-24)             (22)
> +          */
> +
> +         /* if (e16 == 0) { */
> +         if_tree(equal(e, constant(0u)),
> +
> +            /* u32 = bitcast_f2u(float(m) / float(1 << 24)); */
> +            assign(u32, expr(ir_unop_bitcast_f2u,
> +                                div(u2f(m), constant((float)(1 << 24))))),
> +
> +         /* Case 2) f16 is normal.
> +          *
> +          *   The equation
> +          *
> +          *     f32 = f16                              (30)
> +          *     2^(e32 - 127) * (1 + m32 / 2^23) =     (31)
> +          *       2^(e16 - 15) * (1 + m16 / 2^10)
> +          *
> +          *   can be decomposed into two
> +          *
> +          *     2^(e32 - 127) = 2^(e16 - 15)           (32)
> +          *     1 + m32 / 2^23 = 1 + m16 / 2^10        (33)
> +          *
> +          *   which solve to
> +          *
> +          *     e32 = e16 + 112                        (34)
> +          *     m32 = m16 * 2^13                       (35)
> +          */
> +
> +         /* } else if (e16 < 31)) { */
> +         if_tree(less(e, constant(31u << 10u)),
> +
> +              /* u32 = ((e << 13) + (112 << 23))
> +               *     | (m << 13);
> +               */
> +              assign(u32, bit_or(add(lshift(e, constant(13u)),
> +                                     constant(112u << 23u)),
> +                                 lshift(m, constant(13u)))),
> +
> +         /* Case 3) f16 is infinite. */
> +         if_tree(equal(m, constant(0u)),
> +
> +                 assign(u32, constant(255u << 23u)),
> +
> +         /* Case 4) f16 is NaN. */
> +         /* } else { */
> +
> +            assign(u32, constant(0x7fffffffu))))));
> +
> +         /* } */
> +
> +      return deref(u32).val;
> +   }
> +
> +   /**
> +    * \brief Lower an unpackHalf2x16 expression.
> +    *
> +    * \param uint_rval is unpackHalf2x16's input
> +    * \return unpackHalf2x16's output as a vec2 rvalue
> +    */
> +   ir_rvalue*
> +   lower_unpack_half_2x16(ir_rvalue *uint_rval)
> +   {
> +      /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec:
> +       *
> +       *    mediump vec2 unpackHalf2x16 (highp uint v)
> +       *    ------------------------------------------
> +       *    Returns a two-component floating-point vector with components
> +       *    obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit
> +       *    values, interpreting those values as 16-bit floating-point numbers
> +       *    according to the OpenGL ES Specification, and converting them to
> +       *    32-bit floating-point values.
> +       *
> +       *    The first component of the vector is obtained from the
> +       *    16 least-significant bits of v; the second component is obtained
> +       *    from the 16 most-significant bits of v.
> +       */
> +      assert(uint_rval->type == glsl_type::uint_type);
> +
> +      /* uint u = RVALUE;
> +       * uvec2 f16 = uvec2(u.x & 0xffff, u.y >> 16);
> +       */
> +      ir_variable *f16 = factory.make_temp(glsl_type::uvec2_type,
> +                                            "tmp_unpack_half_2x16_f16");
> +      factory.emit(assign(f16, unpack_uint_to_uvec2(uint_rval)));
> +
> +      /* uvec2 f32; */
> +      ir_variable *f32 = factory.make_temp(glsl_type::uvec2_type,
> +                                            "tmp_unpack_half_2x16_f32");
> +
> +      /* Get f16's unshifted exponent bits.
> +       *
> +       *    uvec2 e = f16 & 0x7c00u;
> +       */
> +      ir_variable *e = factory.make_temp(glsl_type::uvec2_type,
> +                                          "tmp_unpack_half_2x16_e");
> +      factory.emit(assign(e, bit_and(f16, constant(0x7c00u))));
> +
> +      /* Get f16's unshifted mantissa bits.
> +       *
> +       *    uvec2 m = f16 & 0x03ffu;
> +       */
> +      ir_variable *m = factory.make_temp(glsl_type::uvec2_type,
> +                                          "tmp_unpack_half_2x16_m");
> +      factory.emit(assign(m, bit_and(f16, constant(0x03ffu))));
> +
> +      /* Set f32's exponent and mantissa bits.
> +       *
> +       *   f32.x = unpack_half_1x16_nosign(e.x, m.x);
> +       *   f32.y = unpack_half_1x16_nosign(e.y, m.y);
> +       */
> +      factory.emit(assign(f32, unpack_half_1x16_nosign(swizzle_x(e),
> +                                                       swizzle_x(m)),
> +                           WRITEMASK_X));
> +      factory.emit(assign(f32, unpack_half_1x16_nosign(swizzle_y(e),
> +                                                       swizzle_y(m)),
> +                           WRITEMASK_Y));
> +
> +      /* Set f32's sign bit.
> +       *
> +       *    f32 |= (f16 & 0x8000u) << 16u;
> +       */
> +      factory.emit(assign(f32, bit_or(f32,
> +                                       lshift(bit_and(f16,
> +                                                      constant(0x8000u)),
> +                                              constant(16u)))));
> +
> +      /* return bitcast_u2f(f32); */
> +      ir_rvalue *result = expr(ir_unop_bitcast_u2f, f32);
> +      assert(result->type == glsl_type::vec2_type);
> +      return result;
> +   }
> +
> +   /**
> +    * \brief Split unpackHalf2x16 into two operations.
> +    *
> +    * \param uint_rval is unpackHalf2x16's input
> +    * \return a vec2 rvalue
> +    *
> +    * Some code generators, such as the i965 fragment shader, require that all
> +    * vector expressions be lowered to a sequence of scalar expressions.
> +    * However, unpackHalf2x16 cannot be scalarized by the same method as
> +    * a true vector operation because the number of components of its input
> +    * and output differ.
> +    *
> +    * This method scalarizes unpackHalf2x16 by transforming it from a single
> +    * operation having vec2 output to a pair of operations each having float
> +    * output. That is, it transforms
> +    *
> +    *   unpackHalf2x16(UINT_RVAL)
> +    *
> +    * into
> +    *
> +    *   uint u = UINT_RVAL;
> +    *   vec2 v;
> +    *
> +    *   v.x = unpackHalf2x16_split_x(u);
> +    *   v.y = unpackHalf2x16_split_y(u);
> +    *
> +    *   return v;
> +    */
> +   ir_rvalue*
> +   split_unpack_half_2x16(ir_rvalue *uint_rval)
> +   {
> +      assert(uint_rval->type == glsl_type::uint_type);
> +
> +      /* uint u = uint_rval; */
> +      ir_variable *u = factory.make_temp(glsl_type::uint_type,
> +                                          "tmp_split_unpack_half_2x16_u");
> +      factory.emit(assign(u, uint_rval));
> +
> +      /* vec2 v; */
> +      ir_variable *v = factory.make_temp(glsl_type::vec2_type,
> +                                          "tmp_split_unpack_half_2x16_v");
> +
> +      /* v.x = unpack_half_2x16_split_x(u); */
> +      factory.emit(assign(v, expr(ir_unop_unpack_half_2x16_split_x, u),
> +                           WRITEMASK_X));
> +
> +      /* v.y = unpack_half_2x16_split_y(u); */
> +      factory.emit(assign(v, expr(ir_unop_unpack_half_2x16_split_y, u),
> +                           WRITEMASK_Y));
> +
> +      return deref(v).val;
> +   }
> +};
> +
> +} // namespace anonymous
> +
> +/**
> + * \brief Lower the builtin packing functions.
> + *
> + * \param op_mask is a bitmask of `enum lower_packing_builtins_op`.
> + */
> +bool
> +lower_packing_builtins(exec_list *instructions, int op_mask)
> +{
> +   lower_packing_builtins_visitor v(op_mask);
> +   visit_list_elements(&v, instructions, true);
> +   return v.get_progress();
> +}
> --
> 1.8.1.1


More information about the mesa-dev mailing list