[Mesa-dev] [PATCH (gles3) 15/20] glsl: Add lowering pass for GLSL ES 3.00 pack/unpack operations (v2)
Paul Berry
stereotype441 at gmail.com
Tue Jan 22 21:19:12 PST 2013
On 21 January 2013 00:49, Chad Versace <chad.versace at linux.intel.com> wrote:
> Lower them to arithmetic and bit manipulation expressions.
>
> v2:
> - Rewrite using ir_builder. [for idr]
> - In lowering packHalf2x16, don't truncate subnormal float16 values to
> zero.
> And round to even rather than to zero. [for stereotype441]
>
> CC: Ian Romanick <idr at freedesktop.org>
> CC: Paul Berry <stereotype441 at gmail.com>
> Signed-off-by: Chad Versace <chad.versace at linux.intel.com>
> ---
> src/glsl/Makefile.sources | 1 +
> src/glsl/ir_optimization.h | 20 +
> src/glsl/lower_packing_builtins.cpp | 1043
> +++++++++++++++++++++++++++++++++++
> 3 files changed, 1064 insertions(+)
> create mode 100644 src/glsl/lower_packing_builtins.cpp
>
>
(snip)
> + void
> + setup_factory(void *mem_ctx)
> + {
> + assert(factory.mem_ctx == NULL);
> + factory.mem_ctx = mem_ctx;
> +
> + /* Avoid making a new list for each call to handle_rvalue(). Make a
> + * single list and reuse it.
> + */
> + if (factory.instructions == NULL) {
> + factory.instructions = new(NULL) exec_list();
> + } else {
> + assert(factory.instructions->is_empty());
> + }
> + }
>
Do we need factory.instructions to be heap-allocated? How about just
making a private exec_list inside lower_packing_builtins_visitor and
setting factory.instructions to point to it in the
lower_packing_builtins_visitor constructor?
(snip)
> + /**
> + * \brief Lower the component-wise calculation of packHalf2x16.
> + *
> + * \param f_rval is one component of packHafl2x16's input
> + * \param e_rval is the unshifted exponent bits of f_rval
> + * \param m_rval is the unshifted mantissa bits of f_rval
> + *
> + * \return a uint rvalue that encodes a float16 in its lower 16 bits
> + */
> + ir_rvalue*
> + pack_half_1x16_nosign(ir_rvalue *f_rval,
> + ir_rvalue *e_rval,
> + ir_rvalue *m_rval)
> + {
> + assert(e_rval->type == glsl_type::uint_type);
> + assert(m_rval->type == glsl_type::uint_type);
> +
> + /* uint u16; */
> + ir_variable *u16 = factory.make_temp(glsl_type::uint_type,
> + "tmp_pack_half_1x16_u16");
> +
> + /* float f = FLOAT_RVAL; */
> + ir_variable *f = factory.make_temp(glsl_type::float_type,
> + "tmp_pack_half_1x16_f");
> + factory.emit(assign(f, f_rval));
> +
> + /* uint e = E_RVAL; */
> + ir_variable *e = factory.make_temp(glsl_type::uint_type,
> + "tmp_pack_half_1x16_e");
> + factory.emit(assign(e, e_rval));
> +
> + /* uint m = M_RVAL; */
> + ir_variable *m = factory.make_temp(glsl_type::uint_type,
> + "tmp_pack_half_1x16_m");
> + factory.emit(assign(m, m_rval));
> +
> + /* Preliminaries
> + * -------------
> + *
> + * For a float16, the bit layout is:
> + *
> + * sign: 15
> + * exponent: 10:14
> + * mantissa: 0:9
> + *
> + * Let f16 be a float16 value. The sign, exponent, and mantissa
> + * determine its value thus:
> + *
> + * if e16 = 0 and m16 = 0, then zero: (-1)^s16 * 0
> (1)
> + * if e16 = 0 and m16!= 0, then subnormal: (-1)^s16 * 2^(e16 -
> 14) * (m16 / 2^10) (2)
> + * if 0 < e16 < 31, then normal: (-1)^s16 * 2^(e16 -
> 15) * (1 + m16 / 2^10) (3)
> + * if e16 = 31 and m16 = 0, then infinite: (-1)^s16 * inf
> (4)
> + * if e16 = 31 and m16 != 0, then NaN
> (5)
> + *
> + * where 0 <= m16 < 2^10.
> + *
> + * For a float32, the bit layout is:
> + *
> + * sign: 31
> + * exponent: 23:30
> + * mantissa: 0:22
> + *
> + * Let f32 be a float32 value. The sign, exponent, and mantissa
> + * determine its value thus:
> + *
> + * if e32 = 0 and m32 = 0, then zero: (-1)^s * 0
> (10)
> + * if e32 = 0 and m32 != 0, then subnormal: (-1)^s * 2^(e32 -
> 126) * (m32 / 2^23) (11)
> + * if 0 < e32 < 255, then normal: (-1)^s * 2^(e32 -
> 127) * (1 + m32 / 2^23) (12)
> + * if e32 = 255 and m32 = 0, then infinite: (-1)^s * inf
> (13)
> + * if e32 = 255 and m32 != 0, then NaN
> (14)
> + *
> + * where 0 <= m32 < 2^23.
> + *
> + * The minimum and maximum normal float16 values are
> + *
> + * min_norm16 = 2^(1 - 15) * (1 + 0 / 2^10) = 2^(-14) (20)
> + * max_norm16 = 2^(30 - 15) * (1 + 1023 / 2^10) (21)
> + *
> + * The step at max_norm16 is
> + *
> + * max_step16 = 2^5 (22)
> + *
> + * Observe that the float16 boundary values in equations 20-21 lie
> in the
> + * range of normal float32 values.
> + *
> + *
> + * Rounding Behavior
> + * -----------------
> + * Not all float32 values can be exactly represented as a float16.
> We
> + * round all such intermediate float32 values to the nearest
> float16; if
> + * the float32 is exactly between to float16 values, we round to
> the one
> + * with an even mantissa. This rounding behavior has several
> benefits:
> + *
> + * - It has no sign bias.
> + *
> + * - It reproduces the behavior of real hardware: opcode F32TO16
> in Intel's
> + * GPU ISA.
> + *
> + * - By reproducing the behavior of the GPU (at least on Intel
> hardware),
> + * compile-time evaluation of constant packHalf2x16 GLSL
> expressions will
> + * result in the same value as if the expression were executed
> on the
> + * GPU.
> + *
> + * Calculation
> + * -----------
> + * Our task is to compute s16, e16, m16 given f32. Since this
> function
> + * ignores the sign bit, assume that s32 = s16 = 0. There are
> several
> + * cases consider.
> + */
> +
> + factory.emit(
> +
> + /* Case 1) f32 is NaN
> + *
> + * The resultant f16 will also be NaN.
> + */
> +
> + /* if (e32 == 255 && m32 != 0) { */
> + if_tree(logic_and(equal(e, constant(0xffu << 23u)),
> + logic_not(equal(m, constant(0u)))),
> +
> + assign(u16, constant(0x7fffu)),
> +
> + /* Case 2) f32 lies in the range [0, min_norm16).
> + *
> + * The resultant float16 will be either zero, subnormal, or
> normal.
> + *
> + * Solving
> + *
> + * f32 = min_norm16 (30)
> + *
> + * gives
> + *
> + * e32 = 113 and m32 = 0 (31)
> + *
> + * Therefore this case occurs if and only if
> + *
> + * e32 < 113 (32)
> + */
> +
> + /* } else if (e32 < 113) { */
> + if_tree(less(e, constant(113u << 23u)),
> +
> + /* u16 = uint(round_to_even(abs(f32) * float(1u << 24u))); */
> + assign(u16, f2u(round_even(mul(expr(ir_unop_abs, f),
> + constant((float) (1 <<
> 24)))))),
> +
> + /* Case 3) f32 lies in the range
> + * [min_norm16, max_norm16 + max_step16).
> + *
> + * The resultant float16 will be either normal or infinite.
> + *
> + * Solving
> + *
> + * f32 = max_norm16 + max_step16 (40)
> + * = 2^15 * (1 + 1023 / 2^10) + 2^5 (41)
> + * = 2^16 (42)
> + * gives
> + *
> + * e32 = 142 and m32 = 0 (43)
>
I calculate this to be 143, not 142.
> + *
> + * We already solved the boundary condition f32 = min_norm16
> above
> + * in equation 31. Therefore this case occurs if and only if
> + *
> + * 113 <= e32 and e32 < 142
>
So this should be e32 < 143.
> + */
> +
> + /* } else if (e32 < 142) { */
> + if_tree(lequal(e, constant(142u << 23u)),
>
Fortunately, since you use "lequal" here, you get the correct effect.
> +
> + /* The addition below handles the case where the mantissa
> rounds
> + * up to 1024 and bumps the exponent.
> + *
> + * u16 = ((e - (112u << 23u)) >> 13u)
> + * + round_to_even((float(m) / (1u << 13u));
> + */
> + assign(u16, add(rshift(sub(e, constant(112u << 23u)),
> + constant(13u)),
> + f2u(round_even(
> + div(u2f(m), constant((float) (1 <<
> 13))))))),
> +
> + /* Case 4) f32 lies in the range [max_norm16 + max_step16, inf].
> + *
> + * The resultant float16 will be infinite.
> + *
> + * The cases above caught all float32 values in the range
> + * [0, max_norm16 + max_step16), so this is the fall-through
> case.
> + */
> +
> + /* } else { */
> +
> + assign(u16, constant(31u << 10u))))));
> +
> + /* } */
> +
> + return deref(u16).val;
> + }
>
(snip)
> + /**
> + * \brief Lower the component-wise calculation of unpackHalf2x16.
> + *
> + * Given a uint that encodes a float16 in its lower 16 bits, this
> function
> + * returns a uint that encodes a float32 with the same value. The sign
> bit
> + * of the float16 is ignored.
> + *
> + * \param e_rval is the unshifted exponent bits of a float16
> + * \param m_rval is the unshifted mantissa bits of a float16
> + * \param a uint rvalue that encodes a float32
> + */
> + ir_rvalue*
> + unpack_half_1x16_nosign(ir_rvalue *e_rval, ir_rvalue *m_rval)
> + {
> + assert(e_rval->type == glsl_type::uint_type);
> + assert(m_rval->type == glsl_type::uint_type);
> +
> + /* uint u32; */
> + ir_variable *u32 = factory.make_temp(glsl_type::uint_type,
> + "tmp_unpack_half_1x16_u32");
> +
> + /* uint e = E_RVAL; */
> + ir_variable *e = factory.make_temp(glsl_type::uint_type,
> + "tmp_unpack_half_1x16_e");
> + factory.emit(assign(e, e_rval));
> +
> + /* uint m = M_RVAL; */
> + ir_variable *m = factory.make_temp(glsl_type::uint_type,
> + "tmp_unpack_half_1x16_m");
> + factory.emit(assign(m, m_rval));
> +
> + /* Preliminaries
> + * -------------
> + *
> + * For a float16, the bit layout is:
> + *
> + * sign: 15
> + * exponent: 10:14
> + * mantissa: 0:9
> + *
> + * Let f16 be a float16 value. The sign, exponent, and mantissa
> + * determine its value thus:
> + *
> + * if e16 = 0 and m16 = 0, then zero: (-1)^s16 * 0
> (1)
> + * if e16 = 0 and m16!= 0, then subnormal: (-1)^s16 * 2^(e16 -
> 14) * (m16 / 2^10) (2)
> + * if 0 < e16 < 31, then normal: (-1)^s16 * 2^(e16 -
> 15) * (1 + m16 / 2^10) (3)
> + * if e16 = 31 and m16 = 0, then infinite: (-1)^s16 * inf
> (4)
> + * if e16 = 31 and m16 != 0, then NaN
> (5)
> + *
> + * where 0 <= m16 < 2^10.
> + *
> + * For a float32, the bit layout is:
> + *
> + * sign: 31
> + * exponent: 23:30
> + * mantissa: 0:22
> + *
> + * Let f32 be a float32 value. The sign, exponent, and mantissa
> + * determine its value thus:
> + *
> + * if e32 = 0 and m32 = 0, then zero: (-1)^s * 0
> (10)
> + * if e32 = 0 and m32 != 0, then subnormal: (-1)^s * 2^(e32 -
> 126) * (m32 / 2^23) (11)
> + * if 0 < e32 < 255, then normal: (-1)^s * 2^(e32 -
> 127) * (1 + m32 / 2^23) (12)
> + * if e32 = 255 and m32 = 0, then infinite: (-1)^s * inf
> (13)
> + * if e32 = 255 and m32 != 0, then NaN
> (14)
> + *
> + * where 0 <= m32 < 2^23.
> + *
> + * Calculation
> + * -----------
> + * Our task is to compute s32, e32, m32 given f16. Since this
> function
> + * ignores the sign bit, assume that s32 = s16 = 0. There are
> several
> + * cases consider.
> + */
> +
> + factory.emit(
> +
> + /* Case 1) f16 is zero or subnormal.
> + *
> + * The simplest method of calcuating f32 in this case is
> + *
> + * f32 = f16 (20)
> + * = 2^(-14) * (m16 / 2^10) (21)
> + * = m16 / 2^(-24) (22)
> + */
> +
> + /* if (e16 == 0) { */
> + if_tree(equal(e, constant(0u)),
> +
> + /* u32 = bitcast_f2u(float(m) / float(1 << 24)); */
> + assign(u32, expr(ir_unop_bitcast_f2u,
> + div(u2f(m), constant((float)(1 << 24))))),
> +
> + /* Case 2) f16 is normal.
> + *
> + * The equation
> + *
> + * f32 = f16 (30)
> + * 2^(e32 - 127) * (1 + m32 / 2^23) = (31)
> + * 2^(e16 - 15) * (1 + m16 / 2^10)
> + *
> + * can be decomposed into two
> + *
> + * 2^(e32 - 127) = 2^(e16 - 15) (32)
> + * 1 + m32 / 2^23 = 1 + m16 / 2^10 (33)
> + *
> + * which solve to
> + *
> + * e32 = e16 + 112 (34)
> + * m32 = m16 * 2^13 (35)
> + */
> +
> + /* } else if (e16 < 31)) { */
> + if_tree(less(e, constant(31u << 10u)),
> +
> + /* u32 = ((e << 13) + (112 << 23))
> + * | (m << 13);
> + */
> + assign(u32, bit_or(add(lshift(e, constant(13u)),
> + constant(112u << 23u)),
> + lshift(m, constant(13u)))),
>
I believe you can save one operation by factoring out the "<< 13" to get:
assign(u32, lshift(bit_or(add(e, constant(112u << 10u)), m),
constant(13u)))
> +
> + /* Case 3) f16 is infinite. */
> + if_tree(equal(m, constant(0u)),
> +
> + assign(u32, constant(255u << 23u)),
> +
> + /* Case 4) f16 is NaN. */
> + /* } else { */
> +
> + assign(u32, constant(0x7fffffffu))))));
> +
> + /* } */
> +
> + return deref(u32).val;
> + }
> +
>
(snip)
Well done! This is a tour de force, Chad. The only comment that I
consider blocking is the 142 vs 143 mix-up I noted above, and even that is
only in the comments. With that fixed, this patch is:
Reviewed-by: Paul Berry <stereotype441 at gmail.com>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.freedesktop.org/archives/mesa-dev/attachments/20130122/2a32a868/attachment-0001.html>
More information about the mesa-dev
mailing list