[Mesa-dev] [PATCH v2 26/27] i965/blorp: brw_blorp_blit.cpp -> blorp_blit.c

Jason Ekstrand jason at jlekstrand.net
Tue Jul 26 22:11:30 UTC 2016


---
 src/mesa/drivers/dri/i965/Makefile.sources   |    2 +-
 src/mesa/drivers/dri/i965/blorp_blit.c       | 1662 ++++++++++++++++++++++++++
 src/mesa/drivers/dri/i965/brw_blorp_blit.cpp | 1662 --------------------------
 3 files changed, 1663 insertions(+), 1663 deletions(-)
 create mode 100644 src/mesa/drivers/dri/i965/blorp_blit.c
 delete mode 100644 src/mesa/drivers/dri/i965/brw_blorp_blit.cpp

diff --git a/src/mesa/drivers/dri/i965/Makefile.sources b/src/mesa/drivers/dri/i965/Makefile.sources
index a6fe6fe..b4362ce 100644
--- a/src/mesa/drivers/dri/i965/Makefile.sources
+++ b/src/mesa/drivers/dri/i965/Makefile.sources
@@ -97,11 +97,11 @@ i965_compiler_GENERATED_FILES = \
 i965_FILES = \
 	blorp.c \
 	blorp.h \
+	blorp_blit.c \
 	blorp_priv.h \
 	brw_binding_tables.c \
 	brw_blorp.c \
 	brw_blorp.h \
-	brw_blorp_blit.cpp \
 	brw_blorp_clear.cpp \
 	brw_cc.c \
 	brw_clear.c \
diff --git a/src/mesa/drivers/dri/i965/blorp_blit.c b/src/mesa/drivers/dri/i965/blorp_blit.c
new file mode 100644
index 0000000..39f6366
--- /dev/null
+++ b/src/mesa/drivers/dri/i965/blorp_blit.c
@@ -0,0 +1,1662 @@
+/*
+ * Copyright © 2012 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ */
+
+#include "compiler/nir/nir_builder.h"
+
+#include "blorp_priv.h"
+#include "brw_context.h"
+#include "intel_mipmap_tree.h"
+#include "brw_state.h"
+#include "brw_meta_util.h"
+
+#define FILE_DEBUG_FLAG DEBUG_BLORP
+
+/**
+ * Enum to specify the order of arguments in a sampler message
+ */
+enum sampler_message_arg
+{
+   SAMPLER_MESSAGE_ARG_U_FLOAT,
+   SAMPLER_MESSAGE_ARG_V_FLOAT,
+   SAMPLER_MESSAGE_ARG_U_INT,
+   SAMPLER_MESSAGE_ARG_V_INT,
+   SAMPLER_MESSAGE_ARG_R_INT,
+   SAMPLER_MESSAGE_ARG_SI_INT,
+   SAMPLER_MESSAGE_ARG_MCS_INT,
+   SAMPLER_MESSAGE_ARG_ZERO_INT,
+};
+
+struct brw_blorp_blit_vars {
+   /* Input values from brw_blorp_wm_inputs */
+   nir_variable *v_discard_rect;
+   nir_variable *v_rect_grid;
+   nir_variable *v_coord_transform;
+   nir_variable *v_src_z;
+
+   /* gl_FragCoord */
+   nir_variable *frag_coord;
+
+   /* gl_FragColor */
+   nir_variable *color_out;
+};
+
+static void
+brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
+                         const struct brw_blorp_blit_prog_key *key)
+{
+    /* Blended and scaled blits never use pixel discard. */
+    assert(!key->use_kill || !(key->blend && key->blit_scaled));
+
+#define LOAD_INPUT(name, type)\
+   v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
+                                     type, #name); \
+   v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
+   v->v_##name->data.location = VARYING_SLOT_VAR0 + \
+      offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
+
+   LOAD_INPUT(discard_rect, glsl_vec4_type())
+   LOAD_INPUT(rect_grid, glsl_vec4_type())
+   LOAD_INPUT(coord_transform, glsl_vec4_type())
+   LOAD_INPUT(src_z, glsl_uint_type())
+
+#undef LOAD_INPUT
+
+   v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
+                                       glsl_vec4_type(), "gl_FragCoord");
+   v->frag_coord->data.location = VARYING_SLOT_POS;
+   v->frag_coord->data.origin_upper_left = true;
+
+   v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
+                                      glsl_vec4_type(), "gl_FragColor");
+   v->color_out->data.location = FRAG_RESULT_COLOR;
+}
+
+static nir_ssa_def *
+blorp_blit_get_frag_coords(nir_builder *b,
+                           const struct brw_blorp_blit_prog_key *key,
+                           struct brw_blorp_blit_vars *v)
+{
+   nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
+
+   if (key->persample_msaa_dispatch) {
+      return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
+         nir_load_system_value(b, nir_intrinsic_load_sample_id, 0));
+   } else {
+      return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
+   }
+}
+
+/**
+ * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
+ * coordinates.
+ */
+static nir_ssa_def *
+blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
+                           struct brw_blorp_blit_vars *v)
+{
+   nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
+
+   nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
+                                     nir_channel(b, coord_transform, 3));
+   nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
+                                  nir_channel(b, coord_transform, 2));
+
+   return nir_ffma(b, src_pos, mul, offset);
+}
+
+static inline void
+blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
+                                  struct brw_blorp_blit_vars *v)
+{
+   nir_ssa_def *c0, *c1, *c2, *c3;
+   nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
+   nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
+   nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
+   nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
+   nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
+
+   c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
+   c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
+   c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
+   c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
+
+   nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
+
+   nir_intrinsic_instr *discard =
+      nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
+   discard->src[0] = nir_src_for_ssa(oob);
+   nir_builder_instr_insert(b, &discard->instr);
+}
+
+static nir_tex_instr *
+blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
+                           nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
+                           enum brw_reg_type dst_type)
+{
+   nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
+
+   tex->op = op;
+
+   switch (dst_type) {
+   case BRW_REGISTER_TYPE_F:
+      tex->dest_type = nir_type_float;
+      break;
+   case BRW_REGISTER_TYPE_D:
+      tex->dest_type = nir_type_int;
+      break;
+   case BRW_REGISTER_TYPE_UD:
+      tex->dest_type = nir_type_uint;
+      break;
+   default:
+      unreachable("Invalid texture return type");
+   }
+
+   tex->is_array = false;
+   tex->is_shadow = false;
+
+   /* Blorp only has one texture and it's bound at unit 0 */
+   tex->texture = NULL;
+   tex->sampler = NULL;
+   tex->texture_index = 0;
+   tex->sampler_index = 0;
+
+   /* To properly handle 3-D and 2-D array textures, we pull the Z component
+    * from a uniform.  TODO: This is a bit magic; we should probably make this
+    * more explicit in the future.
+    */
+   assert(pos->num_components >= 2);
+   pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
+                     nir_load_var(b, v->v_src_z));
+
+   tex->src[0].src_type = nir_tex_src_coord;
+   tex->src[0].src = nir_src_for_ssa(pos);
+   tex->coord_components = 3;
+
+   nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
+
+   return tex;
+}
+
+static nir_ssa_def *
+blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
+              nir_ssa_def *pos, enum brw_reg_type dst_type)
+{
+   nir_tex_instr *tex =
+      blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
+
+   assert(pos->num_components == 2);
+   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
+   tex->src[1].src_type = nir_tex_src_lod;
+   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+   nir_builder_instr_insert(b, &tex->instr);
+
+   return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
+              nir_ssa_def *pos, enum brw_reg_type dst_type)
+{
+   nir_tex_instr *tex =
+      blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
+
+   tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
+   tex->src[1].src_type = nir_tex_src_lod;
+   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+
+   nir_builder_instr_insert(b, &tex->instr);
+
+   return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
+                 nir_ssa_def *pos, nir_ssa_def *mcs, enum brw_reg_type dst_type)
+{
+   nir_tex_instr *tex =
+      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
+                                 mcs != NULL ? 3 : 2, dst_type);
+
+   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+   tex->src[1].src_type = nir_tex_src_ms_index;
+   if (pos->num_components == 2) {
+      tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
+   } else {
+      assert(pos->num_components == 3);
+      tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
+   }
+
+   if (mcs) {
+      tex->src[2].src_type = nir_tex_src_ms_mcs;
+      tex->src[2].src = nir_src_for_ssa(mcs);
+   }
+
+   nir_builder_instr_insert(b, &tex->instr);
+
+   return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
+{
+   nir_tex_instr *tex =
+      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
+                                 pos, 1, BRW_REGISTER_TYPE_D);
+
+   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
+
+   nir_builder_instr_insert(b, &tex->instr);
+
+   return &tex->dest.ssa;
+}
+
+static nir_ssa_def *
+nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
+                  uint32_t src_mask, int src_left_shift)
+{
+   nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
+
+   nir_ssa_def *shifted;
+   if (src_left_shift > 0) {
+      shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
+   } else if (src_left_shift < 0) {
+      shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
+   } else {
+      assert(src_left_shift == 0);
+      shifted = masked;
+   }
+
+   return nir_ior(b, dst, shifted);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
+{
+   assert(pos->num_components == 2);
+   nir_ssa_def *x_Y = nir_channel(b, pos, 0);
+   nir_ssa_def *y_Y = nir_channel(b, pos, 1);
+
+   /* Given X and Y coordinates that describe an address using Y tiling,
+    * translate to the X and Y coordinates that describe the same address
+    * using W tiling.
+    *
+    * If we break down the low order bits of X and Y, using a
+    * single letter to represent each low-order bit:
+    *
+    *   X = A << 7 | 0bBCDEFGH
+    *   Y = J << 5 | 0bKLMNP                                       (1)
+    *
+    * Then we can apply the Y tiling formula to see the memory offset being
+    * addressed:
+    *
+    *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
+    *
+    * If we apply the W detiling formula to this memory location, that the
+    * corresponding X' and Y' coordinates are:
+    *
+    *   X' = A << 6 | 0bBCDPFH                                     (3)
+    *   Y' = J << 6 | 0bKLMNEG
+    *
+    * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
+    * we need to make the following computation:
+    *
+    *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
+    *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
+    */
+   nir_ssa_def *x_W = nir_imm_int(b, 0);
+   x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
+   x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
+   x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
+
+   nir_ssa_def *y_W = nir_imm_int(b, 0);
+   y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
+   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
+   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
+
+   return nir_vec2(b, x_W, y_W);
+}
+
+/**
+ * Emit code to compensate for the difference between Y and W tiling.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
+ *
+ * (See brw_blorp_build_nir_shader).
+ */
+static inline nir_ssa_def *
+blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
+{
+   assert(pos->num_components == 2);
+   nir_ssa_def *x_W = nir_channel(b, pos, 0);
+   nir_ssa_def *y_W = nir_channel(b, pos, 1);
+
+   /* Applying the same logic as above, but in reverse, we obtain the
+    * formulas:
+    *
+    * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
+    * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
+    */
+   nir_ssa_def *x_Y = nir_imm_int(b, 0);
+   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
+   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
+   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
+   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
+
+   nir_ssa_def *y_Y = nir_imm_int(b, 0);
+   y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
+   y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
+
+   return nir_vec2(b, x_Y, y_Y);
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
+                      unsigned num_samples, enum isl_msaa_layout layout)
+{
+   assert(pos->num_components == 2 || pos->num_components == 3);
+
+   switch (layout) {
+   case ISL_MSAA_LAYOUT_NONE:
+      assert(pos->num_components == 2);
+      return pos;
+   case ISL_MSAA_LAYOUT_ARRAY:
+      /* No translation needed */
+      return pos;
+   case ISL_MSAA_LAYOUT_INTERLEAVED: {
+      nir_ssa_def *x_in = nir_channel(b, pos, 0);
+      nir_ssa_def *y_in = nir_channel(b, pos, 1);
+      nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
+                                                     nir_channel(b, pos, 2);
+
+      nir_ssa_def *x_out = nir_imm_int(b, 0);
+      nir_ssa_def *y_out = nir_imm_int(b, 0);
+      switch (num_samples) {
+      case 2:
+      case 4:
+         /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
+          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+          *         Y' = Y
+          *
+          * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
+         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         if (num_samples == 2) {
+            y_out = y_in;
+         } else {
+            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+            y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+         }
+         break;
+
+      case 8:
+         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+          *              | (X & 0b1)
+          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
+         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+         break;
+
+      case 16:
+         /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
+          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
+          *              | (X & 0b1)
+          *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
+          *              | (Y & 0b1)
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
+         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
+         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
+         y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
+         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+         break;
+
+      default:
+         unreachable("Invalid number of samples for IMS layout");
+      }
+
+      return nir_vec2(b, x_out, y_out);
+   }
+
+   default:
+      unreachable("Invalid MSAA layout");
+   }
+}
+
+/**
+ * Emit code to compensate for the difference between MSAA and non-MSAA
+ * surfaces.
+ *
+ * This code modifies the X and Y coordinates according to the formula:
+ *
+ *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
+ *
+ * (See brw_blorp_blit_program).
+ */
+static inline nir_ssa_def *
+blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
+                      unsigned num_samples, enum isl_msaa_layout layout)
+{
+   assert(pos->num_components == 2 || pos->num_components == 3);
+
+   switch (layout) {
+   case ISL_MSAA_LAYOUT_NONE:
+      /* No translation necessary, and S should already be zero. */
+      assert(pos->num_components == 2);
+      return pos;
+   case ISL_MSAA_LAYOUT_ARRAY:
+      /* No translation necessary. */
+      return pos;
+   case ISL_MSAA_LAYOUT_INTERLEAVED: {
+      assert(pos->num_components == 2);
+
+      nir_ssa_def *x_in = nir_channel(b, pos, 0);
+      nir_ssa_def *y_in = nir_channel(b, pos, 1);
+
+      nir_ssa_def *x_out = nir_imm_int(b, 0);
+      nir_ssa_def *y_out = nir_imm_int(b, 0);
+      nir_ssa_def *s_out = nir_imm_int(b, 0);
+      switch (num_samples) {
+      case 2:
+      case 4:
+         /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
+          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
+          *         S = (X & 0b10) >> 1
+          *
+          * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
+          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+          *         S = (Y & 0b10) | (X & 0b10) >> 1
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         if (num_samples == 2) {
+            y_out = y_in;
+            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+         } else {
+            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+            s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+         }
+         break;
+
+      case 8:
+         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
+          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+         break;
+
+      case 16:
+         /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
+          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
+          *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
+          *         S = (Y & 0b100) << 1 | (X & 0b100) |
+          *             (Y & 0b10) | (X & 0b10) >> 1
+          */
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
+         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
+         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
+         s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
+         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
+         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
+         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
+         break;
+
+      default:
+         unreachable("Invalid number of samples for IMS layout");
+      }
+
+      return nir_vec3(b, x_out, y_out, s_out);
+   }
+
+   default:
+      unreachable("Invalid MSAA layout");
+   }
+}
+
+/**
+ * Count the number of trailing 1 bits in the given value.  For example:
+ *
+ * count_trailing_one_bits(0) == 0
+ * count_trailing_one_bits(7) == 3
+ * count_trailing_one_bits(11) == 2
+ */
+static inline int count_trailing_one_bits(unsigned value)
+{
+#ifdef HAVE___BUILTIN_CTZ
+   return __builtin_ctz(~value);
+#else
+   return _mesa_bitcount(value & ~(value + 1));
+#endif
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
+                               nir_ssa_def *pos, unsigned tex_samples,
+                               enum isl_aux_usage tex_aux_usage,
+                               enum brw_reg_type dst_type)
+{
+   /* If non-null, this is the outer-most if statement */
+   nir_if *outer_if = NULL;
+
+   nir_variable *color =
+      nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
+
+   nir_ssa_def *mcs = NULL;
+   if (tex_aux_usage == ISL_AUX_USAGE_MCS)
+      mcs = blorp_nir_txf_ms_mcs(b, v, pos);
+
+   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
+    *
+    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
+    *
+    * This ensures that when all samples have the same value, no numerical
+    * precision is lost, since each addition operation always adds two equal
+    * values, and summing two equal floating point values does not lose
+    * precision.
+    *
+    * We perform this computation by treating the texture_data array as a
+    * stack and performing the following operations:
+    *
+    * - push sample 0 onto stack
+    * - push sample 1 onto stack
+    * - add top two stack entries
+    * - push sample 2 onto stack
+    * - push sample 3 onto stack
+    * - add top two stack entries
+    * - add top two stack entries
+    * - divide top stack entry by 4
+    *
+    * Note that after pushing sample i onto the stack, the number of add
+    * operations we do is equal to the number of trailing 1 bits in i.  This
+    * works provided the total number of samples is a power of two, which it
+    * always is for i965.
+    *
+    * For integer formats, we replace the add operations with average
+    * operations and skip the final division.
+    */
+   nir_ssa_def *texture_data[5];
+   unsigned stack_depth = 0;
+   for (unsigned i = 0; i < tex_samples; ++i) {
+      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
+
+      /* Push sample i onto the stack */
+      assert(stack_depth < ARRAY_SIZE(texture_data));
+
+      nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
+                                        nir_channel(b, pos, 1),
+                                        nir_imm_int(b, i));
+      texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
+
+      if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
+         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
+          * suggests an optimization:
+          *
+          *     "A simple optimization with probable large return in
+          *     performance is to compare the MCS value to zero (indicating
+          *     all samples are on sample slice 0), and sample only from
+          *     sample slice 0 using ld2dss if MCS is zero."
+          *
+          * Note that in the case where the MCS value is zero, sampling from
+          * sample slice 0 using ld2dss and sampling from sample 0 using
+          * ld2dms are equivalent (since all samples are on sample slice 0).
+          * Since we have already sampled from sample 0, all we need to do is
+          * skip the remaining fetches and averaging if MCS is zero.
+          */
+         nir_ssa_def *mcs_zero =
+            nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
+         if (tex_samples == 16) {
+            mcs_zero = nir_iand(b, mcs_zero,
+               nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
+         }
+
+         nir_if *if_stmt = nir_if_create(b->shader);
+         if_stmt->condition = nir_src_for_ssa(mcs_zero);
+         nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
+
+         b->cursor = nir_after_cf_list(&if_stmt->then_list);
+         nir_store_var(b, color, texture_data[0], 0xf);
+
+         b->cursor = nir_after_cf_list(&if_stmt->else_list);
+         outer_if = if_stmt;
+      }
+
+      for (int j = 0; j < count_trailing_one_bits(i); j++) {
+         assert(stack_depth >= 2);
+         --stack_depth;
+
+         assert(dst_type == BRW_REGISTER_TYPE_F);
+         texture_data[stack_depth - 1] =
+            nir_fadd(b, texture_data[stack_depth - 1],
+                        texture_data[stack_depth]);
+      }
+   }
+
+   /* We should have just 1 sample on the stack now. */
+   assert(stack_depth == 1);
+
+   texture_data[0] = nir_fmul(b, texture_data[0],
+                              nir_imm_float(b, 1.0 / tex_samples));
+
+   nir_store_var(b, color, texture_data[0], 0xf);
+
+   if (outer_if)
+      b->cursor = nir_after_cf_node(&outer_if->cf_node);
+
+   return nir_load_var(b, color);
+}
+
+static inline nir_ssa_def *
+nir_imm_vec2(nir_builder *build, float x, float y)
+{
+   nir_const_value v;
+
+   memset(&v, 0, sizeof(v));
+   v.f32[0] = x;
+   v.f32[1] = y;
+
+   return nir_build_imm(build, 4, 32, v);
+}
+
+static nir_ssa_def *
+blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
+                                unsigned tex_samples,
+                                const struct brw_blorp_blit_prog_key *key,
+                                struct brw_blorp_blit_vars *v)
+{
+   nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
+   nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
+   nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
+
+   /* Translate coordinates to lay out the samples in a rectangular  grid
+    * roughly corresponding to sample locations.
+    */
+   pos_xy = nir_fmul(b, pos_xy, scale);
+   /* Adjust coordinates so that integers represent pixel centers rather
+    * than pixel edges.
+    */
+   pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
+   /* Clamp the X, Y texture coordinates to properly handle the sampling of
+    * texels on texture edges.
+    */
+   pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
+                        nir_vec2(b, nir_channel(b, rect_grid, 0),
+                                    nir_channel(b, rect_grid, 1)));
+
+   /* Store the fractional parts to be used as bilinear interpolation
+    * coefficients.
+    */
+   nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
+   /* Round the float coordinates down to nearest integer */
+   pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
+
+   nir_ssa_def *tex_data[4];
+   for (unsigned i = 0; i < 4; ++i) {
+      float sample_off_x = (float)(i & 0x1) / key->x_scale;
+      float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
+      nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
+
+      nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
+      nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
+
+      /* The MCS value we fetch has to match up with the pixel that we're
+       * sampling from. Since we sample from different pixels in each
+       * iteration of this "for" loop, the call to mcs_fetch() should be
+       * here inside the loop after computing the pixel coordinates.
+       */
+      nir_ssa_def *mcs = NULL;
+      if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+         mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
+
+      /* Compute sample index and map the sample index to a sample number.
+       * Sample index layout shows the numbering of slots in a rectangular
+       * grid of samples with in a pixel. Sample number layout shows the
+       * rectangular grid of samples roughly corresponding to the real sample
+       * locations with in a pixel.
+       * In case of 4x MSAA, layout of sample indices matches the layout of
+       * sample numbers:
+       *           ---------
+       *           | 0 | 1 |
+       *           ---------
+       *           | 2 | 3 |
+       *           ---------
+       *
+       * In case of 8x MSAA the two layouts don't match.
+       * sample index layout :  ---------    sample number layout :  ---------
+       *                        | 0 | 1 |                            | 5 | 2 |
+       *                        ---------                            ---------
+       *                        | 2 | 3 |                            | 4 | 6 |
+       *                        ---------                            ---------
+       *                        | 4 | 5 |                            | 0 | 3 |
+       *                        ---------                            ---------
+       *                        | 6 | 7 |                            | 7 | 1 |
+       *                        ---------                            ---------
+       *
+       * Fortunately, this can be done fairly easily as:
+       * S' = (0x17306425 >> (S * 4)) & 0xf
+       *
+       * In the case of 16x MSAA the two layouts don't match.
+       * Sample index layout:                Sample number layout:
+       * ---------------------               ---------------------
+       * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
+       * ---------------------               ---------------------
+       * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
+       * ---------------------               ---------------------
+       * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
+       * ---------------------               ---------------------
+       * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
+       * ---------------------               ---------------------
+       *
+       * This is equivalent to
+       * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
+       */
+      nir_ssa_def *frac = nir_ffract(b, sample_coords);
+      nir_ssa_def *sample =
+         nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
+                                            key->x_scale * key->y_scale));
+      sample = nir_f2i(b, sample);
+
+      if (tex_samples == 8) {
+         sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x17306425),
+                                       nir_ishl(b, sample, nir_imm_int(b, 2))),
+                           nir_imm_int(b, 0xf));
+      } else if (tex_samples == 16) {
+         nir_ssa_def *sample_low =
+            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
+                                 nir_ishl(b, sample, nir_imm_int(b, 2))),
+                     nir_imm_int(b, 0xf));
+         nir_ssa_def *sample_high =
+            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
+                                 nir_ishl(b, nir_iadd(b, sample,
+                                                      nir_imm_int(b, -8)),
+                                          nir_imm_int(b, 2))),
+                     nir_imm_int(b, 0xf));
+
+         sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
+                            sample_low, sample_high);
+      }
+      nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
+                                        nir_channel(b, sample_coords_int, 1),
+                                        sample);
+      tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
+   }
+
+   nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
+   nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
+   return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
+                      nir_flrp(b, tex_data[2], tex_data[3], frac_x),
+                      frac_y);
+}
+
+/**
+ * Generator for WM programs used in BLORP blits.
+ *
+ * The bulk of the work done by the WM program is to wrap and unwrap the
+ * coordinate transformations used by the hardware to store surfaces in
+ * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
+ * sample index for a multisampled surface) to a memory offset by the
+ * following formulas:
+ *
+ *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
+ *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
+ *
+ * For a single-sampled surface, or for a multisampled surface using
+ * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
+ * function:
+ *
+ *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
+ *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
+ *
+ * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bit 1 of the X and Y coordinates:
+ *
+ *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
+ *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
+ *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
+ *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
+ *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
+ *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ *           S = (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
+ * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
+ * the Y coordinate:
+ *
+ *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
+ *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
+ *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
+ *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
+ *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
+ *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
+ *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
+ *
+ * For X tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
+ * bytes wide and 8 rows high:
+ *
+ *   tile(x_tiled, X, Y, S) = A
+ *     where A = tile_num << 12 | offset
+ *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
+ *           offset = (Y' & 0b111) << 9
+ *                    | (X & 0b111111111)
+ *           X' = X * cpp
+ *           Y' = Y + S * qpitch
+ *   detile(x_tiled, A) = (X, Y, S)
+ *     where X = X' / cpp
+ *           Y = Y' % qpitch
+ *           S = Y' / qpitch
+ *           Y' = (tile_num / tile_pitch) << 3
+ *                | (A & 0b111000000000) >> 9
+ *           X' = (tile_num % tile_pitch) << 9
+ *                | (A & 0b111111111)
+ *
+ * (In all tiling formulas, cpp is the number of bytes occupied by a single
+ * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
+ * to fill the width of the surface, and qpitch is the spacing (in rows)
+ * between array slices).
+ *
+ * For Y tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
+ * bytes wide and 32 rows high:
+ *
+ *   tile(y_tiled, X, Y, S) = A
+ *     where A = tile_num << 12 | offset
+ *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
+ *           offset = (X' & 0b1110000) << 5
+ *                    | (Y' & 0b11111) << 4
+ *                    | (X' & 0b1111)
+ *           X' = X * cpp
+ *           Y' = Y + S * qpitch
+ *   detile(y_tiled, A) = (X, Y, S)
+ *     where X = X' / cpp
+ *           Y = Y' % qpitch
+ *           S = Y' / qpitch
+ *           Y' = (tile_num / tile_pitch) << 5
+ *                | (A & 0b111110000) >> 4
+ *           X' = (tile_num % tile_pitch) << 7
+ *                | (A & 0b111000000000) >> 5
+ *                | (A & 0b1111)
+ *
+ * For W tiling, tile() combines together the low-order bits of the X and Y
+ * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
+ * bytes wide and 64 rows high (note that W tiling is only used for stencil
+ * buffers, which always have cpp = 1 and S=0):
+ *
+ *   tile(w_tiled, X, Y, S) = A
+ *     where A = tile_num << 12 | offset
+ *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
+ *           offset = (X' & 0b111000) << 6
+ *                    | (Y' & 0b111100) << 3
+ *                    | (X' & 0b100) << 2
+ *                    | (Y' & 0b10) << 2
+ *                    | (X' & 0b10) << 1
+ *                    | (Y' & 0b1) << 1
+ *                    | (X' & 0b1)
+ *           X' = X * cpp = X
+ *           Y' = Y + S * qpitch
+ *   detile(w_tiled, A) = (X, Y, S)
+ *     where X = X' / cpp = X'
+ *           Y = Y' % qpitch = Y'
+ *           S = Y / qpitch = 0
+ *           Y' = (tile_num / tile_pitch) << 6
+ *                | (A & 0b111100000) >> 3
+ *                | (A & 0b1000) >> 2
+ *                | (A & 0b10) >> 1
+ *           X' = (tile_num % tile_pitch) << 6
+ *                | (A & 0b111000000000) >> 6
+ *                | (A & 0b10000) >> 2
+ *                | (A & 0b100) >> 1
+ *                | (A & 0b1)
+ *
+ * Finally, for a non-tiled surface, tile() simply combines together the X and
+ * Y coordinates in the natural way:
+ *
+ *   tile(untiled, X, Y, S) = A
+ *     where A = Y * pitch + X'
+ *           X' = X * cpp
+ *           Y' = Y + S * qpitch
+ *   detile(untiled, A) = (X, Y, S)
+ *     where X = X' / cpp
+ *           Y = Y' % qpitch
+ *           S = Y' / qpitch
+ *           X' = A % pitch
+ *           Y' = A / pitch
+ *
+ * (In these formulas, pitch is the number of bytes occupied by a single row
+ * of samples).
+ */
+static nir_shader *
+brw_blorp_build_nir_shader(struct brw_context *brw,
+                           const struct brw_blorp_blit_prog_key *key)
+{
+   nir_ssa_def *src_pos, *dst_pos, *color;
+
+   /* Sanity checks */
+   if (key->dst_tiled_w && key->rt_samples > 1) {
+      /* If the destination image is W tiled and multisampled, then the thread
+       * must be dispatched once per sample, not once per pixel.  This is
+       * necessary because after conversion between W and Y tiling, there's no
+       * guarantee that all samples corresponding to a single pixel will still
+       * be together.
+       */
+      assert(key->persample_msaa_dispatch);
+   }
+
+   if (key->blend) {
+      /* We are blending, which means we won't have an opportunity to
+       * translate the tiling and sample count for the texture surface.  So
+       * the surface state for the texture must be configured with the correct
+       * tiling and sample count.
+       */
+      assert(!key->src_tiled_w);
+      assert(key->tex_samples == key->src_samples);
+      assert(key->tex_layout == key->src_layout);
+      assert(key->tex_samples > 0);
+   }
+
+   if (key->persample_msaa_dispatch) {
+      /* It only makes sense to do persample dispatch if the render target is
+       * configured as multisampled.
+       */
+      assert(key->rt_samples > 0);
+   }
+
+   /* Make sure layout is consistent with sample count */
+   assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
+          (key->tex_samples <= 1));
+   assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
+          (key->rt_samples <= 1));
+   assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
+          (key->src_samples <= 1));
+   assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
+          (key->dst_samples <= 1));
+
+   nir_builder b;
+   nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
+
+   struct brw_blorp_blit_vars v;
+   brw_blorp_blit_vars_init(&b, &v, key);
+
+   dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
+
+   /* Render target and texture hardware don't support W tiling until Gen8. */
+   const bool rt_tiled_w = false;
+   const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
+
+   /* The address that data will be written to is determined by the
+    * coordinates supplied to the WM thread and the tiling and sample count of
+    * the render target, according to the formula:
+    *
+    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
+    *
+    * If the actual tiling and sample count of the destination surface are not
+    * the same as the configuration of the render target, then these
+    * coordinates are wrong and we have to adjust them to compensate for the
+    * difference.
+    */
+   if (rt_tiled_w != key->dst_tiled_w ||
+       key->rt_samples != key->dst_samples ||
+       key->rt_layout != key->dst_layout) {
+      dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
+                                      key->rt_layout);
+      /* Now (X, Y, S) = detile(rt_tiling, offset) */
+      if (rt_tiled_w != key->dst_tiled_w)
+         dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
+      /* Now (X, Y, S) = detile(rt_tiling, offset) */
+      dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
+                                      key->dst_layout);
+   }
+
+   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
+    *
+    * That is: X, Y and S now contain the true coordinates and sample index of
+    * the data that the WM thread should output.
+    *
+    * If we need to kill pixels that are outside the destination rectangle,
+    * now is the time to do it.
+    */
+   if (key->use_kill) {
+      assert(!(key->blend && key->blit_scaled));
+      blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
+   }
+
+   src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
+   if (dst_pos->num_components == 3) {
+      /* The sample coordinate is an integer that we want left alone but
+       * blorp_blit_apply_transform() blindly applies the transform to all
+       * three coordinates.  Grab the original sample index.
+       */
+      src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
+                             nir_channel(&b, src_pos, 1),
+                             nir_channel(&b, dst_pos, 2));
+   }
+
+   /* If the source image is not multisampled, then we want to fetch sample
+    * number 0, because that's the only sample there is.
+    */
+   if (key->src_samples == 1)
+      src_pos = nir_channels(&b, src_pos, 0x3);
+
+   /* X, Y, and S are now the coordinates of the pixel in the source image
+    * that we want to texture from.  Exception: if we are blending, then S is
+    * irrelevant, because we are going to fetch all samples.
+    */
+   if (key->blend && !key->blit_scaled) {
+      /* Resolves (effecively) use texelFetch, so we need integers and we
+       * don't care about the sample index if we got one.
+       */
+      src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
+
+      if (brw->gen == 6) {
+         /* Because gen6 only supports 4x interleved MSAA, we can do all the
+          * blending we need with a single linear-interpolated texture lookup
+          * at the center of the sample. The texture coordinates to be odd
+          * integers so that they correspond to the center of a 2x2 block
+          * representing the four samples that maxe up a pixel.  So we need
+          * to multiply our X and Y coordinates each by 2 and then add 1.
+          */
+         src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
+         src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
+         src_pos = nir_i2f(&b, src_pos);
+         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+      } else {
+         /* Gen7+ hardware doesn't automaticaly blend. */
+         color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
+                                                key->tex_aux_usage,
+                                                key->texture_data_type);
+      }
+   } else if (key->blend && key->blit_scaled) {
+      assert(!key->use_kill);
+      color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
+   } else {
+      if (key->bilinear_filter) {
+         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
+      } else {
+         /* We're going to use texelFetch, so we need integers */
+         if (src_pos->num_components == 2) {
+            src_pos = nir_f2i(&b, src_pos);
+         } else {
+            assert(src_pos->num_components == 3);
+            src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
+                                   nir_channel(&b, nir_f2i(&b, src_pos), 1),
+                                   nir_channel(&b, src_pos, 2));
+         }
+
+         /* We aren't blending, which means we just want to fetch a single
+          * sample from the source surface.  The address that we want to fetch
+          * from is related to the X, Y and S values according to the formula:
+          *
+          * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
+          *
+          * If the actual tiling and sample count of the source surface are
+          * not the same as the configuration of the texture, then we need to
+          * adjust the coordinates to compensate for the difference.
+          */
+         if (tex_tiled_w != key->src_tiled_w ||
+             key->tex_samples != key->src_samples ||
+             key->tex_layout != key->src_layout) {
+            src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
+                                            key->src_layout);
+            /* Now (X, Y, S) = detile(src_tiling, offset) */
+            if (tex_tiled_w != key->src_tiled_w)
+               src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
+            /* Now (X, Y, S) = detile(tex_tiling, offset) */
+            src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
+                                            key->tex_layout);
+         }
+
+         /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
+          *
+          * In other words: X, Y, and S now contain values which, when passed to
+          * the texturing unit, will cause data to be read from the correct
+          * memory location.  So we can fetch the texel now.
+          */
+         if (key->src_samples == 1) {
+            color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
+         } else {
+            nir_ssa_def *mcs = NULL;
+            if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
+               mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
+
+            color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
+         }
+      }
+   }
+
+   nir_store_var(&b, v.color_out, color, 0xf);
+
+   return b.shader;
+}
+
+static void
+brw_blorp_get_blit_kernel(struct brw_context *brw,
+                          struct brw_blorp_params *params,
+                          const struct brw_blorp_blit_prog_key *prog_key)
+{
+   if (brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
+                        prog_key, sizeof(*prog_key),
+                        &params->wm_prog_kernel, &params->wm_prog_data))
+      return;
+
+   const unsigned *program;
+   unsigned program_size;
+   struct brw_blorp_prog_data prog_data;
+
+   /* Try and compile with NIR first.  If that fails, fall back to the old
+    * method of building shaders manually.
+    */
+   nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key);
+   struct brw_wm_prog_key wm_key;
+   brw_blorp_init_wm_prog_key(&wm_key);
+   wm_key.tex.compressed_multisample_layout_mask =
+      prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
+   wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
+   wm_key.multisample_fbo = prog_key->rt_samples > 1;
+
+   program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
+                                          &prog_data, &program_size);
+
+   brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
+                    prog_key, sizeof(*prog_key),
+                    program, program_size,
+                    &prog_data, sizeof(prog_data),
+                    &params->wm_prog_kernel, &params->wm_prog_data);
+}
+
+static void
+brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
+                                GLfloat src0, GLfloat src1,
+                                GLfloat dst0, GLfloat dst1,
+                                bool mirror)
+{
+   float scale = (src1 - src0) / (dst1 - dst0);
+   if (!mirror) {
+      /* When not mirroring a coordinate (say, X), we need:
+       *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
+       * Therefore:
+       *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
+       *
+       * blorp program uses "round toward zero" to convert the
+       * transformed floating point coordinates to integer coordinates,
+       * whereas the behaviour we actually want is "round to nearest",
+       * so 0.5 provides the necessary correction.
+       */
+      xform->multiplier = scale;
+      xform->offset = src0 + (-dst0 + 0.5f) * scale;
+   } else {
+      /* When mirroring X we need:
+       *   src_x - src_x0 = dst_x1 - dst_x - 0.5
+       * Therefore:
+       *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
+       */
+      xform->multiplier = -scale;
+      xform->offset = src0 + (dst1 - 0.5f) * scale;
+   }
+}
+
+/**
+ * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
+ * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED).  The mappings are
+ *
+ * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
+ *         0          1          2          3             4            5
+ *         4          5          6          7             0            1
+ *   SCS_RED, SCS_GREEN,  SCS_BLUE, SCS_ALPHA,     SCS_ZERO,     SCS_ONE
+ *
+ * which is simply adding 4 then modding by 8 (or anding with 7).
+ *
+ * We then may need to apply workarounds for textureGather hardware bugs.
+ */
+static enum isl_channel_select
+swizzle_to_scs(GLenum swizzle)
+{
+   return ((swizzle + 4) & 7);
+}
+
+static void
+surf_convert_to_single_slice(struct brw_context *brw,
+                             struct brw_blorp_surface_info *info)
+{
+   /* This only makes sense for a single level and array slice */
+   assert(info->view.levels == 1 && info->view.array_len == 1);
+
+   /* Just bail if we have nothing to do. */
+   if (info->surf.dim == ISL_SURF_DIM_2D &&
+       info->view.base_level == 0 && info->view.base_array_layer == 0 &&
+       info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
+      return;
+
+   uint32_t x_offset_sa, y_offset_sa;
+   isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
+                                info->view.base_array_layer, 0,
+                                &x_offset_sa, &y_offset_sa);
+
+   uint32_t byte_offset;
+   isl_tiling_get_intratile_offset_sa(&brw->isl_dev, info->surf.tiling,
+                                      info->view.format, info->surf.row_pitch,
+                                      x_offset_sa, y_offset_sa,
+                                      &byte_offset,
+                                      &info->tile_x_sa, &info->tile_y_sa);
+   info->offset += byte_offset;
+
+   /* TODO: Once this file gets converted to C, we shouls just use designated
+    * initializers.
+    */
+   struct isl_surf_init_info init_info = { 0, };
+
+   init_info.dim = ISL_SURF_DIM_2D;
+   init_info.format = ISL_FORMAT_R8_UINT;
+   init_info.width =
+      minify(info->surf.logical_level0_px.width, info->view.base_level);
+   init_info.height =
+      minify(info->surf.logical_level0_px.height, info->view.base_level);
+   init_info.depth = 1;
+   init_info.levels = 1;
+   init_info.array_len = 1;
+   init_info.samples = info->surf.samples;
+   init_info.min_pitch = info->surf.row_pitch;
+   init_info.usage = info->surf.usage;
+   init_info.tiling_flags = 1 << info->surf.tiling;
+
+   isl_surf_init_s(&brw->isl_dev, &info->surf, &init_info);
+   assert(info->surf.row_pitch == init_info.min_pitch);
+
+   /* The view is also different now. */
+   info->view.base_level = 0;
+   info->view.levels = 1;
+   info->view.base_array_layer = 0;
+   info->view.array_len = 1;
+}
+
+static void
+surf_fake_interleaved_msaa(struct brw_context *brw,
+                           struct brw_blorp_surface_info *info)
+{
+   assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
+
+   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+   surf_convert_to_single_slice(brw, info);
+
+   info->surf.logical_level0_px = info->surf.phys_level0_sa;
+   info->surf.samples = 1;
+   info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+}
+
+static void
+surf_retile_w_to_y(struct brw_context *brw,
+                   struct brw_blorp_surface_info *info)
+{
+   assert(info->surf.tiling == ISL_TILING_W);
+
+   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
+   surf_convert_to_single_slice(brw, info);
+
+   /* On gen7+, we don't have interleaved multisampling for color render
+    * targets so we have to fake it.
+    *
+    * TODO: Are we sure we don't also need to fake it on gen6?
+    */
+   if (brw->gen > 6 && info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+      info->surf.logical_level0_px = info->surf.phys_level0_sa;
+      info->surf.samples = 1;
+      info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
+   }
+
+   if (brw->gen == 6) {
+      /* Gen6 stencil buffers have a very large alignment coming in from the
+       * miptree.  It's out-of-bounds for what the surface state can handle.
+       * Since we have a single layer and level, it doesn't really matter as
+       * long as we don't pass a bogus value into isl_surf_fill_state().
+       */
+      info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
+   }
+
+   /* Now that we've converted everything to a simple 2-D surface with only
+    * one miplevel, we can go about retiling it.
+    */
+   const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
+   info->surf.tiling = ISL_TILING_Y0;
+   info->surf.logical_level0_px.width =
+      ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
+   info->surf.logical_level0_px.height =
+      ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
+   info->tile_x_sa *= 2;
+   info->tile_y_sa /= 2;
+}
+
+void
+brw_blorp_blit(struct brw_context *brw,
+               const struct brw_blorp_surf *src_surf,
+               unsigned src_level, unsigned src_layer,
+               enum isl_format src_format, int src_swizzle,
+               const struct brw_blorp_surf *dst_surf,
+               unsigned dst_level, unsigned dst_layer,
+               enum isl_format dst_format,
+               float src_x0, float src_y0,
+               float src_x1, float src_y1,
+               float dst_x0, float dst_y0,
+               float dst_x1, float dst_y1,
+               GLenum filter, bool mirror_x, bool mirror_y)
+{
+   struct brw_blorp_params params;
+   brw_blorp_params_init(&params);
+
+   brw_blorp_surface_info_init(brw, &params.src, src_surf, src_level,
+                               src_layer, src_format, false);
+   brw_blorp_surface_info_init(brw, &params.dst, dst_surf, dst_level,
+                               dst_layer, dst_format, true);
+
+   struct brw_blorp_blit_prog_key wm_prog_key;
+   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
+
+   if (isl_format_has_sint_channel(params.src.view.format)) {
+      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
+   } else if (isl_format_has_uint_channel(params.src.view.format)) {
+      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
+   } else {
+      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
+   }
+
+   /* Scaled blitting or not. */
+   wm_prog_key.blit_scaled =
+      ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
+       (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
+
+   /* Scaling factors used for bilinear filtering in multisample scaled
+    * blits.
+    */
+   if (params.src.surf.samples == 16)
+      wm_prog_key.x_scale = 4.0f;
+   else
+      wm_prog_key.x_scale = 2.0f;
+   wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
+
+   if (filter == GL_LINEAR &&
+       params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
+      wm_prog_key.bilinear_filter = true;
+
+   if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
+       (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
+       !isl_format_has_int_channel(params.src.surf.format) &&
+       params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
+      /* We are downsampling a non-integer color buffer, so blend.
+       *
+       * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
+       *
+       *    "If the source formats are integer types or stencil values, a
+       *    single sample's value is selected for each pixel."
+       *
+       * This implies we should not blend in that case.
+       */
+      wm_prog_key.blend = true;
+   }
+
+   /* src_samples and dst_samples are the true sample counts */
+   wm_prog_key.src_samples = params.src.surf.samples;
+   wm_prog_key.dst_samples = params.dst.surf.samples;
+
+   wm_prog_key.tex_aux_usage = params.src.aux_usage;
+
+   /* src_layout and dst_layout indicate the true MSAA layout used by src and
+    * dst.
+    */
+   wm_prog_key.src_layout = params.src.surf.msaa_layout;
+   wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
+
+   /* Round floating point values to nearest integer to avoid "off by one texel"
+    * kind of errors when blitting.
+    */
+   params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
+   params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
+   params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
+   params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
+
+   params.wm_inputs.rect_grid.x1 =
+      minify(params.src.surf.logical_level0_px.width, src_level) *
+      wm_prog_key.x_scale - 1.0f;
+   params.wm_inputs.rect_grid.y1 =
+      minify(params.src.surf.logical_level0_px.height, src_level) *
+      wm_prog_key.y_scale - 1.0f;
+
+   brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[0],
+                                   src_x0, src_x1, dst_x0, dst_x1, mirror_x);
+   brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[1],
+                                   src_y0, src_y1, dst_y0, dst_y1, mirror_y);
+
+   /* For some texture types, we need to pass the layer through the sampler. */
+   params.wm_inputs.src_z = params.src.z_offset;
+
+   if (brw->gen > 6 &&
+       params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
+      assert(params.dst.surf.samples > 1);
+
+      /* We must expand the rectangle we send through the rendering pipeline,
+       * to account for the fact that we are mapping the destination region as
+       * single-sampled when it is in fact multisampled.  We must also align
+       * it to a multiple of the multisampling pattern, because the
+       * differences between multisampled and single-sampled surface formats
+       * will mean that pixels are scrambled within the multisampling pattern.
+       * TODO: what if this makes the coordinates too large?
+       *
+       * Note: this only works if the destination surface uses the IMS layout.
+       * If it's UMS, then we have no choice but to set up the rendering
+       * pipeline as multisampled.
+       */
+      switch (params.dst.surf.samples) {
+      case 2:
+         params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+         params.y0 = ROUND_DOWN_TO(params.y0, 4);
+         params.x1 = ALIGN(params.x1 * 2, 4);
+         params.y1 = ALIGN(params.y1, 4);
+         break;
+      case 4:
+         params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
+         params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+         params.x1 = ALIGN(params.x1 * 2, 4);
+         params.y1 = ALIGN(params.y1 * 2, 4);
+         break;
+      case 8:
+         params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+         params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
+         params.x1 = ALIGN(params.x1 * 4, 8);
+         params.y1 = ALIGN(params.y1 * 2, 4);
+         break;
+      case 16:
+         params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
+         params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
+         params.x1 = ALIGN(params.x1 * 4, 8);
+         params.y1 = ALIGN(params.y1 * 4, 8);
+         break;
+      default:
+         unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
+      }
+
+      surf_fake_interleaved_msaa(brw, &params.dst);
+
+      wm_prog_key.use_kill = true;
+   }
+
+   if (params.dst.surf.tiling == ISL_TILING_W) {
+      /* We must modify the rectangle we send through the rendering pipeline
+       * (and the size and x/y offset of the destination surface), to account
+       * for the fact that we are mapping it as Y-tiled when it is in fact
+       * W-tiled.
+       *
+       * Both Y tiling and W tiling can be understood as organizations of
+       * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
+       * is different, but the layout of the 32-byte sub-tiles within the 4k
+       * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
+       * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
+       * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
+       *
+       * Therefore, to account for the layout differences within the 32-byte
+       * sub-tiles, we must expand the rectangle so the X coordinates of its
+       * edges are multiples of 8 (the W sub-tile width), and its Y
+       * coordinates of its edges are multiples of 4 (the W sub-tile height).
+       * Then we need to scale the X and Y coordinates of the rectangle to
+       * account for the differences in aspect ratio between the Y and W
+       * sub-tiles.  We need to modify the layer width and height similarly.
+       *
+       * A correction needs to be applied when MSAA is in use: since
+       * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
+       * we need to align the Y coordinates to multiples of 8, so that when
+       * they are divided by two they are still multiples of 4.
+       *
+       * Note: Since the x/y offset of the surface will be applied using the
+       * SURFACE_STATE command packet, it will be invisible to the swizzling
+       * code in the shader; therefore it needs to be in a multiple of the
+       * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
+       * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
+       * buffer), and the miplevel alignment used for stencil buffers is 8
+       * pixels horizontally and either 4 or 8 pixels vertically (see
+       * intel_horizontal_texture_alignment_unit() and
+       * intel_vertical_texture_alignment_unit()).
+       *
+       * Note: Also, since the SURFACE_STATE command packet can only apply
+       * offsets that are multiples of 4 pixels horizontally and 2 pixels
+       * vertically, it is important that the offsets will be multiples of
+       * these sizes after they are converted into Y-tiled coordinates.
+       * Fortunately they will be, since we know from above that the offsets
+       * are a multiple of the 32-byte sub-tile size, and in Y-tiled
+       * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
+       *
+       * TODO: what if this makes the coordinates (or the texture size) too
+       * large?
+       */
+      const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
+      params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
+      params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
+      params.x1 = ALIGN(params.x1, x_align) * 2;
+      params.y1 = ALIGN(params.y1, y_align) / 2;
+
+      /* Retile the surface to Y-tiled */
+      surf_retile_w_to_y(brw, &params.dst);
+
+      wm_prog_key.dst_tiled_w = true;
+      wm_prog_key.use_kill = true;
+
+      if (params.dst.surf.samples > 1) {
+         /* If the destination surface is a W-tiled multisampled stencil
+          * buffer that we're mapping as Y tiled, then we need to arrange for
+          * the WM program to run once per sample rather than once per pixel,
+          * because the memory layout of related samples doesn't match between
+          * W and Y tiling.
+          */
+         wm_prog_key.persample_msaa_dispatch = true;
+      }
+   }
+
+   if (brw->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
+      /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
+       * Broadwell adds support for sampling from stencil.
+       *
+       * See the comments above concerning x/y offset alignment for the
+       * destination surface.
+       *
+       * TODO: what if this makes the texture size too large?
+       */
+      surf_retile_w_to_y(brw, &params.src);
+
+      wm_prog_key.src_tiled_w = true;
+   }
+
+   /* tex_samples and rt_samples are the sample counts that are set up in
+    * SURFACE_STATE.
+    */
+   wm_prog_key.tex_samples = params.src.surf.samples;
+   wm_prog_key.rt_samples  = params.dst.surf.samples;
+
+   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
+    * use to access the source and destination surfaces.
+    */
+   wm_prog_key.tex_layout = params.src.surf.msaa_layout;
+   wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
+
+   if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
+      /* We are blitting from a multisample buffer to a multisample buffer, so
+       * we must preserve samples within a pixel.  This means we have to
+       * arrange for the WM program to run once per sample rather than once
+       * per pixel.
+       */
+      wm_prog_key.persample_msaa_dispatch = true;
+   }
+
+   brw_blorp_get_blit_kernel(brw, &params, &wm_prog_key);
+
+   for (unsigned i = 0; i < 4; i++) {
+      params.src.view.channel_select[i] =
+         swizzle_to_scs(GET_SWZ(src_swizzle, i));
+   }
+
+   brw_blorp_exec(brw, &params);
+}
diff --git a/src/mesa/drivers/dri/i965/brw_blorp_blit.cpp b/src/mesa/drivers/dri/i965/brw_blorp_blit.cpp
deleted file mode 100644
index 858a563..0000000
--- a/src/mesa/drivers/dri/i965/brw_blorp_blit.cpp
+++ /dev/null
@@ -1,1662 +0,0 @@
-/*
- * Copyright © 2012 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
-
-#include "compiler/nir/nir_builder.h"
-
-#include "blorp_priv.h"
-#include "brw_context.h"
-#include "intel_mipmap_tree.h"
-#include "brw_state.h"
-#include "brw_meta_util.h"
-
-#define FILE_DEBUG_FLAG DEBUG_BLORP
-
-/**
- * Enum to specify the order of arguments in a sampler message
- */
-enum sampler_message_arg
-{
-   SAMPLER_MESSAGE_ARG_U_FLOAT,
-   SAMPLER_MESSAGE_ARG_V_FLOAT,
-   SAMPLER_MESSAGE_ARG_U_INT,
-   SAMPLER_MESSAGE_ARG_V_INT,
-   SAMPLER_MESSAGE_ARG_R_INT,
-   SAMPLER_MESSAGE_ARG_SI_INT,
-   SAMPLER_MESSAGE_ARG_MCS_INT,
-   SAMPLER_MESSAGE_ARG_ZERO_INT,
-};
-
-struct brw_blorp_blit_vars {
-   /* Input values from brw_blorp_wm_inputs */
-   nir_variable *v_discard_rect;
-   nir_variable *v_rect_grid;
-   nir_variable *v_coord_transform;
-   nir_variable *v_src_z;
-
-   /* gl_FragCoord */
-   nir_variable *frag_coord;
-
-   /* gl_FragColor */
-   nir_variable *color_out;
-};
-
-static void
-brw_blorp_blit_vars_init(nir_builder *b, struct brw_blorp_blit_vars *v,
-                         const struct brw_blorp_blit_prog_key *key)
-{
-    /* Blended and scaled blits never use pixel discard. */
-    assert(!key->use_kill || !(key->blend && key->blit_scaled));
-
-#define LOAD_INPUT(name, type)\
-   v->v_##name = nir_variable_create(b->shader, nir_var_shader_in, \
-                                     type, #name); \
-   v->v_##name->data.interpolation = INTERP_MODE_FLAT; \
-   v->v_##name->data.location = VARYING_SLOT_VAR0 + \
-      offsetof(struct brw_blorp_wm_inputs, name) / (4 * sizeof(float));
-
-   LOAD_INPUT(discard_rect, glsl_vec4_type())
-   LOAD_INPUT(rect_grid, glsl_vec4_type())
-   LOAD_INPUT(coord_transform, glsl_vec4_type())
-   LOAD_INPUT(src_z, glsl_uint_type())
-
-#undef LOAD_INPUT
-
-   v->frag_coord = nir_variable_create(b->shader, nir_var_shader_in,
-                                       glsl_vec4_type(), "gl_FragCoord");
-   v->frag_coord->data.location = VARYING_SLOT_POS;
-   v->frag_coord->data.origin_upper_left = true;
-
-   v->color_out = nir_variable_create(b->shader, nir_var_shader_out,
-                                      glsl_vec4_type(), "gl_FragColor");
-   v->color_out->data.location = FRAG_RESULT_COLOR;
-}
-
-nir_ssa_def *
-blorp_blit_get_frag_coords(nir_builder *b,
-                           const struct brw_blorp_blit_prog_key *key,
-                           struct brw_blorp_blit_vars *v)
-{
-   nir_ssa_def *coord = nir_f2i(b, nir_load_var(b, v->frag_coord));
-
-   if (key->persample_msaa_dispatch) {
-      return nir_vec3(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1),
-         nir_load_system_value(b, nir_intrinsic_load_sample_id, 0));
-   } else {
-      return nir_vec2(b, nir_channel(b, coord, 0), nir_channel(b, coord, 1));
-   }
-}
-
-/**
- * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
- * coordinates.
- */
-nir_ssa_def *
-blorp_blit_apply_transform(nir_builder *b, nir_ssa_def *src_pos,
-                           struct brw_blorp_blit_vars *v)
-{
-   nir_ssa_def *coord_transform = nir_load_var(b, v->v_coord_transform);
-
-   nir_ssa_def *offset = nir_vec2(b, nir_channel(b, coord_transform, 1),
-                                     nir_channel(b, coord_transform, 3));
-   nir_ssa_def *mul = nir_vec2(b, nir_channel(b, coord_transform, 0),
-                                  nir_channel(b, coord_transform, 2));
-
-   return nir_ffma(b, src_pos, mul, offset);
-}
-
-static inline void
-blorp_nir_discard_if_outside_rect(nir_builder *b, nir_ssa_def *pos,
-                                  struct brw_blorp_blit_vars *v)
-{
-   nir_ssa_def *c0, *c1, *c2, *c3;
-   nir_ssa_def *discard_rect = nir_load_var(b, v->v_discard_rect);
-   nir_ssa_def *dst_x0 = nir_channel(b, discard_rect, 0);
-   nir_ssa_def *dst_x1 = nir_channel(b, discard_rect, 1);
-   nir_ssa_def *dst_y0 = nir_channel(b, discard_rect, 2);
-   nir_ssa_def *dst_y1 = nir_channel(b, discard_rect, 3);
-
-   c0 = nir_ult(b, nir_channel(b, pos, 0), dst_x0);
-   c1 = nir_uge(b, nir_channel(b, pos, 0), dst_x1);
-   c2 = nir_ult(b, nir_channel(b, pos, 1), dst_y0);
-   c3 = nir_uge(b, nir_channel(b, pos, 1), dst_y1);
-
-   nir_ssa_def *oob = nir_ior(b, nir_ior(b, c0, c1), nir_ior(b, c2, c3));
-
-   nir_intrinsic_instr *discard =
-      nir_intrinsic_instr_create(b->shader, nir_intrinsic_discard_if);
-   discard->src[0] = nir_src_for_ssa(oob);
-   nir_builder_instr_insert(b, &discard->instr);
-}
-
-static nir_tex_instr *
-blorp_create_nir_tex_instr(nir_builder *b, struct brw_blorp_blit_vars *v,
-                           nir_texop op, nir_ssa_def *pos, unsigned num_srcs,
-                           enum brw_reg_type dst_type)
-{
-   nir_tex_instr *tex = nir_tex_instr_create(b->shader, num_srcs);
-
-   tex->op = op;
-
-   switch (dst_type) {
-   case BRW_REGISTER_TYPE_F:
-      tex->dest_type = nir_type_float;
-      break;
-   case BRW_REGISTER_TYPE_D:
-      tex->dest_type = nir_type_int;
-      break;
-   case BRW_REGISTER_TYPE_UD:
-      tex->dest_type = nir_type_uint;
-      break;
-   default:
-      unreachable("Invalid texture return type");
-   }
-
-   tex->is_array = false;
-   tex->is_shadow = false;
-
-   /* Blorp only has one texture and it's bound at unit 0 */
-   tex->texture = NULL;
-   tex->sampler = NULL;
-   tex->texture_index = 0;
-   tex->sampler_index = 0;
-
-   /* To properly handle 3-D and 2-D array textures, we pull the Z component
-    * from a uniform.  TODO: This is a bit magic; we should probably make this
-    * more explicit in the future.
-    */
-   assert(pos->num_components >= 2);
-   pos = nir_vec3(b, nir_channel(b, pos, 0), nir_channel(b, pos, 1),
-                     nir_load_var(b, v->v_src_z));
-
-   tex->src[0].src_type = nir_tex_src_coord;
-   tex->src[0].src = nir_src_for_ssa(pos);
-   tex->coord_components = 3;
-
-   nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, NULL);
-
-   return tex;
-}
-
-static nir_ssa_def *
-blorp_nir_tex(nir_builder *b, struct brw_blorp_blit_vars *v,
-              nir_ssa_def *pos, enum brw_reg_type dst_type)
-{
-   nir_tex_instr *tex =
-      blorp_create_nir_tex_instr(b, v, nir_texop_tex, pos, 2, dst_type);
-
-   assert(pos->num_components == 2);
-   tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
-   tex->src[1].src_type = nir_tex_src_lod;
-   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
-
-   nir_builder_instr_insert(b, &tex->instr);
-
-   return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf(nir_builder *b, struct brw_blorp_blit_vars *v,
-              nir_ssa_def *pos, enum brw_reg_type dst_type)
-{
-   nir_tex_instr *tex =
-      blorp_create_nir_tex_instr(b, v, nir_texop_txf, pos, 2, dst_type);
-
-   tex->sampler_dim = GLSL_SAMPLER_DIM_3D;
-   tex->src[1].src_type = nir_tex_src_lod;
-   tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
-
-   nir_builder_instr_insert(b, &tex->instr);
-
-   return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf_ms(nir_builder *b, struct brw_blorp_blit_vars *v,
-                 nir_ssa_def *pos, nir_ssa_def *mcs, enum brw_reg_type dst_type)
-{
-   nir_tex_instr *tex =
-      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms, pos,
-                                 mcs != NULL ? 3 : 2, dst_type);
-
-   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
-
-   tex->src[1].src_type = nir_tex_src_ms_index;
-   if (pos->num_components == 2) {
-      tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
-   } else {
-      assert(pos->num_components == 3);
-      tex->src[1].src = nir_src_for_ssa(nir_channel(b, pos, 2));
-   }
-
-   if (mcs) {
-      tex->src[2].src_type = nir_tex_src_ms_mcs;
-      tex->src[2].src = nir_src_for_ssa(mcs);
-   }
-
-   nir_builder_instr_insert(b, &tex->instr);
-
-   return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-blorp_nir_txf_ms_mcs(nir_builder *b, struct brw_blorp_blit_vars *v, nir_ssa_def *pos)
-{
-   nir_tex_instr *tex =
-      blorp_create_nir_tex_instr(b, v, nir_texop_txf_ms_mcs,
-                                 pos, 1, BRW_REGISTER_TYPE_D);
-
-   tex->sampler_dim = GLSL_SAMPLER_DIM_MS;
-
-   nir_builder_instr_insert(b, &tex->instr);
-
-   return &tex->dest.ssa;
-}
-
-static nir_ssa_def *
-nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
-                  uint32_t src_mask, int src_left_shift)
-{
-   nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
-
-   nir_ssa_def *shifted;
-   if (src_left_shift > 0) {
-      shifted = nir_ishl(b, masked, nir_imm_int(b, src_left_shift));
-   } else if (src_left_shift < 0) {
-      shifted = nir_ushr(b, masked, nir_imm_int(b, -src_left_shift));
-   } else {
-      assert(src_left_shift == 0);
-      shifted = masked;
-   }
-
-   return nir_ior(b, dst, shifted);
-}
-
-/**
- * Emit code to compensate for the difference between Y and W tiling.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- *   (X', Y', S') = detile(W-MAJOR, tile(Y-MAJOR, X, Y, S))
- *
- * (See brw_blorp_build_nir_shader).
- */
-static inline nir_ssa_def *
-blorp_nir_retile_y_to_w(nir_builder *b, nir_ssa_def *pos)
-{
-   assert(pos->num_components == 2);
-   nir_ssa_def *x_Y = nir_channel(b, pos, 0);
-   nir_ssa_def *y_Y = nir_channel(b, pos, 1);
-
-   /* Given X and Y coordinates that describe an address using Y tiling,
-    * translate to the X and Y coordinates that describe the same address
-    * using W tiling.
-    *
-    * If we break down the low order bits of X and Y, using a
-    * single letter to represent each low-order bit:
-    *
-    *   X = A << 7 | 0bBCDEFGH
-    *   Y = J << 5 | 0bKLMNP                                       (1)
-    *
-    * Then we can apply the Y tiling formula to see the memory offset being
-    * addressed:
-    *
-    *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
-    *
-    * If we apply the W detiling formula to this memory location, that the
-    * corresponding X' and Y' coordinates are:
-    *
-    *   X' = A << 6 | 0bBCDPFH                                     (3)
-    *   Y' = J << 6 | 0bKLMNEG
-    *
-    * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
-    * we need to make the following computation:
-    *
-    *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
-    *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
-    */
-   nir_ssa_def *x_W = nir_imm_int(b, 0);
-   x_W = nir_mask_shift_or(b, x_W, x_Y, 0xfffffff4, -1);
-   x_W = nir_mask_shift_or(b, x_W, y_Y, 0x1, 2);
-   x_W = nir_mask_shift_or(b, x_W, x_Y, 0x1, 0);
-
-   nir_ssa_def *y_W = nir_imm_int(b, 0);
-   y_W = nir_mask_shift_or(b, y_W, y_Y, 0xfffffffe, 1);
-   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x8, -2);
-   y_W = nir_mask_shift_or(b, y_W, x_Y, 0x2, -1);
-
-   return nir_vec2(b, x_W, y_W);
-}
-
-/**
- * Emit code to compensate for the difference between Y and W tiling.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- *   (X', Y', S') = detile(Y-MAJOR, tile(W-MAJOR, X, Y, S))
- *
- * (See brw_blorp_build_nir_shader).
- */
-static inline nir_ssa_def *
-blorp_nir_retile_w_to_y(nir_builder *b, nir_ssa_def *pos)
-{
-   assert(pos->num_components == 2);
-   nir_ssa_def *x_W = nir_channel(b, pos, 0);
-   nir_ssa_def *y_W = nir_channel(b, pos, 1);
-
-   /* Applying the same logic as above, but in reverse, we obtain the
-    * formulas:
-    *
-    * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
-    * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
-    */
-   nir_ssa_def *x_Y = nir_imm_int(b, 0);
-   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0xfffffffa, 1);
-   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x2, 2);
-   x_Y = nir_mask_shift_or(b, x_Y, y_W, 0x1, 1);
-   x_Y = nir_mask_shift_or(b, x_Y, x_W, 0x1, 0);
-
-   nir_ssa_def *y_Y = nir_imm_int(b, 0);
-   y_Y = nir_mask_shift_or(b, y_Y, y_W, 0xfffffffc, -1);
-   y_Y = nir_mask_shift_or(b, y_Y, x_W, 0x4, -2);
-
-   return nir_vec2(b, x_Y, y_Y);
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-static inline nir_ssa_def *
-blorp_nir_encode_msaa(nir_builder *b, nir_ssa_def *pos,
-                      unsigned num_samples, enum isl_msaa_layout layout)
-{
-   assert(pos->num_components == 2 || pos->num_components == 3);
-
-   switch (layout) {
-   case ISL_MSAA_LAYOUT_NONE:
-      assert(pos->num_components == 2);
-      return pos;
-   case ISL_MSAA_LAYOUT_ARRAY:
-      /* No translation needed */
-      return pos;
-   case ISL_MSAA_LAYOUT_INTERLEAVED: {
-      nir_ssa_def *x_in = nir_channel(b, pos, 0);
-      nir_ssa_def *y_in = nir_channel(b, pos, 1);
-      nir_ssa_def *s_in = pos->num_components == 2 ? nir_imm_int(b, 0) :
-                                                     nir_channel(b, pos, 2);
-
-      nir_ssa_def *x_out = nir_imm_int(b, 0);
-      nir_ssa_def *y_out = nir_imm_int(b, 0);
-      switch (num_samples) {
-      case 2:
-      case 4:
-         /* encode_msaa(2, IMS, X, Y, S) = (X', Y', 0)
-          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
-          *         Y' = Y
-          *
-          * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
-          *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
-          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 1);
-         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         if (num_samples == 2) {
-            y_out = y_in;
-         } else {
-            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
-            y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
-            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-         }
-         break;
-
-      case 8:
-         /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
-          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
-          *              | (X & 0b1)
-          *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
-         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
-         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 1);
-         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-         break;
-
-      case 16:
-         /* encode_msaa(16, IMS, X, Y, S) = (X', Y', 0)
-          *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
-          *              | (X & 0b1)
-          *         Y' = (Y & ~0b1) << 2 | (S & 0b1000) >> 1 (S & 0b10)
-          *              | (Y & 0b1)
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffe, 2);
-         x_out = nir_mask_shift_or(b, x_out, s_in, 0x4, 0);
-         x_out = nir_mask_shift_or(b, x_out, s_in, 0x1, 1);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffe, 2);
-         y_out = nir_mask_shift_or(b, y_out, s_in, 0x8, -1);
-         y_out = nir_mask_shift_or(b, y_out, s_in, 0x2, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-         break;
-
-      default:
-         unreachable("Invalid number of samples for IMS layout");
-      }
-
-      return nir_vec2(b, x_out, y_out);
-   }
-
-   default:
-      unreachable("Invalid MSAA layout");
-   }
-}
-
-/**
- * Emit code to compensate for the difference between MSAA and non-MSAA
- * surfaces.
- *
- * This code modifies the X and Y coordinates according to the formula:
- *
- *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
- *
- * (See brw_blorp_blit_program).
- */
-static inline nir_ssa_def *
-blorp_nir_decode_msaa(nir_builder *b, nir_ssa_def *pos,
-                      unsigned num_samples, enum isl_msaa_layout layout)
-{
-   assert(pos->num_components == 2 || pos->num_components == 3);
-
-   switch (layout) {
-   case ISL_MSAA_LAYOUT_NONE:
-      /* No translation necessary, and S should already be zero. */
-      assert(pos->num_components == 2);
-      return pos;
-   case ISL_MSAA_LAYOUT_ARRAY:
-      /* No translation necessary. */
-      return pos;
-   case ISL_MSAA_LAYOUT_INTERLEAVED: {
-      assert(pos->num_components == 2);
-
-      nir_ssa_def *x_in = nir_channel(b, pos, 0);
-      nir_ssa_def *y_in = nir_channel(b, pos, 1);
-
-      nir_ssa_def *x_out = nir_imm_int(b, 0);
-      nir_ssa_def *y_out = nir_imm_int(b, 0);
-      nir_ssa_def *s_out = nir_imm_int(b, 0);
-      switch (num_samples) {
-      case 2:
-      case 4:
-         /* decode_msaa(2, IMS, X, Y, 0) = (X', Y', S)
-          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
-          *         S = (X & 0b10) >> 1
-          *
-          * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
-          *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
-          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
-          *         S = (Y & 0b10) | (X & 0b10) >> 1
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffffc, -1);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         if (num_samples == 2) {
-            y_out = y_in;
-            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
-         } else {
-            y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
-            y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-            s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
-            s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
-         }
-         break;
-
-      case 8:
-         /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
-          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
-          *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
-          *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffffc, -1);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
-         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
-         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
-         break;
-
-      case 16:
-         /* decode_msaa(16, IMS, X, Y, 0) = (X', Y', S)
-          *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
-          *         Y' = (Y & ~0b111) >> 2 | (Y & 0b1)
-          *         S = (Y & 0b100) << 1 | (X & 0b100) |
-          *             (Y & 0b10) | (X & 0b10) >> 1
-          */
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0xfffffff8, -2);
-         x_out = nir_mask_shift_or(b, x_out, x_in, 0x1, 0);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0xfffffff8, -2);
-         y_out = nir_mask_shift_or(b, y_out, y_in, 0x1, 0);
-         s_out = nir_mask_shift_or(b, s_out, y_in, 0x4, 1);
-         s_out = nir_mask_shift_or(b, s_out, x_in, 0x4, 0);
-         s_out = nir_mask_shift_or(b, s_out, y_in, 0x2, 0);
-         s_out = nir_mask_shift_or(b, s_out, x_in, 0x2, -1);
-         break;
-
-      default:
-         unreachable("Invalid number of samples for IMS layout");
-      }
-
-      return nir_vec3(b, x_out, y_out, s_out);
-   }
-
-   default:
-      unreachable("Invalid MSAA layout");
-   }
-}
-
-/**
- * Count the number of trailing 1 bits in the given value.  For example:
- *
- * count_trailing_one_bits(0) == 0
- * count_trailing_one_bits(7) == 3
- * count_trailing_one_bits(11) == 2
- */
-static inline int count_trailing_one_bits(unsigned value)
-{
-#ifdef HAVE___BUILTIN_CTZ
-   return __builtin_ctz(~value);
-#else
-   return _mesa_bitcount(value & ~(value + 1));
-#endif
-}
-
-static nir_ssa_def *
-blorp_nir_manual_blend_average(nir_builder *b, struct brw_blorp_blit_vars *v,
-                               nir_ssa_def *pos, unsigned tex_samples,
-                               enum isl_aux_usage tex_aux_usage,
-                               enum brw_reg_type dst_type)
-{
-   /* If non-null, this is the outer-most if statement */
-   nir_if *outer_if = NULL;
-
-   nir_variable *color =
-      nir_local_variable_create(b->impl, glsl_vec4_type(), "color");
-
-   nir_ssa_def *mcs = NULL;
-   if (tex_aux_usage == ISL_AUX_USAGE_MCS)
-      mcs = blorp_nir_txf_ms_mcs(b, v, pos);
-
-   /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
-    *
-    *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
-    *
-    * This ensures that when all samples have the same value, no numerical
-    * precision is lost, since each addition operation always adds two equal
-    * values, and summing two equal floating point values does not lose
-    * precision.
-    *
-    * We perform this computation by treating the texture_data array as a
-    * stack and performing the following operations:
-    *
-    * - push sample 0 onto stack
-    * - push sample 1 onto stack
-    * - add top two stack entries
-    * - push sample 2 onto stack
-    * - push sample 3 onto stack
-    * - add top two stack entries
-    * - add top two stack entries
-    * - divide top stack entry by 4
-    *
-    * Note that after pushing sample i onto the stack, the number of add
-    * operations we do is equal to the number of trailing 1 bits in i.  This
-    * works provided the total number of samples is a power of two, which it
-    * always is for i965.
-    *
-    * For integer formats, we replace the add operations with average
-    * operations and skip the final division.
-    */
-   nir_ssa_def *texture_data[5];
-   unsigned stack_depth = 0;
-   for (unsigned i = 0; i < tex_samples; ++i) {
-      assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
-
-      /* Push sample i onto the stack */
-      assert(stack_depth < ARRAY_SIZE(texture_data));
-
-      nir_ssa_def *ms_pos = nir_vec3(b, nir_channel(b, pos, 0),
-                                        nir_channel(b, pos, 1),
-                                        nir_imm_int(b, i));
-      texture_data[stack_depth++] = blorp_nir_txf_ms(b, v, ms_pos, mcs, dst_type);
-
-      if (i == 0 && tex_aux_usage == ISL_AUX_USAGE_MCS) {
-         /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
-          * suggests an optimization:
-          *
-          *     "A simple optimization with probable large return in
-          *     performance is to compare the MCS value to zero (indicating
-          *     all samples are on sample slice 0), and sample only from
-          *     sample slice 0 using ld2dss if MCS is zero."
-          *
-          * Note that in the case where the MCS value is zero, sampling from
-          * sample slice 0 using ld2dss and sampling from sample 0 using
-          * ld2dms are equivalent (since all samples are on sample slice 0).
-          * Since we have already sampled from sample 0, all we need to do is
-          * skip the remaining fetches and averaging if MCS is zero.
-          */
-         nir_ssa_def *mcs_zero =
-            nir_ieq(b, nir_channel(b, mcs, 0), nir_imm_int(b, 0));
-         if (tex_samples == 16) {
-            mcs_zero = nir_iand(b, mcs_zero,
-               nir_ieq(b, nir_channel(b, mcs, 1), nir_imm_int(b, 0)));
-         }
-
-         nir_if *if_stmt = nir_if_create(b->shader);
-         if_stmt->condition = nir_src_for_ssa(mcs_zero);
-         nir_cf_node_insert(b->cursor, &if_stmt->cf_node);
-
-         b->cursor = nir_after_cf_list(&if_stmt->then_list);
-         nir_store_var(b, color, texture_data[0], 0xf);
-
-         b->cursor = nir_after_cf_list(&if_stmt->else_list);
-         outer_if = if_stmt;
-      }
-
-      for (int j = 0; j < count_trailing_one_bits(i); j++) {
-         assert(stack_depth >= 2);
-         --stack_depth;
-
-         assert(dst_type == BRW_REGISTER_TYPE_F);
-         texture_data[stack_depth - 1] =
-            nir_fadd(b, texture_data[stack_depth - 1],
-                        texture_data[stack_depth]);
-      }
-   }
-
-   /* We should have just 1 sample on the stack now. */
-   assert(stack_depth == 1);
-
-   texture_data[0] = nir_fmul(b, texture_data[0],
-                              nir_imm_float(b, 1.0 / tex_samples));
-
-   nir_store_var(b, color, texture_data[0], 0xf);
-
-   if (outer_if)
-      b->cursor = nir_after_cf_node(&outer_if->cf_node);
-
-   return nir_load_var(b, color);
-}
-
-static inline nir_ssa_def *
-nir_imm_vec2(nir_builder *build, float x, float y)
-{
-   nir_const_value v;
-
-   memset(&v, 0, sizeof(v));
-   v.f32[0] = x;
-   v.f32[1] = y;
-
-   return nir_build_imm(build, 4, 32, v);
-}
-
-static nir_ssa_def *
-blorp_nir_manual_blend_bilinear(nir_builder *b, nir_ssa_def *pos,
-                                unsigned tex_samples,
-                                const brw_blorp_blit_prog_key *key,
-                                struct brw_blorp_blit_vars *v)
-{
-   nir_ssa_def *pos_xy = nir_channels(b, pos, 0x3);
-   nir_ssa_def *rect_grid = nir_load_var(b, v->v_rect_grid);
-   nir_ssa_def *scale = nir_imm_vec2(b, key->x_scale, key->y_scale);
-
-   /* Translate coordinates to lay out the samples in a rectangular  grid
-    * roughly corresponding to sample locations.
-    */
-   pos_xy = nir_fmul(b, pos_xy, scale);
-   /* Adjust coordinates so that integers represent pixel centers rather
-    * than pixel edges.
-    */
-   pos_xy = nir_fadd(b, pos_xy, nir_imm_float(b, -0.5));
-   /* Clamp the X, Y texture coordinates to properly handle the sampling of
-    * texels on texture edges.
-    */
-   pos_xy = nir_fmin(b, nir_fmax(b, pos_xy, nir_imm_float(b, 0.0)),
-                        nir_vec2(b, nir_channel(b, rect_grid, 0),
-                                    nir_channel(b, rect_grid, 1)));
-
-   /* Store the fractional parts to be used as bilinear interpolation
-    * coefficients.
-    */
-   nir_ssa_def *frac_xy = nir_ffract(b, pos_xy);
-   /* Round the float coordinates down to nearest integer */
-   pos_xy = nir_fdiv(b, nir_ftrunc(b, pos_xy), scale);
-
-   nir_ssa_def *tex_data[4];
-   for (unsigned i = 0; i < 4; ++i) {
-      float sample_off_x = (float)(i & 0x1) / key->x_scale;
-      float sample_off_y = (float)((i >> 1) & 0x1) / key->y_scale;
-      nir_ssa_def *sample_off = nir_imm_vec2(b, sample_off_x, sample_off_y);
-
-      nir_ssa_def *sample_coords = nir_fadd(b, pos_xy, sample_off);
-      nir_ssa_def *sample_coords_int = nir_f2i(b, sample_coords);
-
-      /* The MCS value we fetch has to match up with the pixel that we're
-       * sampling from. Since we sample from different pixels in each
-       * iteration of this "for" loop, the call to mcs_fetch() should be
-       * here inside the loop after computing the pixel coordinates.
-       */
-      nir_ssa_def *mcs = NULL;
-      if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
-         mcs = blorp_nir_txf_ms_mcs(b, v, sample_coords_int);
-
-      /* Compute sample index and map the sample index to a sample number.
-       * Sample index layout shows the numbering of slots in a rectangular
-       * grid of samples with in a pixel. Sample number layout shows the
-       * rectangular grid of samples roughly corresponding to the real sample
-       * locations with in a pixel.
-       * In case of 4x MSAA, layout of sample indices matches the layout of
-       * sample numbers:
-       *           ---------
-       *           | 0 | 1 |
-       *           ---------
-       *           | 2 | 3 |
-       *           ---------
-       *
-       * In case of 8x MSAA the two layouts don't match.
-       * sample index layout :  ---------    sample number layout :  ---------
-       *                        | 0 | 1 |                            | 5 | 2 |
-       *                        ---------                            ---------
-       *                        | 2 | 3 |                            | 4 | 6 |
-       *                        ---------                            ---------
-       *                        | 4 | 5 |                            | 0 | 3 |
-       *                        ---------                            ---------
-       *                        | 6 | 7 |                            | 7 | 1 |
-       *                        ---------                            ---------
-       *
-       * Fortunately, this can be done fairly easily as:
-       * S' = (0x17306425 >> (S * 4)) & 0xf
-       *
-       * In the case of 16x MSAA the two layouts don't match.
-       * Sample index layout:                Sample number layout:
-       * ---------------------               ---------------------
-       * |  0 |  1 |  2 |  3 |               | 15 | 10 |  9 |  7 |
-       * ---------------------               ---------------------
-       * |  4 |  5 |  6 |  7 |               |  4 |  1 |  3 | 13 |
-       * ---------------------               ---------------------
-       * |  8 |  9 | 10 | 11 |               | 12 |  2 |  0 |  6 |
-       * ---------------------               ---------------------
-       * | 12 | 13 | 14 | 15 |               | 11 |  8 |  5 | 14 |
-       * ---------------------               ---------------------
-       *
-       * This is equivalent to
-       * S' = (0xe58b602cd31479af >> (S * 4)) & 0xf
-       */
-      nir_ssa_def *frac = nir_ffract(b, sample_coords);
-      nir_ssa_def *sample =
-         nir_fdot2(b, frac, nir_imm_vec2(b, key->x_scale,
-                                            key->x_scale * key->y_scale));
-      sample = nir_f2i(b, sample);
-
-      if (tex_samples == 8) {
-         sample = nir_iand(b, nir_ishr(b, nir_imm_int(b, 0x17306425),
-                                       nir_ishl(b, sample, nir_imm_int(b, 2))),
-                           nir_imm_int(b, 0xf));
-      } else if (tex_samples == 16) {
-         nir_ssa_def *sample_low =
-            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xd31479af),
-                                 nir_ishl(b, sample, nir_imm_int(b, 2))),
-                     nir_imm_int(b, 0xf));
-         nir_ssa_def *sample_high =
-            nir_iand(b, nir_ishr(b, nir_imm_int(b, 0xe58b602c),
-                                 nir_ishl(b, nir_iadd(b, sample,
-                                                      nir_imm_int(b, -8)),
-                                          nir_imm_int(b, 2))),
-                     nir_imm_int(b, 0xf));
-
-         sample = nir_bcsel(b, nir_ilt(b, sample, nir_imm_int(b, 8)),
-                            sample_low, sample_high);
-      }
-      nir_ssa_def *pos_ms = nir_vec3(b, nir_channel(b, sample_coords_int, 0),
-                                        nir_channel(b, sample_coords_int, 1),
-                                        sample);
-      tex_data[i] = blorp_nir_txf_ms(b, v, pos_ms, mcs, key->texture_data_type);
-   }
-
-   nir_ssa_def *frac_x = nir_channel(b, frac_xy, 0);
-   nir_ssa_def *frac_y = nir_channel(b, frac_xy, 1);
-   return nir_flrp(b, nir_flrp(b, tex_data[0], tex_data[1], frac_x),
-                      nir_flrp(b, tex_data[2], tex_data[3], frac_x),
-                      frac_y);
-}
-
-/**
- * Generator for WM programs used in BLORP blits.
- *
- * The bulk of the work done by the WM program is to wrap and unwrap the
- * coordinate transformations used by the hardware to store surfaces in
- * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
- * sample index for a multisampled surface) to a memory offset by the
- * following formulas:
- *
- *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
- *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
- *
- * For a single-sampled surface, or for a multisampled surface using
- * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
- * function:
- *
- *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
- *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
- *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
- *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
- *
- * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
- * embeds the sample number into bit 1 of the X and Y coordinates:
- *
- *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
- *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
- *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
- *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
- *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
- *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- *           S = (Y & 0b10) | (X & 0b10) >> 1
- *
- * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
- * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
- * the Y coordinate:
- *
- *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
- *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
- *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
- *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
- *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
- *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
- *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
- *
- * For X tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
- * bytes wide and 8 rows high:
- *
- *   tile(x_tiled, X, Y, S) = A
- *     where A = tile_num << 12 | offset
- *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
- *           offset = (Y' & 0b111) << 9
- *                    | (X & 0b111111111)
- *           X' = X * cpp
- *           Y' = Y + S * qpitch
- *   detile(x_tiled, A) = (X, Y, S)
- *     where X = X' / cpp
- *           Y = Y' % qpitch
- *           S = Y' / qpitch
- *           Y' = (tile_num / tile_pitch) << 3
- *                | (A & 0b111000000000) >> 9
- *           X' = (tile_num % tile_pitch) << 9
- *                | (A & 0b111111111)
- *
- * (In all tiling formulas, cpp is the number of bytes occupied by a single
- * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
- * to fill the width of the surface, and qpitch is the spacing (in rows)
- * between array slices).
- *
- * For Y tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
- * bytes wide and 32 rows high:
- *
- *   tile(y_tiled, X, Y, S) = A
- *     where A = tile_num << 12 | offset
- *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
- *           offset = (X' & 0b1110000) << 5
- *                    | (Y' & 0b11111) << 4
- *                    | (X' & 0b1111)
- *           X' = X * cpp
- *           Y' = Y + S * qpitch
- *   detile(y_tiled, A) = (X, Y, S)
- *     where X = X' / cpp
- *           Y = Y' % qpitch
- *           S = Y' / qpitch
- *           Y' = (tile_num / tile_pitch) << 5
- *                | (A & 0b111110000) >> 4
- *           X' = (tile_num % tile_pitch) << 7
- *                | (A & 0b111000000000) >> 5
- *                | (A & 0b1111)
- *
- * For W tiling, tile() combines together the low-order bits of the X and Y
- * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
- * bytes wide and 64 rows high (note that W tiling is only used for stencil
- * buffers, which always have cpp = 1 and S=0):
- *
- *   tile(w_tiled, X, Y, S) = A
- *     where A = tile_num << 12 | offset
- *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
- *           offset = (X' & 0b111000) << 6
- *                    | (Y' & 0b111100) << 3
- *                    | (X' & 0b100) << 2
- *                    | (Y' & 0b10) << 2
- *                    | (X' & 0b10) << 1
- *                    | (Y' & 0b1) << 1
- *                    | (X' & 0b1)
- *           X' = X * cpp = X
- *           Y' = Y + S * qpitch
- *   detile(w_tiled, A) = (X, Y, S)
- *     where X = X' / cpp = X'
- *           Y = Y' % qpitch = Y'
- *           S = Y / qpitch = 0
- *           Y' = (tile_num / tile_pitch) << 6
- *                | (A & 0b111100000) >> 3
- *                | (A & 0b1000) >> 2
- *                | (A & 0b10) >> 1
- *           X' = (tile_num % tile_pitch) << 6
- *                | (A & 0b111000000000) >> 6
- *                | (A & 0b10000) >> 2
- *                | (A & 0b100) >> 1
- *                | (A & 0b1)
- *
- * Finally, for a non-tiled surface, tile() simply combines together the X and
- * Y coordinates in the natural way:
- *
- *   tile(untiled, X, Y, S) = A
- *     where A = Y * pitch + X'
- *           X' = X * cpp
- *           Y' = Y + S * qpitch
- *   detile(untiled, A) = (X, Y, S)
- *     where X = X' / cpp
- *           Y = Y' % qpitch
- *           S = Y' / qpitch
- *           X' = A % pitch
- *           Y' = A / pitch
- *
- * (In these formulas, pitch is the number of bytes occupied by a single row
- * of samples).
- */
-static nir_shader *
-brw_blorp_build_nir_shader(struct brw_context *brw,
-                           const brw_blorp_blit_prog_key *key)
-{
-   nir_ssa_def *src_pos, *dst_pos, *color;
-
-   /* Sanity checks */
-   if (key->dst_tiled_w && key->rt_samples > 1) {
-      /* If the destination image is W tiled and multisampled, then the thread
-       * must be dispatched once per sample, not once per pixel.  This is
-       * necessary because after conversion between W and Y tiling, there's no
-       * guarantee that all samples corresponding to a single pixel will still
-       * be together.
-       */
-      assert(key->persample_msaa_dispatch);
-   }
-
-   if (key->blend) {
-      /* We are blending, which means we won't have an opportunity to
-       * translate the tiling and sample count for the texture surface.  So
-       * the surface state for the texture must be configured with the correct
-       * tiling and sample count.
-       */
-      assert(!key->src_tiled_w);
-      assert(key->tex_samples == key->src_samples);
-      assert(key->tex_layout == key->src_layout);
-      assert(key->tex_samples > 0);
-   }
-
-   if (key->persample_msaa_dispatch) {
-      /* It only makes sense to do persample dispatch if the render target is
-       * configured as multisampled.
-       */
-      assert(key->rt_samples > 0);
-   }
-
-   /* Make sure layout is consistent with sample count */
-   assert((key->tex_layout == ISL_MSAA_LAYOUT_NONE) ==
-          (key->tex_samples <= 1));
-   assert((key->rt_layout == ISL_MSAA_LAYOUT_NONE) ==
-          (key->rt_samples <= 1));
-   assert((key->src_layout == ISL_MSAA_LAYOUT_NONE) ==
-          (key->src_samples <= 1));
-   assert((key->dst_layout == ISL_MSAA_LAYOUT_NONE) ==
-          (key->dst_samples <= 1));
-
-   nir_builder b;
-   nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
-
-   struct brw_blorp_blit_vars v;
-   brw_blorp_blit_vars_init(&b, &v, key);
-
-   dst_pos = blorp_blit_get_frag_coords(&b, key, &v);
-
-   /* Render target and texture hardware don't support W tiling until Gen8. */
-   const bool rt_tiled_w = false;
-   const bool tex_tiled_w = brw->gen >= 8 && key->src_tiled_w;
-
-   /* The address that data will be written to is determined by the
-    * coordinates supplied to the WM thread and the tiling and sample count of
-    * the render target, according to the formula:
-    *
-    * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
-    *
-    * If the actual tiling and sample count of the destination surface are not
-    * the same as the configuration of the render target, then these
-    * coordinates are wrong and we have to adjust them to compensate for the
-    * difference.
-    */
-   if (rt_tiled_w != key->dst_tiled_w ||
-       key->rt_samples != key->dst_samples ||
-       key->rt_layout != key->dst_layout) {
-      dst_pos = blorp_nir_encode_msaa(&b, dst_pos, key->rt_samples,
-                                      key->rt_layout);
-      /* Now (X, Y, S) = detile(rt_tiling, offset) */
-      if (rt_tiled_w != key->dst_tiled_w)
-         dst_pos = blorp_nir_retile_y_to_w(&b, dst_pos);
-      /* Now (X, Y, S) = detile(rt_tiling, offset) */
-      dst_pos = blorp_nir_decode_msaa(&b, dst_pos, key->dst_samples,
-                                      key->dst_layout);
-   }
-
-   /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
-    *
-    * That is: X, Y and S now contain the true coordinates and sample index of
-    * the data that the WM thread should output.
-    *
-    * If we need to kill pixels that are outside the destination rectangle,
-    * now is the time to do it.
-    */
-   if (key->use_kill) {
-      assert(!(key->blend && key->blit_scaled));
-      blorp_nir_discard_if_outside_rect(&b, dst_pos, &v);
-   }
-
-   src_pos = blorp_blit_apply_transform(&b, nir_i2f(&b, dst_pos), &v);
-   if (dst_pos->num_components == 3) {
-      /* The sample coordinate is an integer that we want left alone but
-       * blorp_blit_apply_transform() blindly applies the transform to all
-       * three coordinates.  Grab the original sample index.
-       */
-      src_pos = nir_vec3(&b, nir_channel(&b, src_pos, 0),
-                             nir_channel(&b, src_pos, 1),
-                             nir_channel(&b, dst_pos, 2));
-   }
-
-   /* If the source image is not multisampled, then we want to fetch sample
-    * number 0, because that's the only sample there is.
-    */
-   if (key->src_samples == 1)
-      src_pos = nir_channels(&b, src_pos, 0x3);
-
-   /* X, Y, and S are now the coordinates of the pixel in the source image
-    * that we want to texture from.  Exception: if we are blending, then S is
-    * irrelevant, because we are going to fetch all samples.
-    */
-   if (key->blend && !key->blit_scaled) {
-      /* Resolves (effecively) use texelFetch, so we need integers and we
-       * don't care about the sample index if we got one.
-       */
-      src_pos = nir_f2i(&b, nir_channels(&b, src_pos, 0x3));
-
-      if (brw->gen == 6) {
-         /* Because gen6 only supports 4x interleved MSAA, we can do all the
-          * blending we need with a single linear-interpolated texture lookup
-          * at the center of the sample. The texture coordinates to be odd
-          * integers so that they correspond to the center of a 2x2 block
-          * representing the four samples that maxe up a pixel.  So we need
-          * to multiply our X and Y coordinates each by 2 and then add 1.
-          */
-         src_pos = nir_ishl(&b, src_pos, nir_imm_int(&b, 1));
-         src_pos = nir_iadd(&b, src_pos, nir_imm_int(&b, 1));
-         src_pos = nir_i2f(&b, src_pos);
-         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
-      } else {
-         /* Gen7+ hardware doesn't automaticaly blend. */
-         color = blorp_nir_manual_blend_average(&b, &v, src_pos, key->src_samples,
-                                                key->tex_aux_usage,
-                                                key->texture_data_type);
-      }
-   } else if (key->blend && key->blit_scaled) {
-      assert(!key->use_kill);
-      color = blorp_nir_manual_blend_bilinear(&b, src_pos, key->src_samples, key, &v);
-   } else {
-      if (key->bilinear_filter) {
-         color = blorp_nir_tex(&b, &v, src_pos, key->texture_data_type);
-      } else {
-         /* We're going to use texelFetch, so we need integers */
-         if (src_pos->num_components == 2) {
-            src_pos = nir_f2i(&b, src_pos);
-         } else {
-            assert(src_pos->num_components == 3);
-            src_pos = nir_vec3(&b, nir_channel(&b, nir_f2i(&b, src_pos), 0),
-                                   nir_channel(&b, nir_f2i(&b, src_pos), 1),
-                                   nir_channel(&b, src_pos, 2));
-         }
-
-         /* We aren't blending, which means we just want to fetch a single
-          * sample from the source surface.  The address that we want to fetch
-          * from is related to the X, Y and S values according to the formula:
-          *
-          * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
-          *
-          * If the actual tiling and sample count of the source surface are
-          * not the same as the configuration of the texture, then we need to
-          * adjust the coordinates to compensate for the difference.
-          */
-         if (tex_tiled_w != key->src_tiled_w ||
-             key->tex_samples != key->src_samples ||
-             key->tex_layout != key->src_layout) {
-            src_pos = blorp_nir_encode_msaa(&b, src_pos, key->src_samples,
-                                            key->src_layout);
-            /* Now (X, Y, S) = detile(src_tiling, offset) */
-            if (tex_tiled_w != key->src_tiled_w)
-               src_pos = blorp_nir_retile_w_to_y(&b, src_pos);
-            /* Now (X, Y, S) = detile(tex_tiling, offset) */
-            src_pos = blorp_nir_decode_msaa(&b, src_pos, key->tex_samples,
-                                            key->tex_layout);
-         }
-
-         /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
-          *
-          * In other words: X, Y, and S now contain values which, when passed to
-          * the texturing unit, will cause data to be read from the correct
-          * memory location.  So we can fetch the texel now.
-          */
-         if (key->src_samples == 1) {
-            color = blorp_nir_txf(&b, &v, src_pos, key->texture_data_type);
-         } else {
-            nir_ssa_def *mcs = NULL;
-            if (key->tex_aux_usage == ISL_AUX_USAGE_MCS)
-               mcs = blorp_nir_txf_ms_mcs(&b, &v, src_pos);
-
-            color = blorp_nir_txf_ms(&b, &v, src_pos, mcs, key->texture_data_type);
-         }
-      }
-   }
-
-   nir_store_var(&b, v.color_out, color, 0xf);
-
-   return b.shader;
-}
-
-static void
-brw_blorp_get_blit_kernel(struct brw_context *brw,
-                          struct brw_blorp_params *params,
-                          const struct brw_blorp_blit_prog_key *prog_key)
-{
-   if (brw_search_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
-                        prog_key, sizeof(*prog_key),
-                        &params->wm_prog_kernel, &params->wm_prog_data))
-      return;
-
-   const unsigned *program;
-   unsigned program_size;
-   struct brw_blorp_prog_data prog_data;
-
-   /* Try and compile with NIR first.  If that fails, fall back to the old
-    * method of building shaders manually.
-    */
-   nir_shader *nir = brw_blorp_build_nir_shader(brw, prog_key);
-   struct brw_wm_prog_key wm_key;
-   brw_blorp_init_wm_prog_key(&wm_key);
-   wm_key.tex.compressed_multisample_layout_mask =
-      prog_key->tex_aux_usage == ISL_AUX_USAGE_MCS;
-   wm_key.tex.msaa_16 = prog_key->tex_samples == 16;
-   wm_key.multisample_fbo = prog_key->rt_samples > 1;
-
-   program = brw_blorp_compile_nir_shader(brw, nir, &wm_key, false,
-                                          &prog_data, &program_size);
-
-   brw_upload_cache(&brw->cache, BRW_CACHE_BLORP_PROG,
-                    prog_key, sizeof(*prog_key),
-                    program, program_size,
-                    &prog_data, sizeof(prog_data),
-                    &params->wm_prog_kernel, &params->wm_prog_data);
-}
-
-static void
-brw_blorp_setup_coord_transform(struct brw_blorp_coord_transform *xform,
-                                GLfloat src0, GLfloat src1,
-                                GLfloat dst0, GLfloat dst1,
-                                bool mirror)
-{
-   float scale = (src1 - src0) / (dst1 - dst0);
-   if (!mirror) {
-      /* When not mirroring a coordinate (say, X), we need:
-       *   src_x - src_x0 = (dst_x - dst_x0 + 0.5) * scale
-       * Therefore:
-       *   src_x = src_x0 + (dst_x - dst_x0 + 0.5) * scale
-       *
-       * blorp program uses "round toward zero" to convert the
-       * transformed floating point coordinates to integer coordinates,
-       * whereas the behaviour we actually want is "round to nearest",
-       * so 0.5 provides the necessary correction.
-       */
-      xform->multiplier = scale;
-      xform->offset = src0 + (-dst0 + 0.5f) * scale;
-   } else {
-      /* When mirroring X we need:
-       *   src_x - src_x0 = dst_x1 - dst_x - 0.5
-       * Therefore:
-       *   src_x = src_x0 + (dst_x1 -dst_x - 0.5) * scale
-       */
-      xform->multiplier = -scale;
-      xform->offset = src0 + (dst1 - 0.5f) * scale;
-   }
-}
-
-/**
- * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
- * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED).  The mappings are
- *
- * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
- *         0          1          2          3             4            5
- *         4          5          6          7             0            1
- *   SCS_RED, SCS_GREEN,  SCS_BLUE, SCS_ALPHA,     SCS_ZERO,     SCS_ONE
- *
- * which is simply adding 4 then modding by 8 (or anding with 7).
- *
- * We then may need to apply workarounds for textureGather hardware bugs.
- */
-static enum isl_channel_select
-swizzle_to_scs(GLenum swizzle)
-{
-   return (enum isl_channel_select)((swizzle + 4) & 7);
-}
-
-static void
-surf_convert_to_single_slice(struct brw_context *brw,
-                             struct brw_blorp_surface_info *info)
-{
-   /* This only makes sense for a single level and array slice */
-   assert(info->view.levels == 1 && info->view.array_len == 1);
-
-   /* Just bail if we have nothing to do. */
-   if (info->surf.dim == ISL_SURF_DIM_2D &&
-       info->view.base_level == 0 && info->view.base_array_layer == 0 &&
-       info->surf.levels == 0 && info->surf.logical_level0_px.array_len == 0)
-      return;
-
-   uint32_t x_offset_sa, y_offset_sa;
-   isl_surf_get_image_offset_sa(&info->surf, info->view.base_level,
-                                info->view.base_array_layer, 0,
-                                &x_offset_sa, &y_offset_sa);
-
-   uint32_t byte_offset;
-   isl_tiling_get_intratile_offset_sa(&brw->isl_dev, info->surf.tiling,
-                                      info->view.format, info->surf.row_pitch,
-                                      x_offset_sa, y_offset_sa,
-                                      &byte_offset,
-                                      &info->tile_x_sa, &info->tile_y_sa);
-   info->offset += byte_offset;
-
-   /* TODO: Once this file gets converted to C, we shouls just use designated
-    * initializers.
-    */
-   struct isl_surf_init_info init_info = isl_surf_init_info();
-
-   init_info.dim = ISL_SURF_DIM_2D;
-   init_info.format = ISL_FORMAT_R8_UINT;
-   init_info.width =
-      minify(info->surf.logical_level0_px.width, info->view.base_level);
-   init_info.height =
-      minify(info->surf.logical_level0_px.height, info->view.base_level);
-   init_info.depth = 1;
-   init_info.levels = 1;
-   init_info.array_len = 1;
-   init_info.samples = info->surf.samples;
-   init_info.min_pitch = info->surf.row_pitch;
-   init_info.usage = info->surf.usage;
-   init_info.tiling_flags = 1 << info->surf.tiling;
-
-   isl_surf_init_s(&brw->isl_dev, &info->surf, &init_info);
-   assert(info->surf.row_pitch == init_info.min_pitch);
-
-   /* The view is also different now. */
-   info->view.base_level = 0;
-   info->view.levels = 1;
-   info->view.base_array_layer = 0;
-   info->view.array_len = 1;
-}
-
-static void
-surf_fake_interleaved_msaa(struct brw_context *brw,
-                           struct brw_blorp_surface_info *info)
-{
-   assert(info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
-
-   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
-   surf_convert_to_single_slice(brw, info);
-
-   info->surf.logical_level0_px = info->surf.phys_level0_sa;
-   info->surf.samples = 1;
-   info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
-}
-
-static void
-surf_retile_w_to_y(struct brw_context *brw,
-                   struct brw_blorp_surface_info *info)
-{
-   assert(info->surf.tiling == ISL_TILING_W);
-
-   /* First, we need to convert it to a simple 1-level 1-layer 2-D surface */
-   surf_convert_to_single_slice(brw, info);
-
-   /* On gen7+, we don't have interleaved multisampling for color render
-    * targets so we have to fake it.
-    *
-    * TODO: Are we sure we don't also need to fake it on gen6?
-    */
-   if (brw->gen > 6 && info->surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
-      info->surf.logical_level0_px = info->surf.phys_level0_sa;
-      info->surf.samples = 1;
-      info->surf.msaa_layout = ISL_MSAA_LAYOUT_NONE;
-   }
-
-   if (brw->gen == 6) {
-      /* Gen6 stencil buffers have a very large alignment coming in from the
-       * miptree.  It's out-of-bounds for what the surface state can handle.
-       * Since we have a single layer and level, it doesn't really matter as
-       * long as we don't pass a bogus value into isl_surf_fill_state().
-       */
-      info->surf.image_alignment_el = isl_extent3d(4, 2, 1);
-   }
-
-   /* Now that we've converted everything to a simple 2-D surface with only
-    * one miplevel, we can go about retiling it.
-    */
-   const unsigned x_align = 8, y_align = info->surf.samples != 0 ? 8 : 4;
-   info->surf.tiling = ISL_TILING_Y0;
-   info->surf.logical_level0_px.width =
-      ALIGN(info->surf.logical_level0_px.width, x_align) * 2;
-   info->surf.logical_level0_px.height =
-      ALIGN(info->surf.logical_level0_px.height, y_align) / 2;
-   info->tile_x_sa *= 2;
-   info->tile_y_sa /= 2;
-}
-
-void
-brw_blorp_blit(struct brw_context *brw,
-               const struct brw_blorp_surf *src_surf,
-               unsigned src_level, unsigned src_layer,
-               enum isl_format src_format, int src_swizzle,
-               const struct brw_blorp_surf *dst_surf,
-               unsigned dst_level, unsigned dst_layer,
-               enum isl_format dst_format,
-               float src_x0, float src_y0,
-               float src_x1, float src_y1,
-               float dst_x0, float dst_y0,
-               float dst_x1, float dst_y1,
-               GLenum filter, bool mirror_x, bool mirror_y)
-{
-   struct brw_blorp_params params;
-   brw_blorp_params_init(&params);
-
-   brw_blorp_surface_info_init(brw, &params.src, src_surf, src_level,
-                               src_layer, src_format, false);
-   brw_blorp_surface_info_init(brw, &params.dst, dst_surf, dst_level,
-                               dst_layer, dst_format, true);
-
-   struct brw_blorp_blit_prog_key wm_prog_key;
-   memset(&wm_prog_key, 0, sizeof(wm_prog_key));
-
-   if (isl_format_has_sint_channel(params.src.view.format)) {
-      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
-   } else if (isl_format_has_uint_channel(params.src.view.format)) {
-      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
-   } else {
-      wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
-   }
-
-   /* Scaled blitting or not. */
-   wm_prog_key.blit_scaled =
-      ((dst_x1 - dst_x0) == (src_x1 - src_x0) &&
-       (dst_y1 - dst_y0) == (src_y1 - src_y0)) ? false : true;
-
-   /* Scaling factors used for bilinear filtering in multisample scaled
-    * blits.
-    */
-   if (params.src.surf.samples == 16)
-      wm_prog_key.x_scale = 4.0f;
-   else
-      wm_prog_key.x_scale = 2.0f;
-   wm_prog_key.y_scale = params.src.surf.samples / wm_prog_key.x_scale;
-
-   if (filter == GL_LINEAR &&
-       params.src.surf.samples <= 1 && params.dst.surf.samples <= 1)
-      wm_prog_key.bilinear_filter = true;
-
-   if ((params.src.surf.usage & ISL_SURF_USAGE_DEPTH_BIT) == 0 &&
-       (params.src.surf.usage & ISL_SURF_USAGE_STENCIL_BIT) == 0 &&
-       !isl_format_has_int_channel(params.src.surf.format) &&
-       params.src.surf.samples > 1 && params.dst.surf.samples <= 1) {
-      /* We are downsampling a non-integer color buffer, so blend.
-       *
-       * Regarding integer color buffers, the OpenGL ES 3.2 spec says:
-       *
-       *    "If the source formats are integer types or stencil values, a
-       *    single sample's value is selected for each pixel."
-       *
-       * This implies we should not blend in that case.
-       */
-      wm_prog_key.blend = true;
-   }
-
-   /* src_samples and dst_samples are the true sample counts */
-   wm_prog_key.src_samples = params.src.surf.samples;
-   wm_prog_key.dst_samples = params.dst.surf.samples;
-
-   wm_prog_key.tex_aux_usage = params.src.aux_usage;
-
-   /* src_layout and dst_layout indicate the true MSAA layout used by src and
-    * dst.
-    */
-   wm_prog_key.src_layout = params.src.surf.msaa_layout;
-   wm_prog_key.dst_layout = params.dst.surf.msaa_layout;
-
-   /* Round floating point values to nearest integer to avoid "off by one texel"
-    * kind of errors when blitting.
-    */
-   params.x0 = params.wm_inputs.discard_rect.x0 = roundf(dst_x0);
-   params.y0 = params.wm_inputs.discard_rect.y0 = roundf(dst_y0);
-   params.x1 = params.wm_inputs.discard_rect.x1 = roundf(dst_x1);
-   params.y1 = params.wm_inputs.discard_rect.y1 = roundf(dst_y1);
-
-   params.wm_inputs.rect_grid.x1 =
-      minify(params.src.surf.logical_level0_px.width, src_level) *
-      wm_prog_key.x_scale - 1.0f;
-   params.wm_inputs.rect_grid.y1 =
-      minify(params.src.surf.logical_level0_px.height, src_level) *
-      wm_prog_key.y_scale - 1.0f;
-
-   brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[0],
-                                   src_x0, src_x1, dst_x0, dst_x1, mirror_x);
-   brw_blorp_setup_coord_transform(&params.wm_inputs.coord_transform[1],
-                                   src_y0, src_y1, dst_y0, dst_y1, mirror_y);
-
-   /* For some texture types, we need to pass the layer through the sampler. */
-   params.wm_inputs.src_z = params.src.z_offset;
-
-   if (brw->gen > 6 &&
-       params.dst.surf.msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED) {
-      assert(params.dst.surf.samples > 1);
-
-      /* We must expand the rectangle we send through the rendering pipeline,
-       * to account for the fact that we are mapping the destination region as
-       * single-sampled when it is in fact multisampled.  We must also align
-       * it to a multiple of the multisampling pattern, because the
-       * differences between multisampled and single-sampled surface formats
-       * will mean that pixels are scrambled within the multisampling pattern.
-       * TODO: what if this makes the coordinates too large?
-       *
-       * Note: this only works if the destination surface uses the IMS layout.
-       * If it's UMS, then we have no choice but to set up the rendering
-       * pipeline as multisampled.
-       */
-      switch (params.dst.surf.samples) {
-      case 2:
-         params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
-         params.y0 = ROUND_DOWN_TO(params.y0, 4);
-         params.x1 = ALIGN(params.x1 * 2, 4);
-         params.y1 = ALIGN(params.y1, 4);
-         break;
-      case 4:
-         params.x0 = ROUND_DOWN_TO(params.x0 * 2, 4);
-         params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
-         params.x1 = ALIGN(params.x1 * 2, 4);
-         params.y1 = ALIGN(params.y1 * 2, 4);
-         break;
-      case 8:
-         params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
-         params.y0 = ROUND_DOWN_TO(params.y0 * 2, 4);
-         params.x1 = ALIGN(params.x1 * 4, 8);
-         params.y1 = ALIGN(params.y1 * 2, 4);
-         break;
-      case 16:
-         params.x0 = ROUND_DOWN_TO(params.x0 * 4, 8);
-         params.y0 = ROUND_DOWN_TO(params.y0 * 4, 8);
-         params.x1 = ALIGN(params.x1 * 4, 8);
-         params.y1 = ALIGN(params.y1 * 4, 8);
-         break;
-      default:
-         unreachable("Unrecognized sample count in brw_blorp_blit_params ctor");
-      }
-
-      surf_fake_interleaved_msaa(brw, &params.dst);
-
-      wm_prog_key.use_kill = true;
-   }
-
-   if (params.dst.surf.tiling == ISL_TILING_W) {
-      /* We must modify the rectangle we send through the rendering pipeline
-       * (and the size and x/y offset of the destination surface), to account
-       * for the fact that we are mapping it as Y-tiled when it is in fact
-       * W-tiled.
-       *
-       * Both Y tiling and W tiling can be understood as organizations of
-       * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
-       * is different, but the layout of the 32-byte sub-tiles within the 4k
-       * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
-       * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
-       * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
-       *
-       * Therefore, to account for the layout differences within the 32-byte
-       * sub-tiles, we must expand the rectangle so the X coordinates of its
-       * edges are multiples of 8 (the W sub-tile width), and its Y
-       * coordinates of its edges are multiples of 4 (the W sub-tile height).
-       * Then we need to scale the X and Y coordinates of the rectangle to
-       * account for the differences in aspect ratio between the Y and W
-       * sub-tiles.  We need to modify the layer width and height similarly.
-       *
-       * A correction needs to be applied when MSAA is in use: since
-       * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
-       * we need to align the Y coordinates to multiples of 8, so that when
-       * they are divided by two they are still multiples of 4.
-       *
-       * Note: Since the x/y offset of the surface will be applied using the
-       * SURFACE_STATE command packet, it will be invisible to the swizzling
-       * code in the shader; therefore it needs to be in a multiple of the
-       * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
-       * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
-       * buffer), and the miplevel alignment used for stencil buffers is 8
-       * pixels horizontally and either 4 or 8 pixels vertically (see
-       * intel_horizontal_texture_alignment_unit() and
-       * intel_vertical_texture_alignment_unit()).
-       *
-       * Note: Also, since the SURFACE_STATE command packet can only apply
-       * offsets that are multiples of 4 pixels horizontally and 2 pixels
-       * vertically, it is important that the offsets will be multiples of
-       * these sizes after they are converted into Y-tiled coordinates.
-       * Fortunately they will be, since we know from above that the offsets
-       * are a multiple of the 32-byte sub-tile size, and in Y-tiled
-       * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
-       *
-       * TODO: what if this makes the coordinates (or the texture size) too
-       * large?
-       */
-      const unsigned x_align = 8, y_align = params.dst.surf.samples != 0 ? 8 : 4;
-      params.x0 = ROUND_DOWN_TO(params.x0, x_align) * 2;
-      params.y0 = ROUND_DOWN_TO(params.y0, y_align) / 2;
-      params.x1 = ALIGN(params.x1, x_align) * 2;
-      params.y1 = ALIGN(params.y1, y_align) / 2;
-
-      /* Retile the surface to Y-tiled */
-      surf_retile_w_to_y(brw, &params.dst);
-
-      wm_prog_key.dst_tiled_w = true;
-      wm_prog_key.use_kill = true;
-
-      if (params.dst.surf.samples > 1) {
-         /* If the destination surface is a W-tiled multisampled stencil
-          * buffer that we're mapping as Y tiled, then we need to arrange for
-          * the WM program to run once per sample rather than once per pixel,
-          * because the memory layout of related samples doesn't match between
-          * W and Y tiling.
-          */
-         wm_prog_key.persample_msaa_dispatch = true;
-      }
-   }
-
-   if (brw->gen < 8 && params.src.surf.tiling == ISL_TILING_W) {
-      /* On Haswell and earlier, we have to fake W-tiled sources as Y-tiled.
-       * Broadwell adds support for sampling from stencil.
-       *
-       * See the comments above concerning x/y offset alignment for the
-       * destination surface.
-       *
-       * TODO: what if this makes the texture size too large?
-       */
-      surf_retile_w_to_y(brw, &params.src);
-
-      wm_prog_key.src_tiled_w = true;
-   }
-
-   /* tex_samples and rt_samples are the sample counts that are set up in
-    * SURFACE_STATE.
-    */
-   wm_prog_key.tex_samples = params.src.surf.samples;
-   wm_prog_key.rt_samples  = params.dst.surf.samples;
-
-   /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
-    * use to access the source and destination surfaces.
-    */
-   wm_prog_key.tex_layout = params.src.surf.msaa_layout;
-   wm_prog_key.rt_layout = params.dst.surf.msaa_layout;
-
-   if (params.src.surf.samples > 0 && params.dst.surf.samples > 1) {
-      /* We are blitting from a multisample buffer to a multisample buffer, so
-       * we must preserve samples within a pixel.  This means we have to
-       * arrange for the WM program to run once per sample rather than once
-       * per pixel.
-       */
-      wm_prog_key.persample_msaa_dispatch = true;
-   }
-
-   brw_blorp_get_blit_kernel(brw, &params, &wm_prog_key);
-
-   for (unsigned i = 0; i < 4; i++) {
-      params.src.view.channel_select[i] =
-         swizzle_to_scs(GET_SWZ(src_swizzle, i));
-   }
-
-   brw_blorp_exec(brw, &params);
-}
-- 
2.5.0.400.gff86faf



More information about the mesa-dev mailing list