[Mesa-dev] [PATCH 06/14] nir: handle different bit sizes when constant folding

Jason Ekstrand jason at jlekstrand.net
Tue Mar 15 15:02:53 UTC 2016


On Mar 15, 2016 7:48 AM, "Connor Abbott" <cwabbott0 at gmail.com> wrote:
>
> On Tue, Mar 15, 2016 at 10:43 AM, Connor Abbott <cwabbott0 at gmail.com>
wrote:
> > On Tue, Mar 15, 2016 at 5:53 AM, Iago Toral <itoral at igalia.com> wrote:
> >> On Mon, 2016-03-14 at 16:48 -0700, Jason Ekstrand wrote:
> >>>
> >>>
> >>> On Mon, Mar 7, 2016 at 12:46 AM, Samuel Iglesias Gonsálvez
> >>> <siglesias at igalia.com> wrote:
> >>>         From: Connor Abbott <connor.w.abbott at intel.com>
> >>>
> >>>         v2: Use the bit-size information from the opcode information
> >>>         if defined (Iago)
> >>>
> >>>         Signed-off-by: Iago Toral Quiroga <itoral at igalia.com>
> >>>
> >>>         FIXME: This should be squashed into the previous commit so we
> >>>         don't break
> >>>         the build. The break happens because the python script that
> >>>         generates the
> >>>         constant folding pass does not know how to handle the sized
> >>>         types introduced
> >>>         by the previous commit until this patch, so it ends up
> >>>         generating code with
> >>>         invalid types. Keep it separated for review purposes.
> >>>         ---
> >>>          src/compiler/nir/nir_constant_expressions.h  |   2 +-
> >>>          src/compiler/nir/nir_constant_expressions.py | 246
> >>>         +++++++++++++++++----------
> >>>          src/compiler/nir/nir_opt_constant_folding.c  |  24 ++-
> >>>          3 files changed, 182 insertions(+), 90 deletions(-)
> >>>
> >>>         diff --git a/src/compiler/nir/nir_constant_expressions.h
> >>>         b/src/compiler/nir/nir_constant_expressions.h
> >>>         index 97997f2..201f278 100644
> >>>         --- a/src/compiler/nir/nir_constant_expressions.h
> >>>         +++ b/src/compiler/nir/nir_constant_expressions.h
> >>>         @@ -28,4 +28,4 @@
> >>>          #include "nir.h"
> >>>
> >>>          nir_const_value nir_eval_const_opcode(nir_op op, unsigned
> >>>         num_components,
> >>>         -                                      nir_const_value *src);
> >>>         +                                      unsigned bit_size,
> >>>         nir_const_value *src);
> >>>         diff --git a/src/compiler/nir/nir_constant_expressions.py
> >>>         b/src/compiler/nir/nir_constant_expressions.py
> >>>         index 32784f6..972d281 100644
> >>>         --- a/src/compiler/nir/nir_constant_expressions.py
> >>>         +++ b/src/compiler/nir/nir_constant_expressions.py
> >>>         @@ -1,4 +1,43 @@
> >>>          #! /usr/bin/python2
> >>>         +
> >>>         +def type_has_size(type_):
> >>>         +    return type_[-1:].isdigit()
> >>>         +
> >>>         +def type_sizes(type_):
> >>>         +    if type_.endswith("8"):
> >>>         +        return [8]
> >>>         +    elif type_.endswith("16"):
> >>>         +        return [16]
> >>>         +    elif type_.endswith("32"):
> >>>         +        return [32]
> >>>         +    elif type_.endswith("64"):
> >>>         +        return [64]
> >>>         +    else:
> >>>         +        return [32, 64]
> >>>         +
> >>>         +def type_add_size(type_, size):
> >>>         +    if type_has_size(type_):
> >>>         +        return type_
> >>>         +    return type_ + str(size)
> >>>         +
> >>>         +def get_const_field(type_):
> >>>         +    if type_ == "int32":
> >>>         +        return "i"
> >>>         +    if type_ == "uint32":
> >>>         +        return "u"
> >>>         +    if type_ == "int64":
> >>>         +        return "l"
> >>>         +    if type_ == "uint64":
> >>>         +        return "ul"
> >>>         +    if type_ == "bool32":
> >>>         +        return "b"
> >>>         +    if type_ == "float32":
> >>>         +        return "f"
> >>>         +    if type_ == "float64":
> >>>         +        return "d"
> >>>         +    raise Exception(str(type_))
> >>>         +    assert(0)
> >>>         +
> >>>          template = """\
> >>>          /*
> >>>           * Copyright (C) 2014 Intel Corporation
> >>>         @@ -205,110 +244,140 @@ unpack_half_1x16(uint16_t u)
> >>>          }
> >>>
> >>>          /* Some typed vector structures to make things like src0.y
> >>>         work */
> >>>         -% for type in ["float", "int", "uint", "bool"]:
> >>>         -struct ${type}_vec {
> >>>         -   ${type} x;
> >>>         -   ${type} y;
> >>>         -   ${type} z;
> >>>         -   ${type} w;
> >>>         +typedef float float32_t;
> >>>         +typedef double float64_t;
> >>>         +typedef bool bool32_t;
> >>>         +% for type in ["float", "int", "uint"]:
> >>>         +% for width in [32, 64]:
> >>>         +struct ${type}${width}_vec {
> >>>         +   ${type}${width}_t x;
> >>>         +   ${type}${width}_t y;
> >>>         +   ${type}${width}_t z;
> >>>         +   ${type}${width}_t w;
> >>>          };
> >>>          % endfor
> >>>         +% endfor
> >>>         +
> >>>         +struct bool32_vec {
> >>>         +    bool x;
> >>>         +    bool y;
> >>>         +    bool z;
> >>>         +    bool w;
> >>>         +};
> >>>
> >>>          % for name, op in sorted(opcodes.iteritems()):
> >>>          static nir_const_value
> >>>         -evaluate_${name}(unsigned num_components, nir_const_value
> >>>         *_src)
> >>>         +evaluate_${name}(unsigned num_components, unsigned bit_size,
> >>>         +                 nir_const_value *_src)
> >>>          {
> >>>             nir_const_value _dst_val = { { {0, 0, 0, 0} } };
> >>>
> >>>         -   ## For each non-per-component input, create a variable
> >>>         srcN that
> >>>         -   ## contains x, y, z, and w elements which are filled in
> >>>         with the
> >>>         -   ## appropriately-typed values.
> >>>         -   % for j in range(op.num_inputs):
> >>>         -      % if op.input_sizes[j] == 0:
> >>>         -         <% continue %>
> >>>         -      % elif "src" + str(j) not in op.const_expr:
> >>>         -         ## Avoid unused variable warnings
> >>>         -         <% continue %>
> >>>         -      %endif
> >>>         -
> >>>         -      struct ${op.input_types[j]}_vec src${j} = {
> >>>         -      % for k in range(op.input_sizes[j]):
> >>>         -         % if op.input_types[j] == "bool":
> >>>         -            _src[${j}].u[${k}] != 0,
> >>>         -         % else:
> >>>         -            _src[${j}].${op.input_types[j][:1]}[${k}],
> >>>         -         % endif
> >>>         -      % endfor
> >>>         -      };
> >>>         -   % endfor
> >>>         +   switch (bit_size) {
> >>>         +   % for bit_size in [32, 64]:
> >>>         +   case ${bit_size}: {
> >>>         +      <%
> >>>         +      output_type = type_add_size(op.output_type, bit_size)
> >>>         +      input_types = [type_add_size(type_, bit_size) for type_
> >>>         in op.input_types]
> >>>         +      %>
> >>>         +
> >>>         +      ## For each non-per-component input, create a variable
> >>>         srcN that
> >>>         +      ## contains x, y, z, and w elements which are filled in
> >>>         with the
> >>>         +      ## appropriately-typed values.
> >>>         +      % for j in range(op.num_inputs):
> >>>         +         % if op.input_sizes[j] == 0:
> >>>         +            <% continue %>
> >>>         +         % elif "src" + str(j) not in op.const_expr:
> >>>         +            ## Avoid unused variable warnings
> >>>         +            <% continue %>
> >>>         +         %endif
> >>>
> >>>         -   % if op.output_size == 0:
> >>>         -      ## For per-component instructions, we need to iterate
> >>>         over the
> >>>         -      ## components and apply the constant expression one
> >>>         component
> >>>         -      ## at a time.
> >>>         -      for (unsigned _i = 0; _i < num_components; _i++) {
> >>>         -         ## For each per-component input, create a variable
> >>>         srcN that
> >>>         -         ## contains the value of the current (_i'th)
> >>>         component.
> >>>         -         % for j in range(op.num_inputs):
> >>>         -            % if op.input_sizes[j] != 0:
> >>>         -               <% continue %>
> >>>         -            % elif "src" + str(j) not in op.const_expr:
> >>>         -               ## Avoid unused variable warnings
> >>>         -               <% continue %>
> >>>         -            % elif op.input_types[j] == "bool":
> >>>         -               bool src${j} = _src[${j}].u[_i] != 0;
> >>>         +         struct ${input_types[j]}_vec src${j} = {
> >>>         +         % for k in range(op.input_sizes[j]):
> >>>         +            % if input_types[j] == "bool32":
> >>>         +               _src[${j}].u[${k}] != 0,
> >>>                      % else:
> >>>         -               ${op.input_types[j]} src${j} =
> >>>         _src[${j}].${op.input_types[j][:1]}[_i];
> >>>         +
> >>>          _src[${j}].${get_const_field(input_types[j])}[${k}],
> >>>                      % endif
> >>>                   % endfor
> >>>         +         };
> >>>         +      % endfor
> >>>         +
> >>>         +      % if op.output_size == 0:
> >>>         +         ## For per-component instructions, we need to
> >>>         iterate over the
> >>>         +         ## components and apply the constant expression one
> >>>         component
> >>>         +         ## at a time.
> >>>         +         for (unsigned _i = 0; _i < num_components; _i++) {
> >>>         +            ## For each per-component input, create a
> >>>         variable srcN that
> >>>         +            ## contains the value of the current (_i'th)
> >>>         component.
> >>>         +            % for j in range(op.num_inputs):
> >>>         +               % if op.input_sizes[j] != 0:
> >>>         +                  <% continue %>
> >>>         +               % elif "src" + str(j) not in op.const_expr:
> >>>         +                  ## Avoid unused variable warnings
> >>>         +                  <% continue %>
> >>>         +               % elif input_types[j] == "bool32":
> >>>         +                  bool src${j} = _src[${j}].u[_i] != 0;
> >>>         +               % else:
> >>>         +                  ${input_types[j]}_t src${j} =
> >>>         +
> >>>          _src[${j}].${get_const_field(input_types[j])}[_i];
> >>>         +               % endif
> >>>         +            % endfor
> >>>         +
> >>>         +            ## Create an appropriately-typed variable dst and
> >>>         assign the
> >>>         +            ## result of the const_expr to it.  If const_expr
> >>>         already contains
> >>>         +            ## writes to dst, just include const_expr
> >>>         directly.
> >>>         +            % if "dst" in op.const_expr:
> >>>         +               ${output_type}_t dst;
> >>>         +               ${op.const_expr}
> >>>         +            % else:
> >>>         +               ${output_type}_t dst = ${op.const_expr};
> >>>         +            % endif
> >>>         +
> >>>         +            ## Store the current component of the actual
> >>>         destination to the
> >>>         +            ## value of dst.
> >>>         +            % if output_type == "bool32":
> >>>         +               ## Sanitize the C value to a proper NIR bool
> >>>         +               _dst_val.u[_i] = dst ? NIR_TRUE : NIR_FALSE;
> >>>         +            % else:
> >>>         +               _dst_val.${get_const_field(output_type)}[_i] =
> >>>         dst;
> >>>         +            % endif
> >>>         +         }
> >>>         +      % else:
> >>>         +         ## In the non-per-component case, create a struct
> >>>         dst with
> >>>         +         ## appropriately-typed elements x, y, z, and w and
> >>>         assign the result
> >>>         +         ## of the const_expr to all components of dst, or
> >>>         include the
> >>>         +         ## const_expr directly if it writes to dst already.
> >>>         +         struct ${output_type}_vec dst;
> >>>
> >>>         -         ## Create an appropriately-typed variable dst and
> >>>         assign the
> >>>         -         ## result of the const_expr to it.  If const_expr
> >>>         already contains
> >>>         -         ## writes to dst, just include const_expr directly.
> >>>                   % if "dst" in op.const_expr:
> >>>         -            ${op.output_type} dst;
> >>>                      ${op.const_expr}
> >>>                   % else:
> >>>         -            ${op.output_type} dst = ${op.const_expr};
> >>>         +            ## Splat the value to all components.  This way
> >>>         expressions which
> >>>         +            ## write the same value to all components don't
> >>>         need to explicitly
> >>>         +            ## write to dest.  One such example is fnoise
> >>>         which has a
> >>>         +            ## const_expr of 0.0f.
> >>>         +            dst.x = dst.y = dst.z = dst.w = ${op.const_expr};
> >>>                   % endif
> >>>
> >>>         -         ## Store the current component of the actual
> >>>         destination to the
> >>>         -         ## value of dst.
> >>>         -         % if op.output_type == "bool":
> >>>         -            ## Sanitize the C value to a proper NIR bool
> >>>         -            _dst_val.u[_i] = dst ? NIR_TRUE : NIR_FALSE;
> >>>         -         % else:
> >>>         -            _dst_val.${op.output_type[:1]}[_i] = dst;
> >>>         -         % endif
> >>>         -      }
> >>>         -   % else:
> >>>         -      ## In the non-per-component case, create a struct dst
> >>>         with
> >>>         -      ## appropriately-typed elements x, y, z, and w and
> >>>         assign the result
> >>>         -      ## of the const_expr to all components of dst, or
> >>>         include the
> >>>         -      ## const_expr directly if it writes to dst already.
> >>>         -      struct ${op.output_type}_vec dst;
> >>>         -
> >>>         -      % if "dst" in op.const_expr:
> >>>         -         ${op.const_expr}
> >>>         -      % else:
> >>>         -         ## Splat the value to all components.  This way
> >>>         expressions which
> >>>         -         ## write the same value to all components don't need
> >>>         to explicitly
> >>>         -         ## write to dest.  One such example is fnoise which
> >>>         has a
> >>>         -         ## const_expr of 0.0f.
> >>>         -         dst.x = dst.y = dst.z = dst.w = ${op.const_expr};
> >>>         +         ## For each component in the destination, copy the
> >>>         value of dst to
> >>>         +         ## the actual destination.
> >>>         +         % for k in range(op.output_size):
> >>>         +            % if output_type == "bool32":
> >>>         +               ## Sanitize the C value to a proper NIR bool
> >>>         +               _dst_val.u[${k}] = dst.${"xyzw"[k]} ?
> >>>         NIR_TRUE : NIR_FALSE;
> >>>         +            % else:
> >>>         +               _dst_val.${get_const_field(output_type)}[${k}]
> >>>         = dst.${"xyzw"[k]};
> >>>         +            % endif
> >>>         +         % endfor
> >>>                % endif
> >>>
> >>>         -      ## For each component in the destination, copy the
> >>>         value of dst to
> >>>         -      ## the actual destination.
> >>>         -      % for k in range(op.output_size):
> >>>         -         % if op.output_type == "bool":
> >>>         -            ## Sanitize the C value to a proper NIR bool
> >>>         -            _dst_val.u[${k}] = dst.${"xyzw"[k]} ? NIR_TRUE :
> >>>         NIR_FALSE;
> >>>         -         % else:
> >>>         -            _dst_val.${op.output_type[:1]}[${k}] =
> >>>         dst.${"xyzw"[k]};
> >>>         -         % endif
> >>>         -      % endfor
> >>>         -   % endif
> >>>         +      break;
> >>>         +   }
> >>>         +   % endfor
> >>>         +
> >>>         +   default:
> >>>         +      unreachable("unknown bit width");
> >>>         +   }
> >>>
> >>>             return _dst_val;
> >>>          }
> >>>         @@ -316,12 +385,12 @@ evaluate_${name}(unsigned
> >>>         num_components, nir_const_value *_src)
> >>>
> >>>          nir_const_value
> >>>          nir_eval_const_opcode(nir_op op, unsigned num_components,
> >>>         -                      nir_const_value *src)
> >>>         +                      unsigned bit_width, nir_const_value
> >>>         *src)
> >>>          {
> >>>             switch (op) {
> >>>          % for name in sorted(opcodes.iterkeys()):
> >>>             case nir_op_${name}: {
> >>>         -      return evaluate_${name}(num_components, src);
> >>>         +      return evaluate_${name}(num_components, bit_width,
> >>>         src);
> >>>                break;
> >>>             }
> >>>          % endfor
> >>>         @@ -333,4 +402,7 @@ nir_eval_const_opcode(nir_op op, unsigned
> >>>         num_components,
> >>>          from nir_opcodes import opcodes
> >>>          from mako.template import Template
> >>>
> >>>         -print Template(template).render(opcodes=opcodes)
> >>>         +print Template(template).render(opcodes=opcodes,
> >>>         type_sizes=type_sizes,
> >>>         +                                type_has_size=type_has_size,
> >>>         +                                type_add_size=type_add_size,
> >>>         +
> >>>         get_const_field=get_const_field)
> >>>         diff --git a/src/compiler/nir/nir_opt_constant_folding.c
> >>>         b/src/compiler/nir/nir_opt_constant_folding.c
> >>>         index 04876a4..29905a0 100644
> >>>         --- a/src/compiler/nir/nir_opt_constant_folding.c
> >>>         +++ b/src/compiler/nir/nir_opt_constant_folding.c
> >>>         @@ -46,10 +46,23 @@ constant_fold_alu_instr(nir_alu_instr
> >>>         *instr, void *mem_ctx)
> >>>             if (!instr->dest.dest.is_ssa)
> >>>                return false;
> >>>
> >>>         +   unsigned bit_size = 0;
> >>>         +   if (!(nir_op_infos[instr->op].output_type &
> >>>         NIR_ALU_TYPE_SIZE_MASK))
> >>>         +      bit_size = instr->dest.dest.ssa.bit_size;
> >>>         +   else
> >>>         +      bit_size = nir_op_infos[instr->op].output_type &
> >>>         NIR_ALU_TYPE_SIZE_MASK;
> >>>
> >>>
> >>> This isn't right.  We need to look at all the unsized types and try to
> >>> pull it from one of those.  We shouldn't fall back to grabbing from
> >>> the sized type.
> >>
> >> Ok, so you don't like that in the case that the alu operation has a
> >> sized destination we grab the bit-size from the opcode definition? I am
> >> not sure I see the problem with that... isn't the opcode mandating a
> >> specific bit-size in that case? How can the bit-size we want be
> >> different from that?
> >>
> >>>
> >>>         +
> >>>             for (unsigned i = 0; i <
> >>>         nir_op_infos[instr->op].num_inputs; i++) {
> >>>                if (!instr->src[i].src.is_ssa)
> >>>                   return false;
> >>>
> >>>         +      if (bit_size == 0) {
> >>>         +         if (!(nir_op_infos[instr->op].input_sizes[i] &
> >>>         NIR_ALU_TYPE_SIZE_MASK))
> >>>         +            bit_size = instr->src[i].src.ssa->bit_size;
> >>>         +         else
> >>>         +            bit_size = nir_op_infos[instr->op].input_sizes[i]
> >>>         & NIR_ALU_TYPE_SIZE_MASK;
> >>>
> >>>
> >>> Same here.  If they don't have any unsized sources or destinations to
> >>> grab from, we should let bit_size be zero.
> >>
> >> But if we have an opcode with all sized 64-bit types then...
> >>
> >>> Also, if we have multiple sources with the same unsized type, we
> >>> should assert that the sizes match.
> >>>
> >>>
> >>>         +      }
> >>>         +
> >>>                nir_instr *src_instr =
> >>>         instr->src[i].src.ssa->parent_instr;
> >>>
> >>>                if (src_instr->type != nir_instr_type_load_const)
> >>>         @@ -58,24 +71,31 @@ constant_fold_alu_instr(nir_alu_instr
> >>>         *instr, void *mem_ctx)
> >>>
> >>>                for (unsigned j = 0; j <
> >>>         nir_ssa_alu_instr_src_components(instr, i);
> >>>                     j++) {
> >>>         -         src[i].u[j] =
> >>>         load_const->value.u[instr->src[i].swizzle[j]];
> >>>         +         if (load_const->def.bit_size == 64)
> >>>         +            src[i].ul[j] =
> >>>         load_const->value.ul[instr->src[i].swizzle[j]];
> >>>         +         else
> >>>         +            src[i].u[j] =
> >>>         load_const->value.u[instr->src[i].swizzle[j]];
> >>>                }
> >>>
> >>>                /* We shouldn't have any source modifiers in the
> >>>         optimization loop. */
> >>>                assert(!instr->src[i].abs && !instr->src[i].negate);
> >>>             }
> >>>
> >>>         +   if (bit_size == 0)
> >>>         +      bit_size = 32;
> >>
> >> ... this default to 32 here would not be correct any more. If at this
> >> point the bit-size is 0 (meaning that all inputs and output are sized)
> >> then we should take the bit-size from the opcode's output type, which
is
> >> known to be sized, right?
> >
> > Not quite. xd
>
> Err, whoops...
>
> Not quite. If any of the operands or the destination is already sized
> by the opcode, then the constant propagation code we generated has all
> of the information it needs. The only case where we need to figure
> anything out is if there are unsized types, in which case we know the
> bitsizes match -- we just need to find the first unsized type and pass
> the bitsize of that. If all the operands and the destination are
> sized, then the bit_size will be ignored and it's fine if it's 0.

More to the point, you could have an instruction with, say, two unsized
inputs and a sized destination (comparison operations are an example of
this). In this case, the two sources have to match but they don't have to
match the destination; the destination size is fixed.  Dies that make sense?

> >
> >>
> >>>
> >>> Then it'll get set here.
> >>>
> >>>
> >>>         +
> >>>             /* We shouldn't have any saturate modifiers in the
> >>>         optimization loop. */
> >>>             assert(!instr->dest.saturate);
> >>>
> >>>             nir_const_value dest =
> >>>                nir_eval_const_opcode(instr->op,
> >>>         instr->dest.dest.ssa.num_components,
> >>>         -                            src);
> >>>         +                            bit_size, src);
> >>>
> >>>             nir_load_const_instr *new_instr =
> >>>                nir_load_const_instr_create(mem_ctx,
> >>>
> >>>          instr->dest.dest.ssa.num_components);
> >>>
> >>>         +   new_instr->def.bit_size = instr->dest.dest.ssa.bit_size;
> >>>             new_instr->value = dest;
> >>>
> >>>             nir_instr_insert_before(&instr->instr, &new_instr->instr);
> >>>         --
> >>>         2.7.0
> >>>
> >>>         _______________________________________________
> >>>         mesa-dev mailing list
> >>>         mesa-dev at lists.freedesktop.org
> >>>         https://lists.freedesktop.org/mailman/listinfo/mesa-dev
> >>>
> >>>
> >>> _______________________________________________
> >>> mesa-dev mailing list
> >>> mesa-dev at lists.freedesktop.org
> >>> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
> >>
> >>
> >> _______________________________________________
> >> mesa-dev mailing list
> >> mesa-dev at lists.freedesktop.org
> >> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.freedesktop.org/archives/mesa-dev/attachments/20160315/fc5d1ac4/attachment-0001.html>


More information about the mesa-dev mailing list