[Mesa-dev] [PATCH] nv50/ir: Split 64-bit integer MAD/MUL operations
Pierre Moreau
pierre.morrow at free.fr
Sat Oct 15 22:28:14 UTC 2016
Sorry, there should have been a v2 next to PATCH in the subject…
Pierre
On 12:24 am - Oct 16 2016, Pierre Moreau wrote:
> Hardware does not support 64-bit integers MAD and MUL operations, so we need
> to transform them in 32-bit operations.
>
> Signed-off-by: Pierre Moreau <pierre.morrow at free.fr>
> ---
> .../drivers/nouveau/codegen/nv50_ir_peephole.cpp | 121 +++++++++++++++++++++
> 1 file changed, 121 insertions(+)
>
> Tested with (the GPU result was compared to the CPU result):
> * 0xfffffffffffffff3lu * 0xfffffffffffffff2lu + 0x8000000700000002lu
> * 0xfffffffffffffff3lu * 0x8000000700000002lu + 0x8000000700000002lu
> * 0x8000000100000003lu * 0xfffffffffffffff2lu + 0x8000000700000002lu
> * 0x8000000100000003lu * 0x8000000700000002lu + 0x8000000700000002lu
>
> * -523456791234l * 929835793793l + -100005793793l
> * 523456791234l * 929835793793l + -100005793793l
> * -523456791234l * -929835793793l + -100005793793l
> * 523456791234l * -929835793793l + -100005793793l
>
> v2:
> * Completely re-write the patch, as it was completely flawed (Ilia Mirkin)
> * Move pass prior to Register Allocation, as some temporaries need to
> be created.
>
> diff --git a/src/gallium/drivers/nouveau/codegen/nv50_ir_peephole.cpp b/src/gallium/drivers/nouveau/codegen/nv50_ir_peephole.cpp
> index d88bb34..a610eb5 100644
> --- a/src/gallium/drivers/nouveau/codegen/nv50_ir_peephole.cpp
> +++ b/src/gallium/drivers/nouveau/codegen/nv50_ir_peephole.cpp
> @@ -2218,6 +2218,126 @@ LateAlgebraicOpt::visit(Instruction *i)
>
> // =============================================================================
>
> +// Split 64-bit MUL and MAD
> +class Split64BitOpPreRA : public Pass
> +{
> +private:
> + virtual bool visit(BasicBlock *);
> + void split64BitReg(Function *, Instruction *, Instruction *,
> + Instruction *, Value *, int);
> + void split64MulMad(Function *, Instruction *, DataType);
> +
> + BuildUtil bld;
> +};
> +
> +bool
> +Split64BitOpPreRA::visit(BasicBlock *bb)
> +{
> + Instruction *i, *next;
> + Modifier mod;
> +
> + for (i = bb->getEntry(); i; i = next) {
> + next = i->next;
> +
> + if (typeSizeof(i->dType) != 8)
> + continue;
> +
> + DataType hTy;
> + switch (i->dType) {
> + case TYPE_U64: hTy = TYPE_U32; break;
> + case TYPE_S64: hTy = TYPE_S32; break;
> + default:
> + continue;
> + }
> +
> + if (i->op == OP_MAD || i->op == OP_MUL)
> + split64MulMad(bb->getFunction(), i, hTy);
> + }
> +
> + return true;
> +}
> +
> +void
> +Split64BitOpPreRA::split64MulMad(Function *fn, Instruction *i, DataType hTy)
> +{
> + assert(i->op == OP_MAD || i->op == OP_MUL);
> + if (isFloatType(i->dType) || isFloatType(i->sType))
> + return;
> +
> + bld.setPosition(i, true);
> +
> + Value *zero = bld.mkImm(0u);
> + Value *carry = bld.getSSA(1, FILE_FLAGS);
> +
> + // We want to compute `d = a * b (+ c)?`, where a, b, c and d are 64-bit
> + // values (a, b and c might be 32-bit values), using 32-bit operations. This
> + // gives the following operations:
> + // * `d.low = low(a.low * b.low) (+ c.low)?`
> + // * `d.high = low(a.high * b.low) + low(a.low * b.high)
> + // + high(a.low * b.low) (+ c.high)?`
> + //
> + // To compute the high bits, we can split in the following operations:
> + // * `tmp1 = low(a.high * b.low) (+ c.high)?`
> + // * `tmp2 = low(a.low * b.high) + tmp1`
> + // * `d.high = high(a.low * b.low) + tmp2`
> + //
> + // mkSplit put lower bits at index 0 and higher bits at index 1
> +
> + Value *op1[2];
> + if (i->getSrc(0)->reg.size == 8)
> + bld.mkSplit(op1, typeSizeof(hTy), i->getSrc(0));
> + else {
> + op1[0] = i->getSrc(0);
> + op1[1] = zero;
> + }
> + Value *op2[2];
> + if (i->getSrc(1)->reg.size == 8)
> + bld.mkSplit(op2, typeSizeof(hTy), i->getSrc(1));
> + else {
> + op2[0] = i->getSrc(1);
> + op2[1] = zero;
> + }
> +
> + Value *op3[2] = { NULL, NULL };
> + if (i->op == OP_MAD) {
> + if (i->getSrc(2)->reg.size == 8)
> + bld.mkSplit(op3, typeSizeof(hTy), i->getSrc(2));
> + else {
> + op3[0] = i->getSrc(2);
> + op3[1] = zero;
> + }
> + }
> +
> + Value *tmpRes1Hi = bld.getSSA();
> + if (i->op == OP_MAD)
> + bld.mkOp3(OP_MAD, hTy, tmpRes1Hi, op1[1], op2[0], op3[1]);
> + else
> + bld.mkOp2(OP_MUL, hTy, tmpRes1Hi, op1[1], op2[0]);
> +
> + Value *tmpRes2Hi = bld.mkOp3v(OP_MAD, hTy, bld.getSSA(), op1[0], op2[1], tmpRes1Hi);
> +
> + Value *def[2] = { bld.getSSA(), bld.getSSA() };
> +
> + // If it was a MAD, add the carry from the low bits
> + // It is not needed if it was a MUL, since we added high(a.low * b.low) to
> + // d.high
> + if (i->op == OP_MAD)
> + bld.mkOp3(OP_MAD, hTy, def[0], op1[0], op2[0], op3[0])->setFlagsDef(1, carry);
> + else
> + bld.mkOp2(OP_MUL, hTy, def[0], op1[0], op2[0]);
> +
> + Instruction *hiPart3 = bld.mkOp3(OP_MAD, hTy, def[1], op1[0], op2[0], tmpRes2Hi);
> + hiPart3->subOp = NV50_IR_SUBOP_MUL_HIGH;
> + if (i->op == OP_MAD)
> + hiPart3->setFlagsSrc(3, carry);
> +
> + bld.mkOp2(OP_MERGE, i->dType, i->getDef(0), def[0], def[1]);
> +
> + delete_Instruction(fn->getProgram(), i);
> +}
> +
> +// =============================================================================
> +
> static inline void
> updateLdStOffset(Instruction *ldst, int32_t offset, Function *fn)
> {
> @@ -3523,6 +3643,7 @@ Program::optimizeSSA(int level)
> RUN_PASS(2, ModifierFolding, run); // before load propagation -> less checks
> RUN_PASS(1, ConstantFolding, foldAll);
> RUN_PASS(2, LateAlgebraicOpt, run);
> + RUN_PASS(1, Split64BitOpPreRA, run);
> RUN_PASS(1, LoadPropagation, run);
> RUN_PASS(1, IndirectPropagation, run);
> RUN_PASS(2, MemoryOpt, run);
> --
> 2.10.0
>
> _______________________________________________
> mesa-dev mailing list
> mesa-dev at lists.freedesktop.org
> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
More information about the mesa-dev
mailing list