[Mesa-dev] [PATCH 1/2] intel/fs: Implement GRF bank conflict mitigation pass.
Francisco Jerez
currojerez at riseup.net
Wed Dec 6 20:38:26 UTC 2017
This series (which is ready for production and improves the cycle count
of over 46k shaders) has been sitting here for nearly half a year. I'm
planning to self-review it and land it (along with PATCH 3/2 I just sent
to make sure we keep regressions under control) if nobody else does in
the next two weeks.
Francisco Jerez <currojerez at riseup.net> writes:
> Unnecessary GRF bank conflicts increase the issue time of ternary
> instructions (the overwhelmingly most common of which is MAD) by
> roughly 50%, leading to reduced ALU throughput. This pass attempts to
> minimize the number of bank conflicts by rearranging the layout of the
> GRF space post-register allocation. It's in general not possible to
> eliminate all of them without introducing extra copies, which are
> typically more expensive than the bank conflict itself.
>
> In a shader-db run on SKL this helps roughly 46k shaders:
>
> total conflicts in shared programs: 1008981 -> 600461 (-40.49%)
> conflicts in affected programs: 816222 -> 407702 (-50.05%)
> helped: 46234
> HURT: 72
>
> The running time of shader-db itself on SKL seems to be increased by
> roughly 2.52%±1.13% with n=20 due to the additional work done by the
> compiler back-end.
>
> On earlier generations the pass is somewhat less effective in relative
> terms because the hardware incurs a bank conflict anytime the last two
> sources of the instruction are duplicate (e.g. while trying to square
> a value using MAD), which is impossible to avoid without introducing
> copies. E.g. for a shader-db run on SNB:
>
> total conflicts in shared programs: 944636 -> 623185 (-34.03%)
> conflicts in affected programs: 853258 -> 531807 (-37.67%)
> helped: 31052
> HURT: 19
>
> And on BDW:
>
> total conflicts in shared programs: 1418393 -> 987539 (-30.38%)
> conflicts in affected programs: 1179787 -> 748933 (-36.52%)
> helped: 47592
> HURT: 70
>
> On SKL GT4e this improves performance of GpuTest Volplosion by 3.64%
> ±0.33% with n=16.
>
> NOTE: This patch intentionally disregards some i965 coding conventions
> for the sake of reviewability. This is addressed by the next
> squash patch which introduces an amount of (for the most part
> boring) boilerplate that might distract reviewers from the
> non-trivial algorithmic details of the pass.
> ---
> src/intel/Makefile.sources | 1 +
> src/intel/compiler/brw_fs.cpp | 2 +
> src/intel/compiler/brw_fs.h | 1 +
> src/intel/compiler/brw_fs_bank_conflicts.cpp | 791 +++++++++++++++++++++++++++
> 4 files changed, 795 insertions(+)
> create mode 100644 src/intel/compiler/brw_fs_bank_conflicts.cpp
>
> diff --git a/src/intel/Makefile.sources b/src/intel/Makefile.sources
> index a877ff2..1b9799a 100644
> --- a/src/intel/Makefile.sources
> +++ b/src/intel/Makefile.sources
> @@ -44,6 +44,7 @@ COMPILER_FILES = \
> compiler/brw_eu_util.c \
> compiler/brw_eu_validate.c \
> compiler/brw_fs_builder.h \
> + compiler/brw_fs_bank_conflicts.cpp \
> compiler/brw_fs_cmod_propagation.cpp \
> compiler/brw_fs_combine_constants.cpp \
> compiler/brw_fs_copy_propagation.cpp \
> diff --git a/src/intel/compiler/brw_fs.cpp b/src/intel/compiler/brw_fs.cpp
> index 43b6e34..0a85c0c 100644
> --- a/src/intel/compiler/brw_fs.cpp
> +++ b/src/intel/compiler/brw_fs.cpp
> @@ -5858,6 +5858,8 @@ fs_visitor::allocate_registers(bool allow_spilling)
> if (failed)
> return;
>
> + opt_bank_conflicts();
> +
> schedule_instructions(SCHEDULE_POST);
>
> if (last_scratch > 0) {
> diff --git a/src/intel/compiler/brw_fs.h b/src/intel/compiler/brw_fs.h
> index 6c8c027..b1fc7b3 100644
> --- a/src/intel/compiler/brw_fs.h
> +++ b/src/intel/compiler/brw_fs.h
> @@ -141,6 +141,7 @@ public:
> exec_list *acp);
> bool opt_drop_redundant_mov_to_flags();
> bool opt_register_renaming();
> + bool opt_bank_conflicts();
> bool register_coalesce();
> bool compute_to_mrf();
> bool eliminate_find_live_channel();
> diff --git a/src/intel/compiler/brw_fs_bank_conflicts.cpp b/src/intel/compiler/brw_fs_bank_conflicts.cpp
> new file mode 100644
> index 0000000..0225c70
> --- /dev/null
> +++ b/src/intel/compiler/brw_fs_bank_conflicts.cpp
> @@ -0,0 +1,791 @@
> +/*
> + * Copyright © 2017 Intel Corporation
> + *
> + * Permission is hereby granted, free of charge, to any person obtaining a
> + * copy of this software and associated documentation files (the "Software"),
> + * to deal in the Software without restriction, including without limitation
> + * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> + * and/or sell copies of the Software, and to permit persons to whom the
> + * Software is furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice (including the next
> + * paragraph) shall be included in all copies or substantial portions of the
> + * Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
> + * IN THE SOFTWARE.
> + */
> +
> +/** @file brw_fs_bank_conflicts.cpp
> + *
> + * This file contains a GRF bank conflict mitigation pass. The pass is
> + * intended to be run after register allocation and works by rearranging the
> + * layout of the GRF space (hopefully without altering the semantics of the
> + * program) in a way that minimizes the number of GRF bank conflicts incurred
> + * by ternary instructions.
> + *
> + * Unfortunately there is close to no information about bank conflicts in the
> + * hardware spec, but experimentally on Gen7-Gen9 ternary instructions seem to
> + * incur an average bank conflict penalty of one cycle per SIMD8 op whenever
> + * the second and third source are stored in the same GRF bank (\sa bank_of()
> + * for the exact bank layout) which cannot be fetched during the same cycle by
> + * the EU, unless the EU logic manages to optimize out the read cycle of a
> + * duplicate source register (\sa is_conflict_optimized_out()).
> + *
> + * The asymptotic run-time of the algorithm is dominated by the
> + * shader_conflict_weight_matrix() computation below, which is O(n) on the
> + * number of instructions in the program, however for small and medium-sized
> + * programs the run-time is likely to be dominated by
> + * optimize_reg_permutation() which is O(m^3) on the number of GRF atoms of
> + * the program (\sa partitioning), which is bounded (since the program uses a
> + * bounded number of registers post-regalloc) and of the order of 100. For
> + * that reason optimize_reg_permutation() is vectorized in order to keep the
> + * cubic term within reasonable bounds for m close to its theoretical maximum.
> + */
> +
> +#include "brw_fs.h"
> +#include "brw_cfg.h"
> +
> +#include <vector>
> +#include <array>
> +
> +#ifdef __SSE2__
> +
> +#include <emmintrin.h>
> +
> +/**
> + * Thin layer around vector intrinsics so they can be easily replaced with
> + * e.g. the fall-back scalar path, an implementation with different vector
> + * width or using different SIMD architectures (AVX-512?!).
> + *
> + * This implementation operates on pairs of independent SSE2 integer vectors à
> + * la SIMD16 for somewhat improved throughput. SSE2 is supported by virtually
> + * all platforms that care about bank conflicts, so this path should almost
> + * always be available in practice.
> + */
> +namespace {
> + /**
> + * SIMD integer vector data type.
> + */
> + typedef std::array<__m128i, 2> vector_type;
> +
> + /**
> + * Scalar data type matching the representation of a single component of \p
> + * vector_type.
> + */
> + typedef int16_t scalar_type;
> +
> + /**
> + * Maximum integer value representable as a \p scalar_type.
> + */
> + const scalar_type max_scalar = INT16_MAX;
> +
> + /**
> + * Number of components of a \p vector_type.
> + */
> + const unsigned vector_width = 2 * sizeof(vector_type::value_type) /
> + sizeof(scalar_type);
> +
> + /**
> + * Set the i-th component of vector \p v to \p x.
> + */
> + void
> + set(vector_type &v, unsigned i, scalar_type x)
> + {
> + assert(i < vector_width);
> + memcpy((char *)v.data() + i * sizeof(x), &x, sizeof(x));
> + }
> +
> + /**
> + * Get the i-th component of vector \p v.
> + */
> + scalar_type
> + get(const vector_type &v, unsigned i)
> + {
> + assert(i < vector_width);
> + scalar_type x;
> + memcpy(&x, (char *)v.data() + i * sizeof(x), sizeof(x));
> + return x;
> + }
> +
> + /**
> + * Add two vectors with saturation.
> + */
> + vector_type
> + adds(const vector_type &v, const vector_type &w)
> + {
> + const vector_type u = {
> + _mm_adds_epi16(v[0], w[0]),
> + _mm_adds_epi16(v[1], w[1])
> + };
> + return u;
> + }
> +
> + /**
> + * Subtract two vectors with saturation.
> + */
> + vector_type
> + subs(const vector_type &v, const vector_type &w)
> + {
> + const vector_type u = {
> + _mm_subs_epi16(v[0], w[0]),
> + _mm_subs_epi16(v[1], w[1])
> + };
> + return u;
> + }
> +
> + /**
> + * Compute the bitwise conjunction of two vectors.
> + */
> + vector_type
> + mask(const vector_type &v, const vector_type &w)
> + {
> + const vector_type u = {
> + _mm_and_si128(v[0], w[0]),
> + _mm_and_si128(v[1], w[1])
> + };
> + return u;
> + }
> +
> + /**
> + * Reduce the components of a vector using saturating addition.
> + */
> + scalar_type
> + sums(const vector_type &v)
> + {
> + const __m128i v8 = _mm_adds_epi16(v[0], v[1]);
> + const __m128i v4 = _mm_adds_epi16(v8, _mm_shuffle_epi32(v8, 0x4e));
> + const __m128i v2 = _mm_adds_epi16(v4, _mm_shuffle_epi32(v4, 0xb1));
> + const __m128i v1 = _mm_adds_epi16(v2, _mm_shufflelo_epi16(v2, 0xb1));
> + return _mm_extract_epi16(v1, 0);
> + }
> +}
> +
> +#else
> +
> +/**
> + * Thin layer around vector intrinsics so they can be easily replaced with
> + * e.g. the fall-back scalar path, an implementation with different vector
> + * width or using different SIMD architectures (AVX-512?!).
> + *
> + * This implementation operates on scalar values and doesn't rely on
> + * any vector extensions. This is mainly intended for debugging and
> + * to keep this file building on exotic platforms.
> + */
> +namespace {
> + /**
> + * SIMD integer vector data type.
> + */
> + typedef int16_t vector_type;
> +
> + /**
> + * Scalar data type matching the representation of a single component of \p
> + * vector_type.
> + */
> + typedef int16_t scalar_type;
> +
> + /**
> + * Maximum integer value representable as a \p scalar_type.
> + */
> + const scalar_type max_scalar = INT16_MAX;
> +
> + /**
> + * Number of components of a \p vector_type.
> + */
> + const unsigned vector_width = 1;
> +
> + /**
> + * Set the i-th component of vector \p v to \p x.
> + */
> + void
> + set(vector_type &v, unsigned i, scalar_type x)
> + {
> + assert(i < vector_width);
> + v = x;
> + }
> +
> + /**
> + * Get the i-th component of vector \p v.
> + */
> + scalar_type
> + get(const vector_type &v, unsigned i)
> + {
> + assert(i < vector_width);
> + return v;
> + }
> +
> + /**
> + * Add two vectors with saturation.
> + */
> + vector_type
> + adds(vector_type v, vector_type w)
> + {
> + return std::max(INT16_MIN, std::min(INT16_MAX, int(v) + w));
> + }
> +
> + /**
> + * Substract two vectors with saturation.
> + */
> + vector_type
> + subs(vector_type v, vector_type w)
> + {
> + return std::max(INT16_MIN, std::min(INT16_MAX, int(v) - w));
> + }
> +
> + /**
> + * Compute the bitwise conjunction of two vectors.
> + */
> + vector_type
> + mask(vector_type v, vector_type w)
> + {
> + return v & w;
> + }
> +
> + /**
> + * Reduce the components of a vector using saturating addition.
> + */
> + scalar_type
> + sums(vector_type v)
> + {
> + return v;
> + }
> +}
> +
> +#endif
> +
> +namespace {
> + /**
> + * Variable-length vector type intended to represent cycle-count costs for
> + * arbitrary atom-to-bank assignments. It's indexed by a pair of integers
> + * (i, p), where i is an atom index and p in {0, 1} indicates the parity of
> + * the conflict (respectively, whether the cost is incurred whenever the
> + * atoms are assigned the same bank b or opposite-parity banks b and b^1).
> + * \sa shader_conflict_weight_matrix()
> + */
> + typedef std::vector<vector_type> weight_vector_type;
> +
> + /**
> + * Set the (i, p)-th component of weight vector \p v to \p x.
> + */
> + void
> + set(weight_vector_type &v, unsigned i, unsigned p, scalar_type x)
> + {
> + set(v[(2 * i + p) / vector_width], (2 * i + p) % vector_width, x);
> + }
> +
> + /**
> + * Get the (i, p)-th component of weight vector \p v.
> + */
> + scalar_type
> + get(const weight_vector_type &v, unsigned i, unsigned p)
> + {
> + return get(v[(2 * i + p) / vector_width], (2 * i + p) % vector_width);
> + }
> +
> + /**
> + * Swap the (i, p)-th and (j, q)-th components of weight vector \p v.
> + */
> + void
> + swap(weight_vector_type &v,
> + unsigned i, unsigned p,
> + unsigned j, unsigned q)
> + {
> + const scalar_type tmp = get(v, i, p);
> + set(v, i, p, get(v, j, q));
> + set(v, j, q, tmp);
> + }
> +}
> +
> +namespace {
> + /**
> + * Object that represents the partitioning of an arbitrary register space
> + * into indivisible units (referred to as atoms below) that can potentially
> + * be rearranged independently from other registers. The partitioning is
> + * inferred from a number of contiguity requirements specified using
> + * require_contiguous(). This allows efficient look-up of the atom index a
> + * given register address belongs to, or conversely the range of register
> + * addresses that belong to a given atom.
> + */
> + struct partitioning {
> + /**
> + * Create a (for the moment unrestricted) partitioning of a register
> + * file of size \p n. The units are arbitrary.
> + */
> + partitioning(unsigned n) {
> + for (unsigned i = 0; i < n + num_terminator_atoms; i++) {
> + offsets.push_back(i);
> + atoms.push_back(i);
> + }
> + }
> +
> + /**
> + * Require register range [reg, reg + n[ to be considered part of the
> + * same atom.
> + */
> + void
> + require_contiguous(unsigned reg, unsigned n)
> + {
> + unsigned r = atoms[reg];
> +
> + /* Renumber atoms[reg...] = { r... } and their offsets[r...] for the
> + * case that the specified contiguity requirement leads to the fusion
> + * (yay) of one or more existing atoms.
> + */
> + for (unsigned reg1 = reg + 1; reg1 < atoms.size(); reg1++) {
> + if (offsets[atoms[reg1]] < reg + n) {
> + atoms[reg1] = r;
> + } else {
> + if (offsets[atoms[reg1 - 1]] != offsets[atoms[reg1]])
> + r++;
> +
> + offsets[r] = offsets[atoms[reg1]];
> + atoms[reg1] = r;
> + }
> + }
> +
> + /* Clean up the scraps if we ended up with less atoms than we started
> + * with.
> + */
> + offsets.erase(offsets.begin() + r + 1, offsets.end());
> + }
> +
> + /**
> + * Get the atom index register address \p reg belongs to.
> + */
> + unsigned
> + atom_of_reg(unsigned reg) const
> + {
> + return atoms[reg];
> + }
> +
> + /**
> + * Get the base register address that belongs to atom \p r.
> + */
> + unsigned
> + reg_of_atom(unsigned r) const
> + {
> + return offsets[r];
> + }
> +
> + /**
> + * Get the size of atom \p r in register address units.
> + */
> + unsigned
> + size_of_atom(unsigned r) const
> + {
> + assert(r < num_atoms());
> + return reg_of_atom(r + 1) - reg_of_atom(r);
> + }
> +
> + /**
> + * Get the number of atoms the whole register space is partitioned into.
> + */
> + unsigned
> + num_atoms() const
> + {
> + return offsets.size() - num_terminator_atoms;
> + }
> +
> + private:
> + /**
> + * Number of trailing atoms inserted for convenience so among other
> + * things we don't need to special-case the last element in
> + * size_of_atom().
> + */
> + static const unsigned num_terminator_atoms = 1;
> + std::vector<unsigned> offsets;
> + std::vector<unsigned> atoms;
> + };
> +
> + /**
> + * Only GRF sources (whether they have been register-allocated or not) can
> + * possibly incur bank conflicts.
> + */
> + bool
> + is_grf(const fs_reg &r)
> + {
> + return r.file == VGRF || r.file == FIXED_GRF;
> + }
> +
> + /**
> + * Register offset of \p r in GRF units. Useful because the representation
> + * of GRFs post-register allocation is somewhat inconsistent and depends on
> + * whether the register already had a fixed GRF offset prior to register
> + * allocation or whether it was part of a VGRF allocation.
> + */
> + unsigned
> + reg_of(const fs_reg &r)
> + {
> + assert(is_grf(r));
> + if (r.file == VGRF)
> + return r.nr + r.offset / REG_SIZE;
> + else
> + return reg_offset(r) / REG_SIZE;
> + }
> +
> + /**
> + * Calculate the finest partitioning of the GRF space compatible with the
> + * register contiguity requirements derived from all instructions part of
> + * the program.
> + */
> + partitioning
> + shader_reg_partitioning(const fs_visitor *v)
> + {
> + partitioning p(BRW_MAX_GRF);
> +
> + foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> + if (is_grf(inst->dst))
> + p.require_contiguous(reg_of(inst->dst), regs_written(inst));
> +
> + for (int i = 0; i < inst->sources; i++) {
> + if (is_grf(inst->src[i]))
> + p.require_contiguous(reg_of(inst->src[i]), regs_read(inst, i));
> + }
> + }
> +
> + return p;
> + }
> +
> + /**
> + * Return the set of GRF atoms that should be left untouched at their
> + * original location to avoid violating hardware or software assumptions.
> + */
> + std::vector<bool>
> + shader_reg_constraints(const fs_visitor *v, const partitioning &p)
> + {
> + std::vector<bool> constrained(p.num_atoms());
> +
> + /* These are read implicitly by some send-message instructions without
> + * any indication at the IR level. Assume they are unsafe to move
> + * around.
> + */
> + for (unsigned reg = 0; reg < 2; reg++)
> + constrained[p.atom_of_reg(reg)] = true;
> +
> + /* Assume that anything referenced via fixed GRFs is baked into the
> + * hardware's fixed-function logic and may be unsafe to move around.
> + * Also take into account the source GRF restrictions of EOT
> + * send-message instructions.
> + */
> + foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> + if (inst->dst.file == FIXED_GRF)
> + constrained[p.atom_of_reg(reg_of(inst->dst))] = true;
> +
> + for (int i = 0; i < inst->sources; i++) {
> + if (inst->src[i].file == FIXED_GRF ||
> + (is_grf(inst->src[i]) && inst->eot))
> + constrained[p.atom_of_reg(reg_of(inst->src[i]))] = true;
> + }
> + }
> +
> + return constrained;
> + }
> +
> + /**
> + * Return whether the hardware will be able to prevent a bank conflict by
> + * optimizing out the read cycle of a source register. The formula was
> + * found experimentally.
> + */
> + bool
> + is_conflict_optimized_out(const gen_device_info *devinfo, const fs_inst *inst)
> + {
> + return devinfo->gen >= 9 &&
> + ((is_grf(inst->src[0]) && (reg_of(inst->src[0]) == reg_of(inst->src[1]) ||
> + reg_of(inst->src[0]) == reg_of(inst->src[2]))) ||
> + reg_of(inst->src[1]) == reg_of(inst->src[2]));
> + }
> +
> + /**
> + * Return a matrix that allows reasonably efficient computation of the
> + * cycle-count cost of bank conflicts incurred throughout the whole program
> + * for any given atom-to-bank assignment.
> + *
> + * More precisely, if C_r_s_p is the result of this function, the total
> + * cost of all bank conflicts involving any given atom r can be readily
> + * recovered as follows:
> + *
> + * S(B) = Sum_s_p(d_(p^B_r)_(B_s) * C_r_s_p)
> + *
> + * where d_i_j is the Kronecker delta, and B_r indicates the bank
> + * assignment of r. \sa delta_conflicts() for a vectorized implementation
> + * of the expression above.
> + *
> + * FINISHME: Teach this about the Gen10+ bank conflict rules, which are
> + * somewhat more relaxed than on previous generations. In the
> + * meantime optimizing based on Gen9 weights is likely to be more
> + * helpful than not optimizing at all.
> + */
> + std::vector<weight_vector_type>
> + shader_conflict_weight_matrix(const fs_visitor *v, const partitioning &p)
> + {
> + std::vector<weight_vector_type> conflicts(p.num_atoms(),
> + weight_vector_type(DIV_ROUND_UP(2 * p.num_atoms(),
> + vector_width)));
> + /* Crude approximation of the number of times the current basic block
> + * will be executed at run-time.
> + */
> + unsigned block_scale = 1;
> +
> + foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> + if (inst->opcode == BRW_OPCODE_DO) {
> + block_scale *= 10;
> +
> + } else if (inst->opcode == BRW_OPCODE_WHILE) {
> + block_scale /= 10;
> +
> + } else if (inst->is_3src(v->devinfo) &&
> + is_grf(inst->src[1]) && is_grf(inst->src[2])) {
> + const unsigned r = p.atom_of_reg(reg_of(inst->src[1]));
> + const unsigned s = p.atom_of_reg(reg_of(inst->src[2]));
> +
> + /* Estimate of the cycle-count cost of incurring a bank conflict
> + * for this instruction. This is only true on the average, for a
> + * sequence of back-to-back ternary instructions, since the EU
> + * front-end only seems to be able to issue a new instruction at
> + * an even cycle. The cost of a bank conflict incurred by an
> + * isolated ternary instruction may be higher.
> + */
> + const unsigned exec_size = inst->dst.component_size(inst->exec_size);
> + const unsigned cycle_scale = block_scale * DIV_ROUND_UP(exec_size,
> + REG_SIZE);
> +
> + /* Neglect same-atom conflicts (since they're either trivial or
> + * impossible to avoid without splitting the atom), and conflicts
> + * known to be optimized out by the hardware.
> + */
> + if (r != s && !is_conflict_optimized_out(v->devinfo, inst)) {
> + /* Calculate the parity of the sources relative to the start of
> + * their respective atoms. If their parity is the same (and
> + * none of the atoms straddle the 2KB mark), the instruction
> + * will incur a conflict iff both atoms are assigned the same
> + * bank b. If their parity is opposite, the instruction will
> + * incur a conflict iff they are assigned opposite banks (b and
> + * b^1).
> + */
> + const bool p_r = 1 & (reg_of(inst->src[1]) - p.reg_of_atom(r));
> + const bool p_s = 1 & (reg_of(inst->src[2]) - p.reg_of_atom(s));
> + const unsigned p = p_r ^ p_s;
> +
> + /* Calculate the updated cost of a hypothetical conflict
> + * between atoms r and s. Note that the weight matrix is
> + * symmetric with respect to indices r and s by construction.
> + */
> + const scalar_type w = std::min(unsigned(max_scalar),
> + get(conflicts[r], s, p) + cycle_scale);
> + set(conflicts[r], s, p, w);
> + set(conflicts[s], r, p, w);
> + }
> + }
> + }
> +
> + return conflicts;
> + }
> +
> + /**
> + * Return the set of GRF atoms that could potentially lead to bank
> + * conflicts if laid out unfavorably in the GRF space according to
> + * the specified \p conflicts matrix (\sa
> + * shader_conflict_weight_matrix()).
> + */
> + std::vector<bool>
> + have_any_conflicts(const std::vector<weight_vector_type> &conflicts)
> + {
> + std::vector<bool> any_conflicts(conflicts.size());
> +
> + for (unsigned r = 0; r < conflicts.size(); r++) {
> + for (unsigned s = 0; s < conflicts[r].size(); s++)
> + any_conflicts[r] = any_conflicts[r] || sums(conflicts[r][s]);
> + }
> +
> + return any_conflicts;
> + }
> +
> + /**
> + * Calculate the difference between two S(B) cost estimates as defined
> + * above (\sa shader_conflict_weight_matrix()). This represents the
> + * (partial) cycle-count benefit from moving an atom r from bank p to n.
> + * The respective bank assignments Bp and Bn are encoded as the \p
> + * bank_mask_p and \p bank_mask_n bitmasks for efficient computation,
> + * according to the formula:
> + *
> + * bank_mask(B)_s_p = -d_(p^B_r)_(B_s)
> + *
> + * Notice the similarity with the delta function in the S(B) expression
> + * above, and how bank_mask(B) can be precomputed for every possible
> + * selection of r since bank_mask(B) only depends on it via B_r that may
> + * only assume one of four different values, so the caller can keep every
> + * possible bank_mask(B) vector in memory without much hassle (\sa
> + * bank_characteristics()).
> + */
> + int
> + delta_conflicts(const weight_vector_type &bank_mask_p,
> + const weight_vector_type &bank_mask_n,
> + const weight_vector_type &conflicts)
> + {
> + vector_type s_p = {}, s_n = {};
> +
> + for (unsigned r = 0; r < conflicts.size(); r++) {
> + s_p = adds(s_p, mask(bank_mask_p[r], conflicts[r]));
> + s_n = adds(s_n, mask(bank_mask_n[r], conflicts[r]));
> + }
> +
> + return sums(subs(s_p, s_n));
> + }
> +
> + /**
> + * Return an identity permutation of GRF atoms, represented as the start GRF
> + * offset each atom is mapped into.
> + */
> + std::vector<unsigned>
> + identity_reg_permutation(const partitioning &p)
> + {
> + std::vector<unsigned> map(p.num_atoms());
> +
> + for (unsigned r = 0; r < map.size(); r++)
> + map[r] = p.reg_of_atom(r);
> +
> + return map;
> + }
> +
> + /**
> + * Return the bank index of GRF address \p reg, numbered according to the
> + * table:
> + * Even Odd
> + * Lo 0 1
> + * Hi 2 3
> + */
> + unsigned
> + bank_of(unsigned reg)
> + {
> + return (reg & 0x40) >> 5 | (reg & 1);
> + }
> +
> + /**
> + * Return bitmasks suitable for use as bank mask arguments for the
> + * delta_conflicts() computation. Note that this is just the (negative)
> + * characteristic function of each bank, if you regard it as a set
> + * containing all atoms assigned to it according to the \p map array.
> + */
> + std::array<weight_vector_type, 4>
> + bank_characteristics(const std::vector<unsigned> &map)
> + {
> + std::array<weight_vector_type, 4> banks;
> +
> + for (unsigned b = 0; b < banks.size(); b++) {
> + banks[b].resize(DIV_ROUND_UP(2 * map.size(), vector_width));
> +
> + for (unsigned j = 0; j < map.size(); j++) {
> + for (unsigned p = 0; p < 2; p++)
> + set(banks[b], j, p,
> + (b ^ p) == bank_of(map[j]) ? -1 : 0);
> + }
> + }
> +
> + return banks;
> + }
> +
> + /**
> + * Return an improved permutation of GRF atoms based on \p map attempting
> + * to reduce the total cycle-count cost of bank conflicts greedily.
> + *
> + * Note that this doesn't attempt to merge multiple atoms into one, which
> + * may allow it to do a better job in some cases -- It simply reorders
> + * existing atoms in the GRF space without affecting their identity.
> + */
> + std::vector<unsigned>
> + optimize_reg_permutation(const partitioning &p,
> + const std::vector<bool> &constrained,
> + const std::vector<weight_vector_type> &conflicts,
> + std::vector<unsigned> map)
> + {
> + const std::vector<bool> any_conflicts = have_any_conflicts(conflicts);
> + std::array<weight_vector_type, 4> banks = bank_characteristics(map);
> +
> + for (unsigned r = 0; r < map.size(); r++) {
> + const unsigned bank_r = bank_of(map[r]);
> +
> + if (!constrained[r]) {
> + unsigned best_s = r;
> + int best_benefit = 0;
> +
> + for (unsigned s = 0; s < map.size(); s++) {
> + const unsigned bank_s = bank_of(map[s]);
> +
> + if (bank_r != bank_s && !constrained[s] &&
> + p.size_of_atom(r) == p.size_of_atom(s) &&
> + (any_conflicts[r] || any_conflicts[s])) {
> + const int benefit =
> + delta_conflicts(banks[bank_r], banks[bank_s], conflicts[r]) +
> + delta_conflicts(banks[bank_s], banks[bank_r], conflicts[s]);
> +
> + if (benefit > best_benefit) {
> + best_s = s;
> + best_benefit = benefit;
> + }
> + }
> + }
> +
> + if (best_s != r) {
> + for (unsigned b = 0; b < banks.size(); b++) {
> + for (unsigned p = 0; p < 2; p++)
> + swap(banks[b], r, p, best_s, p);
> + }
> +
> + std::swap(map[r], map[best_s]);
> + }
> + }
> + }
> +
> + return map;
> + }
> +
> + /**
> + * Apply the GRF atom permutation given by \p map to register \p r and
> + * return the result.
> + */
> + fs_reg
> + transform(const partitioning &p, const std::vector<unsigned> &map,
> + fs_reg r)
> + {
> + if (r.file == VGRF) {
> + const unsigned reg = reg_of(r);
> + const unsigned s = p.atom_of_reg(reg);
> + r.nr = map[s] + reg - p.reg_of_atom(s);
> + r.offset = r.offset % REG_SIZE;
> + }
> +
> + return r;
> + }
> +}
> +
> +bool
> +fs_visitor::opt_bank_conflicts()
> +{
> + assert(grf_used || !"Must be called after register allocation");
> +
> + /* No ternary instructions -- No bank conflicts. */
> + if (devinfo->gen < 6)
> + return false;
> +
> + const partitioning p = shader_reg_partitioning(this);
> + const std::vector<bool> constrained = shader_reg_constraints(this, p);
> + const std::vector<weight_vector_type> conflicts =
> + shader_conflict_weight_matrix(this, p);
> + const std::vector<unsigned> map =
> + optimize_reg_permutation(p, constrained, conflicts,
> + identity_reg_permutation(p));
> +
> + foreach_block_and_inst(block, fs_inst, inst, cfg) {
> + inst->dst = transform(p, map, inst->dst);
> +
> + for (int i = 0; i < inst->sources; i++)
> + inst->src[i] = transform(p, map, inst->src[i]);
> + }
> +
> + return true;
> +}
> --
> 2.10.2
>
> _______________________________________________
> mesa-dev mailing list
> mesa-dev at lists.freedesktop.org
> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 227 bytes
Desc: not available
URL: <https://lists.freedesktop.org/archives/mesa-dev/attachments/20171206/9b5feb34/attachment-0001.sig>
More information about the mesa-dev
mailing list