[Mesa-dev] [PATCH 01/19] radeonsi: clean up passing the is_monolithic flag for compilation

Marek Olšák maraeo at gmail.com
Fri Jun 22 22:31:52 UTC 2018


From: Marek Olšák <marek.olsak at amd.com>

---
 src/gallium/drivers/radeonsi/si_shader.c      | 30 +++++++++----------
 src/gallium/drivers/radeonsi/si_shader.h      |  1 -
 .../drivers/radeonsi/si_shader_internal.h     |  3 --
 .../drivers/radeonsi/si_state_shaders.c       |  7 +++--
 4 files changed, 18 insertions(+), 23 deletions(-)

diff --git a/src/gallium/drivers/radeonsi/si_shader.c b/src/gallium/drivers/radeonsi/si_shader.c
index e7e2a12a7b0..677853af60b 100644
--- a/src/gallium/drivers/radeonsi/si_shader.c
+++ b/src/gallium/drivers/radeonsi/si_shader.c
@@ -5047,22 +5047,21 @@ static void create_function(struct si_shader_context *ctx)
 		break;
 	default:
 		assert(0 && "unimplemented shader");
 		return;
 	}
 
 	si_create_function(ctx, "main", returns, num_returns, &fninfo,
 			   si_get_max_workgroup_size(shader));
 
 	/* Reserve register locations for VGPR inputs the PS prolog may need. */
-	if (ctx->type == PIPE_SHADER_FRAGMENT &&
-	    ctx->separate_prolog) {
+	if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
 		ac_llvm_add_target_dep_function_attr(ctx->main_fn,
 						     "InitialPSInputAddr",
 						     S_0286D0_PERSP_SAMPLE_ENA(1) |
 						     S_0286D0_PERSP_CENTER_ENA(1) |
 						     S_0286D0_PERSP_CENTROID_ENA(1) |
 						     S_0286D0_LINEAR_SAMPLE_ENA(1) |
 						     S_0286D0_LINEAR_CENTER_ENA(1) |
 						     S_0286D0_LINEAR_CENTROID_ENA(1) |
 						     S_0286D0_FRONT_FACE_ENA(1) |
 						     S_0286D0_ANCILLARY_ENA(1) |
@@ -6049,22 +6048,21 @@ static void si_init_exec_from_input(struct si_shader_context *ctx,
 }
 
 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
 			       const struct si_vs_prolog_bits *key)
 {
 	/* VGPR initialization fixup for Vega10 and Raven is always done in the
 	 * VS prolog. */
 	return sel->vs_needs_prolog || key->ls_vgpr_fix;
 }
 
-static bool si_compile_tgsi_main(struct si_shader_context *ctx,
-				 bool is_monolithic)
+static bool si_compile_tgsi_main(struct si_shader_context *ctx)
 {
 	struct si_shader *shader = ctx->shader;
 	struct si_shader_selector *sel = shader->selector;
 	struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
 
 	// TODO clean all this up!
 	switch (ctx->type) {
 	case PIPE_SHADER_VERTEX:
 		ctx->load_input = declare_input_vs;
 		if (shader->key.as_ls)
@@ -6135,31 +6133,31 @@ static bool si_compile_tgsi_main(struct si_shader_context *ctx,
 	 * - Add a barrier before the second shader.
 	 * - In the second shader, reset EXEC to ~0 and wrap the main part in
 	 *   an if-statement. This is required for correctness in geometry
 	 *   shaders, to ensure that empty GS waves do not send GS_EMIT and
 	 *   GS_CUT messages.
 	 *
 	 * For monolithic merged shaders, the first shader is wrapped in an
 	 * if-block together with its prolog in si_build_wrapper_function.
 	 */
 	if (ctx->screen->info.chip_class >= GFX9) {
-		if (!is_monolithic &&
+		if (!shader->is_monolithic &&
 		    sel->info.num_instructions > 1 && /* not empty shader */
 		    (shader->key.as_es || shader->key.as_ls) &&
 		    (ctx->type == PIPE_SHADER_TESS_EVAL ||
 		     (ctx->type == PIPE_SHADER_VERTEX &&
 		      !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
 			si_init_exec_from_input(ctx,
 						ctx->param_merged_wave_info, 0);
 		} else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
 			   ctx->type == PIPE_SHADER_GEOMETRY) {
-			if (!is_monolithic)
+			if (!shader->is_monolithic)
 				ac_init_exec_full_mask(&ctx->ac);
 
 			LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
 			LLVMValueRef ena =
 				LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
 					    ac_get_thread_id(&ctx->ac), num_threads, "");
 			lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
 
 			/* The barrier must execute for all shaders in a
 			 * threadgroup.
@@ -6766,71 +6764,69 @@ static void si_build_wrapper_function(struct si_shader_context *ctx,
 			}
 		}
 	}
 
 	LLVMBuildRetVoid(builder);
 }
 
 int si_compile_tgsi_shader(struct si_screen *sscreen,
 			   struct si_compiler *compiler,
 			   struct si_shader *shader,
-			   bool is_monolithic,
 			   struct pipe_debug_callback *debug)
 {
 	struct si_shader_selector *sel = shader->selector;
 	struct si_shader_context ctx;
 	int r = -1;
 
 	/* Dump TGSI code before doing TGSI->LLVM conversion in case the
 	 * conversion fails. */
 	if (si_can_dump_shader(sscreen, sel->info.processor) &&
 	    !(sscreen->debug_flags & DBG(NO_TGSI))) {
 		if (sel->tokens)
 			tgsi_dump(sel->tokens, 0);
 		else
 			nir_print_shader(sel->nir, stderr);
 		si_dump_streamout(&sel->so);
 	}
 
 	si_init_shader_ctx(&ctx, sscreen, compiler);
 	si_llvm_context_set_tgsi(&ctx, shader);
-	ctx.separate_prolog = !is_monolithic;
 
 	memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
 	       sizeof(shader->info.vs_output_param_offset));
 
 	shader->info.uses_instanceid = sel->info.uses_instanceid;
 
-	if (!si_compile_tgsi_main(&ctx, is_monolithic)) {
+	if (!si_compile_tgsi_main(&ctx)) {
 		si_llvm_dispose(&ctx);
 		return -1;
 	}
 
-	if (is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
+	if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
 		LLVMValueRef parts[2];
 		bool need_prolog = sel->vs_needs_prolog;
 
 		parts[1] = ctx.main_fn;
 
 		if (need_prolog) {
 			union si_shader_part_key prolog_key;
 			si_get_vs_prolog_key(&sel->info,
 					     shader->info.num_input_sgprs,
 					     &shader->key.part.vs.prolog,
 					     shader, &prolog_key);
 			si_build_vs_prolog_function(&ctx, &prolog_key);
 			parts[0] = ctx.main_fn;
 		}
 
 		si_build_wrapper_function(&ctx, parts + !need_prolog,
 					  1 + need_prolog, need_prolog, 0);
-	} else if (is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
+	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
 		if (sscreen->info.chip_class >= GFX9) {
 			struct si_shader_selector *ls = shader->key.part.tcs.ls;
 			LLVMValueRef parts[4];
 			bool vs_needs_prolog =
 				si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
 
 			/* TCS main part */
 			parts[2] = ctx.main_fn;
 
 			/* TCS epilog */
@@ -6839,23 +6835,24 @@ int si_compile_tgsi_shader(struct si_screen *sscreen,
 			tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
 			si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
 			parts[3] = ctx.main_fn;
 
 			/* VS as LS main part */
 			struct si_shader shader_ls = {};
 			shader_ls.selector = ls;
 			shader_ls.key.as_ls = 1;
 			shader_ls.key.mono = shader->key.mono;
 			shader_ls.key.opt = shader->key.opt;
+			shader_ls.is_monolithic = true;
 			si_llvm_context_set_tgsi(&ctx, &shader_ls);
 
-			if (!si_compile_tgsi_main(&ctx, true)) {
+			if (!si_compile_tgsi_main(&ctx)) {
 				si_llvm_dispose(&ctx);
 				return -1;
 			}
 			shader->info.uses_instanceid |= ls->info.uses_instanceid;
 			parts[1] = ctx.main_fn;
 
 			/* LS prolog */
 			if (vs_needs_prolog) {
 				union si_shader_part_key vs_prolog_key;
 				si_get_vs_prolog_key(&ls->info,
@@ -6881,21 +6878,21 @@ int si_compile_tgsi_shader(struct si_screen *sscreen,
 
 			parts[0] = ctx.main_fn;
 
 			memset(&epilog_key, 0, sizeof(epilog_key));
 			epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
 			si_build_tcs_epilog_function(&ctx, &epilog_key);
 			parts[1] = ctx.main_fn;
 
 			si_build_wrapper_function(&ctx, parts, 2, 0, 0);
 		}
-	} else if (is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
+	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
 		if (ctx.screen->info.chip_class >= GFX9) {
 			struct si_shader_selector *es = shader->key.part.gs.es;
 			LLVMValueRef es_prolog = NULL;
 			LLVMValueRef es_main = NULL;
 			LLVMValueRef gs_prolog = NULL;
 			LLVMValueRef gs_main = ctx.main_fn;
 
 			/* GS prolog */
 			union si_shader_part_key gs_prolog_key;
 			memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
@@ -6903,23 +6900,24 @@ int si_compile_tgsi_shader(struct si_screen *sscreen,
 			gs_prolog_key.gs_prolog.is_monolithic = true;
 			si_build_gs_prolog_function(&ctx, &gs_prolog_key);
 			gs_prolog = ctx.main_fn;
 
 			/* ES main part */
 			struct si_shader shader_es = {};
 			shader_es.selector = es;
 			shader_es.key.as_es = 1;
 			shader_es.key.mono = shader->key.mono;
 			shader_es.key.opt = shader->key.opt;
+			shader_es.is_monolithic = true;
 			si_llvm_context_set_tgsi(&ctx, &shader_es);
 
-			if (!si_compile_tgsi_main(&ctx, true)) {
+			if (!si_compile_tgsi_main(&ctx)) {
 				si_llvm_dispose(&ctx);
 				return -1;
 			}
 			shader->info.uses_instanceid |= es->info.uses_instanceid;
 			es_main = ctx.main_fn;
 
 			/* ES prolog */
 			if (es->vs_needs_prolog) {
 				union si_shader_part_key vs_prolog_key;
 				si_get_vs_prolog_key(&es->info,
@@ -6954,21 +6952,21 @@ int si_compile_tgsi_shader(struct si_screen *sscreen,
 
 			parts[1] = ctx.main_fn;
 
 			memset(&prolog_key, 0, sizeof(prolog_key));
 			prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
 			si_build_gs_prolog_function(&ctx, &prolog_key);
 			parts[0] = ctx.main_fn;
 
 			si_build_wrapper_function(&ctx, parts, 2, 1, 0);
 		}
-	} else if (is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
+	} else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
 		LLVMValueRef parts[3];
 		union si_shader_part_key prolog_key;
 		union si_shader_part_key epilog_key;
 		bool need_prolog;
 
 		si_get_ps_prolog_key(shader, &prolog_key, false);
 		need_prolog = si_need_ps_prolog(&prolog_key);
 
 		parts[need_prolog ? 1 : 0] = ctx.main_fn;
 
@@ -8062,21 +8060,21 @@ int si_shader_create(struct si_screen *sscreen, struct si_compiler *compiler,
 	/* LS, ES, VS are compiled on demand if the main part hasn't been
 	 * compiled for that stage.
 	 *
 	 * Vertex shaders are compiled on demand when a vertex fetch
 	 * workaround must be applied.
 	 */
 	if (shader->is_monolithic) {
 		/* Monolithic shader (compiled as a whole, has many variants,
 		 * may take a long time to compile).
 		 */
-		r = si_compile_tgsi_shader(sscreen, compiler, shader, true, debug);
+		r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
 		if (r)
 			return r;
 	} else {
 		/* The shader consists of several parts:
 		 *
 		 * - the middle part is the user shader, it has 1 variant only
 		 *   and it was compiled during the creation of the shader
 		 *   selector
 		 * - the prolog part is inserted at the beginning
 		 * - the epilog part is inserted at the end
diff --git a/src/gallium/drivers/radeonsi/si_shader.h b/src/gallium/drivers/radeonsi/si_shader.h
index e1f6b392fbe..fd2f71bed74 100644
--- a/src/gallium/drivers/radeonsi/si_shader.h
+++ b/src/gallium/drivers/radeonsi/si_shader.h
@@ -655,21 +655,20 @@ struct si_shader_part {
 
 /* si_shader.c */
 struct si_shader *
 si_generate_gs_copy_shader(struct si_screen *sscreen,
 			   struct si_compiler *compiler,
 			   struct si_shader_selector *gs_selector,
 			   struct pipe_debug_callback *debug);
 int si_compile_tgsi_shader(struct si_screen *sscreen,
 			   struct si_compiler *compiler,
 			   struct si_shader *shader,
-			   bool is_monolithic,
 			   struct pipe_debug_callback *debug);
 int si_shader_create(struct si_screen *sscreen, struct si_compiler *compiler,
 		     struct si_shader *shader,
 		     struct pipe_debug_callback *debug);
 void si_shader_destroy(struct si_shader *shader);
 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index);
 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
 				       unsigned is_varying);
 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader);
 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
diff --git a/src/gallium/drivers/radeonsi/si_shader_internal.h b/src/gallium/drivers/radeonsi/si_shader_internal.h
index 0a347172d62..e528a56023f 100644
--- a/src/gallium/drivers/radeonsi/si_shader_internal.h
+++ b/src/gallium/drivers/radeonsi/si_shader_internal.h
@@ -55,23 +55,20 @@ struct si_shader_context {
 	struct si_screen *screen;
 
 	unsigned type; /* PIPE_SHADER_* specifies the type of shader. */
 
 	/* For clamping the non-constant index in resource indexing: */
 	unsigned num_const_buffers;
 	unsigned num_shader_buffers;
 	unsigned num_images;
 	unsigned num_samplers;
 
-	/* Whether the prolog will be compiled separately. */
-	bool separate_prolog;
-
 	struct ac_shader_abi abi;
 
 	/** This function is responsible for initilizing the inputs array and will be
 	  * called once for each input declared in the TGSI shader.
 	  */
 	void (*load_input)(struct si_shader_context *,
 			   unsigned input_index,
 			   const struct tgsi_full_declaration *decl,
 			   LLVMValueRef out[4]);
 
diff --git a/src/gallium/drivers/radeonsi/si_state_shaders.c b/src/gallium/drivers/radeonsi/si_state_shaders.c
index f0498520ae8..ddd38dabbe6 100644
--- a/src/gallium/drivers/radeonsi/si_state_shaders.c
+++ b/src/gallium/drivers/radeonsi/si_state_shaders.c
@@ -1573,24 +1573,24 @@ static bool si_check_missing_main_part(struct si_screen *sscreen,
 			return false;
 
 		/* We can leave the fence as permanently signaled because the
 		 * main part becomes visible globally only after it has been
 		 * compiled. */
 		util_queue_fence_init(&main_part->ready);
 
 		main_part->selector = sel;
 		main_part->key.as_es = key->as_es;
 		main_part->key.as_ls = key->as_ls;
+		main_part->is_monolithic = false;
 
 		if (si_compile_tgsi_shader(sscreen, compiler_state->compiler,
-					   main_part, false,
-					   &compiler_state->debug) != 0) {
+					   main_part, &compiler_state->debug) != 0) {
 			FREE(main_part);
 			return false;
 		}
 		*mainp = main_part;
 	}
 	return true;
 }
 
 /* Select the hw shader variant depending on the current state. */
 static int si_shader_select_with_key(struct si_screen *sscreen,
@@ -1875,39 +1875,40 @@ static void si_init_shader_selector_async(void *job, int thread_index)
 		if (!shader) {
 			fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
 			return;
 		}
 
 		/* We can leave the fence signaled because use of the default
 		 * main part is guarded by the selector's ready fence. */
 		util_queue_fence_init(&shader->ready);
 
 		shader->selector = sel;
+		shader->is_monolithic = false;
 		si_parse_next_shader_property(&sel->info,
 					      sel->so.num_outputs != 0,
 					      &shader->key);
 
 		if (sel->tokens || sel->nir)
 			ir_binary = si_get_ir_binary(sel);
 
 		/* Try to load the shader from the shader cache. */
 		mtx_lock(&sscreen->shader_cache_mutex);
 
 		if (ir_binary &&
 		    si_shader_cache_load_shader(sscreen, ir_binary, shader)) {
 			mtx_unlock(&sscreen->shader_cache_mutex);
 			si_shader_dump_stats_for_shader_db(shader, debug);
 		} else {
 			mtx_unlock(&sscreen->shader_cache_mutex);
 
 			/* Compile the shader if it hasn't been loaded from the cache. */
-			if (si_compile_tgsi_shader(sscreen, compiler, shader, false,
+			if (si_compile_tgsi_shader(sscreen, compiler, shader,
 						   debug) != 0) {
 				FREE(shader);
 				FREE(ir_binary);
 				fprintf(stderr, "radeonsi: can't compile a main shader part\n");
 				return;
 			}
 
 			if (ir_binary) {
 				mtx_lock(&sscreen->shader_cache_mutex);
 				if (!si_shader_cache_insert_shader(sscreen, ir_binary, shader, true))
-- 
2.17.1



More information about the mesa-dev mailing list