[Mesa-dev] [PATCH 1/5] util: import public domain code for integer division by a constant

Ian Romanick idr at freedesktop.org
Tue Sep 25 11:21:20 UTC 2018


On 09/25/2018 02:24 AM, Jason Ekstrand wrote:
> On Mon, Sep 24, 2018 at 6:41 PM Marek Olšák <maraeo at gmail.com
> <mailto:maraeo at gmail.com>> wrote:
> 
>     Did you copy the code from the same author?
> 
> 
> No, I read a paper and implemented it myself.
>  
> 
>     Does your version also have an interface for dividing by a uniform
>     instead of a compile time constant?
> 
> 
> I'm not sure what you mean by that.

His code has the ability to pass in a couple extra uniforms to optimize
things like

uniform uint x;

...

    a = b / x;

It seems to only work for unsigned division.

>     Note that this algorithm was originally only written for
>     non-power-of-two divisors and I extended it to support 1 and
>     power-of-two divisors in order to support dividing by a uniform in a
>     generic way. The other two generic variants that I added are also
>     important. One of them assumes no unsigned wraparounds and the other
>     one assumes operands have 31 bits and the divisor is >= 2.
> 
> 
> Right.  I can see those being useful.
>  
> 
>     Marek
> 
>     On Mon, Sep 24, 2018 at 10:00 AM, Jason Ekstrand
>     <jason at jlekstrand.net <mailto:jason at jlekstrand.net>> wrote:
>     > Very similar.... And mine handles 8, 16, and 64-bit types. :-D
>     >
>     > --Jason
>     >
>     > On Mon, Sep 24, 2018 at 8:53 AM Ian Romanick <idr at freedesktop.org
>     <mailto:idr at freedesktop.org>> wrote:
>     >>
>     >> I didn't look really closely at either set, but this seems really
>     >> similar to something Jason sent out a week or two.  Perhaps you guys
>     >> could unify these?
>     >>
>     >> On 09/23/2018 09:57 AM, Marek Olšák wrote:
>     >> > From: Marek Olšák <marek.olsak at amd.com
>     <mailto:marek.olsak at amd.com>>
>     >> >
>     >> > Compilers can use this to generate optimal code for integer
>     division
>     >> > by a constant.
>     >> >
>     >> > Additionally, an unsigned division by a uniform that is
>     constant but not
>     >> > known at compile time can still be optimized by passing 2-4
>     division
>     >> > factors to the shader as uniforms and executing one of the
>     fast_udiv*
>     >> > variants. The signed division algorithm doesn't have this
>     capability.
>     >> > ---
>     >> >  src/util/Makefile.sources     |   2 +
>     >> >  src/util/fast_idiv_by_const.c | 245
>     >> > ++++++++++++++++++++++++++++++++++++++++++
>     >> >  src/util/fast_idiv_by_const.h | 173 +++++++++++++++++++++++++++++
>     >> >  src/util/meson.build          |   2 +
>     >> >  4 files changed, 422 insertions(+)
>     >> >  create mode 100644 src/util/fast_idiv_by_const.c
>     >> >  create mode 100644 src/util/fast_idiv_by_const.h
>     >> >
>     >> > diff --git a/src/util/Makefile.sources b/src/util/Makefile.sources
>     >> > index b562d6c..f741b2a 100644
>     >> > --- a/src/util/Makefile.sources
>     >> > +++ b/src/util/Makefile.sources
>     >> > @@ -3,20 +3,22 @@ MESA_UTIL_FILES := \
>     >> >       bitscan.h \
>     >> >       bitset.h \
>     >> >       build_id.c \
>     >> >       build_id.h \
>     >> >       crc32.c \
>     >> >       crc32.h \
>     >> >       debug.c \
>     >> >       debug.h \
>     >> >       disk_cache.c \
>     >> >       disk_cache.h \
>     >> > +     fast_idiv_by_const.c \
>     >> > +     fast_idiv_by_const.h \
>     >> >       format_r11g11b10f.h \
>     >> >       format_rgb9e5.h \
>     >> >       format_srgb.h \
>     >> >       futex.h \
>     >> >       half_float.c \
>     >> >       half_float.h \
>     >> >       hash_table.c \
>     >> >       hash_table.h \
>     >> >       list.h \
>     >> >       macros.h \
>     >> > diff --git a/src/util/fast_idiv_by_const.c
>     >> > b/src/util/fast_idiv_by_const.c
>     >> > new file mode 100644
>     >> > index 0000000..f247b66
>     >> > --- /dev/null
>     >> > +++ b/src/util/fast_idiv_by_const.c
>     >> > @@ -0,0 +1,245 @@
>     >> > +/*
>     >> > + * Copyright © 2018 Advanced Micro Devices, Inc.
>     >> > + *
>     >> > + * Permission is hereby granted, free of charge, to any person
>     >> > obtaining a
>     >> > + * copy of this software and associated documentation files (the
>     >> > "Software"),
>     >> > + * to deal in the Software without restriction, including without
>     >> > limitation
>     >> > + * the rights to use, copy, modify, merge, publish, distribute,
>     >> > sublicense,
>     >> > + * and/or sell copies of the Software, and to permit persons
>     to whom
>     >> > the
>     >> > + * Software is furnished to do so, subject to the following
>     conditions:
>     >> > + *
>     >> > + * The above copyright notice and this permission notice
>     (including the
>     >> > next
>     >> > + * paragraph) shall be included in all copies or substantial
>     portions
>     >> > of the
>     >> > + * Software.
>     >> > + *
>     >> > + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
>     >> > EXPRESS OR
>     >> > + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
>     >> > MERCHANTABILITY,
>     >> > + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN
>     NO EVENT
>     >> > SHALL
>     >> > + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
>     DAMAGES OR
>     >> > OTHER
>     >> > + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
>     >> > ARISING
>     >> > + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
>     OR OTHER
>     >> > DEALINGS
>     >> > + * IN THE SOFTWARE.
>     >> > + */
>     >> > +
>     >> > +/* Imported from:
>     >> > + *
>     >> >
>     https://raw.githubusercontent.com/ridiculousfish/libdivide/master/divide_by_constants_codegen_reference.c
>     >> > + * Paper:
>     >> > + *
>     >> >
>     http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf
>     >> > + *
>     >> > + * The author, ridiculous_fish, wrote:
>     >> > + *
>     >> > + *  ''Reference implementations of computing and using the "magic
>     >> > number"
>     >> > + *    approach to dividing by constants, including codegen
>     >> > instructions.
>     >> > + *    The unsigned division incorporates the "round down"
>     optimization
>     >> > per
>     >> > + *    ridiculous_fish.
>     >> > + *
>     >> > + *    This is free and unencumbered software. Any copyright is
>     >> > dedicated
>     >> > + *    to the Public Domain.''
>     >> > + */
>     >> > +
>     >> > +#include "fast_idiv_by_const.h"
>     >> > +#include "u_math.h"
>     >> > +#include <limits.h>
>     >> > +#include <assert.h>
>     >> > +
>     >> > +/* uint_t and sint_t can be replaced by different integer
>     types and the
>     >> > code
>     >> > + * will work as-is. The only requirement is that sizeof(uintN) ==
>     >> > sizeof(intN).
>     >> > + */
>     >> > +
>     >> > +struct util_fast_udiv_info
>     >> > +util_compute_fast_udiv_info(uint_t D, unsigned num_bits)
>     >> > +{
>     >> > +   /* The numerator must fit in a uint_t */
>     >> > +   assert(num_bits > 0 && num_bits <= sizeof(uint_t) * CHAR_BIT);
>     >> > +   assert(D != 0);
>     >> > +
>     >> > +   /* The eventual result */
>     >> > +   struct util_fast_udiv_info result;
>     >> > +
>     >> > +   if (util_is_power_of_two_nonzero(D)) {
>     >> > +      unsigned div_shift = util_logbase2(D);
>     >> > +
>     >> > +      if (div_shift) {
>     >> > +         /* Dividing by a power of two. */
>     >> > +         result.multiplier = 1 << 31;
>     >> > +         result.pre_shift = 0;
>     >> > +         result.post_shift = div_shift - 1;
>     >> > +         result.increment = 0;
>     >> > +         return result;
>     >> > +      } else {
>     >> > +         /* Dividing by 1. */
>     >> > +         /* Assuming: floor((num + 1) * (2^32 - 1) / 2^32) =
>     num */
>     >> > +         result.multiplier = UINT_MAX;
>     >> > +         result.pre_shift = 0;
>     >> > +         result.post_shift = 0;
>     >> > +         result.increment = 1;
>     >> > +         return result;
>     >> > +      }
>     >> > +   }
>     >> > +
>     >> > +   /* Bits in a uint_t */
>     >> > +   const unsigned UINT_BITS = sizeof(uint_t) * CHAR_BIT;
>     >> > +
>     >> > +   /* The extra shift implicit in the difference between
>     UINT_BITS and
>     >> > num_bits
>     >> > +    */
>     >> > +   const unsigned extra_shift = UINT_BITS - num_bits;
>     >> > +
>     >> > +   /* The initial power of 2 is one less than the first one
>     that can
>     >> > possibly
>     >> > +    * work.
>     >> > +    */
>     >> > +   const uint_t initial_power_of_2 = (uint_t)1 << (UINT_BITS-1);
>     >> > +
>     >> > +   /* The remainder and quotient of our power of 2 divided by d */
>     >> > +   uint_t quotient = initial_power_of_2 / D;
>     >> > +   uint_t remainder = initial_power_of_2 % D;
>     >> > +
>     >> > +   /* ceil(log_2 D) */
>     >> > +   unsigned ceil_log_2_D;
>     >> > +
>     >> > +   /* The magic info for the variant "round down" algorithm */
>     >> > +   uint_t down_multiplier = 0;
>     >> > +   unsigned down_exponent = 0;
>     >> > +   int has_magic_down = 0;
>     >> > +
>     >> > +   /* Compute ceil(log_2 D) */
>     >> > +   ceil_log_2_D = 0;
>     >> > +   uint_t tmp;
>     >> > +   for (tmp = D; tmp > 0; tmp >>= 1)
>     >> > +      ceil_log_2_D += 1;
>     >> > +
>     >> > +
>     >> > +   /* Begin a loop that increments the exponent, until we find
>     a power
>     >> > of 2
>     >> > +    * that works.
>     >> > +    */
>     >> > +   unsigned exponent;
>     >> > +   for (exponent = 0; ; exponent++) {
>     >> > +      /* Quotient and remainder is from previous exponent;
>     compute it
>     >> > for this
>     >> > +       * exponent.
>     >> > +       */
>     >> > +      if (remainder >= D - remainder) {
>     >> > +         /* Doubling remainder will wrap around D */
>     >> > +         quotient = quotient * 2 + 1;
>     >> > +         remainder = remainder * 2 - D;
>     >> > +      } else {
>     >> > +         /* Remainder will not wrap */
>     >> > +         quotient = quotient * 2;
>     >> > +         remainder = remainder * 2;
>     >> > +      }
>     >> > +
>     >> > +      /* We're done if this exponent works for the round_up
>     algorithm.
>     >> > +       * Note that exponent may be larger than the maximum shift
>     >> > supported,
>     >> > +       * so the check for >= ceil_log_2_D is critical.
>     >> > +       */
>     >> > +      if ((exponent + extra_shift >= ceil_log_2_D) ||
>     >> > +          (D - remainder) <= ((uint_t)1 << (exponent +
>     extra_shift)))
>     >> > +         break;
>     >> > +
>     >> > +      /* Set magic_down if we have not set it yet and this
>     exponent
>     >> > works for
>     >> > +       * the round_down algorithm
>     >> > +       */
>     >> > +      if (!has_magic_down &&
>     >> > +          remainder <= ((uint_t)1 << (exponent + extra_shift))) {
>     >> > +         has_magic_down = 1;
>     >> > +         down_multiplier = quotient;
>     >> > +         down_exponent = exponent;
>     >> > +      }
>     >> > +   }
>     >> > +
>     >> > +   if (exponent < ceil_log_2_D) {
>     >> > +      /* magic_up is efficient */
>     >> > +      result.multiplier = quotient + 1;
>     >> > +      result.pre_shift = 0;
>     >> > +      result.post_shift = exponent;
>     >> > +      result.increment = 0;
>     >> > +   } else if (D & 1) {
>     >> > +      /* Odd divisor, so use magic_down, which must have been
>     set */
>     >> > +      assert(has_magic_down);
>     >> > +      result.multiplier = down_multiplier;
>     >> > +      result.pre_shift = 0;
>     >> > +      result.post_shift = down_exponent;
>     >> > +      result.increment = 1;
>     >> > +   } else {
>     >> > +      /* Even divisor, so use a prefix-shifted dividend */
>     >> > +      unsigned pre_shift = 0;
>     >> > +      uint_t shifted_D = D;
>     >> > +      while ((shifted_D & 1) == 0) {
>     >> > +         shifted_D >>= 1;
>     >> > +         pre_shift += 1;
>     >> > +      }
>     >> > +      result = util_compute_fast_udiv_info(shifted_D, num_bits -
>     >> > pre_shift);
>     >> > +      /* expect no increment or pre_shift in this path */
>     >> > +      assert(result.increment == 0 && result.pre_shift == 0);
>     >> > +      result.pre_shift = pre_shift;
>     >> > +   }
>     >> > +   return result;
>     >> > +}
>     >> > +
>     >> > +struct util_fast_sdiv_info
>     >> > +util_compute_fast_sdiv_info(sint_t D)
>     >> > +{
>     >> > +   /* D must not be zero. */
>     >> > +   assert(D != 0);
>     >> > +   /* The result is not correct for these divisors. */
>     >> > +   assert(D != 1 && D != -1);
>     >> > +
>     >> > +   /* Our result */
>     >> > +   struct util_fast_sdiv_info result;
>     >> > +
>     >> > +   /* Bits in an sint_t */
>     >> > +   const unsigned SINT_BITS = sizeof(sint_t) * CHAR_BIT;
>     >> > +
>     >> > +   /* Absolute value of D (we know D is not the most negative
>     value
>     >> > since
>     >> > +    * that's a power of 2)
>     >> > +    */
>     >> > +   const uint_t abs_d = (D < 0 ? -D : D);
>     >> > +
>     >> > +   /* The initial power of 2 is one less than the first one
>     that can
>     >> > possibly
>     >> > +    * work */
>     >> > +   /* "two31" in Warren */
>     >> > +   unsigned exponent = SINT_BITS - 1;
>     >> > +   const uint_t initial_power_of_2 = (uint_t)1 << exponent;
>     >> > +
>     >> > +   /* Compute the absolute value of our "test numerator,"
>     >> > +    * which is the largest dividend whose remainder with d is d-1.
>     >> > +    * This is called anc in Warren.
>     >> > +    */
>     >> > +   const uint_t tmp = initial_power_of_2 + (D < 0);
>     >> > +   const uint_t abs_test_numer = tmp - 1 - tmp % abs_d;
>     >> > +
>     >> > +   /* Initialize our quotients and remainders (q1, r1, q2, r2 in
>     >> > Warren) */
>     >> > +   uint_t quotient1 = initial_power_of_2 / abs_test_numer;
>     >> > +   uint_t remainder1 = initial_power_of_2 % abs_test_numer;
>     >> > +   uint_t quotient2 = initial_power_of_2 / abs_d;
>     >> > +   uint_t remainder2 = initial_power_of_2 % abs_d;
>     >> > +   uint_t delta;
>     >> > +
>     >> > +   /* Begin our loop */
>     >> > +   do {
>     >> > +      /* Update the exponent */
>     >> > +      exponent++;
>     >> > +
>     >> > +      /* Update quotient1 and remainder1 */
>     >> > +      quotient1 *= 2;
>     >> > +      remainder1 *= 2;
>     >> > +      if (remainder1 >= abs_test_numer) {
>     >> > +         quotient1 += 1;
>     >> > +         remainder1 -= abs_test_numer;
>     >> > +      }
>     >> > +
>     >> > +      /* Update quotient2 and remainder2 */
>     >> > +      quotient2 *= 2;
>     >> > +      remainder2 *= 2;
>     >> > +      if (remainder2 >= abs_d) {
>     >> > +         quotient2 += 1;
>     >> > +         remainder2 -= abs_d;
>     >> > +      }
>     >> > +
>     >> > +      /* Keep going as long as (2**exponent) / abs_d <= delta */
>     >> > +      delta = abs_d - remainder2;
>     >> > +   } while (quotient1 < delta || (quotient1 == delta &&
>     remainder1 ==
>     >> > 0));
>     >> > +
>     >> > +   result.multiplier = quotient2 + 1;
>     >> > +   if (D < 0) result.multiplier = -result.multiplier;
>     >> > +   result.shift = exponent - SINT_BITS;
>     >> > +   return result;
>     >> > +}
>     >> > diff --git a/src/util/fast_idiv_by_const.h
>     >> > b/src/util/fast_idiv_by_const.h
>     >> > new file mode 100644
>     >> > index 0000000..e8debbf
>     >> > --- /dev/null
>     >> > +++ b/src/util/fast_idiv_by_const.h
>     >> > @@ -0,0 +1,173 @@
>     >> > +/*
>     >> > + * Copyright © 2018 Advanced Micro Devices, Inc.
>     >> > + *
>     >> > + * Permission is hereby granted, free of charge, to any person
>     >> > obtaining a
>     >> > + * copy of this software and associated documentation files (the
>     >> > "Software"),
>     >> > + * to deal in the Software without restriction, including without
>     >> > limitation
>     >> > + * the rights to use, copy, modify, merge, publish, distribute,
>     >> > sublicense,
>     >> > + * and/or sell copies of the Software, and to permit persons
>     to whom
>     >> > the
>     >> > + * Software is furnished to do so, subject to the following
>     conditions:
>     >> > + *
>     >> > + * The above copyright notice and this permission notice
>     (including the
>     >> > next
>     >> > + * paragraph) shall be included in all copies or substantial
>     portions
>     >> > of the
>     >> > + * Software.
>     >> > + *
>     >> > + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
>     >> > EXPRESS OR
>     >> > + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
>     >> > MERCHANTABILITY,
>     >> > + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN
>     NO EVENT
>     >> > SHALL
>     >> > + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
>     DAMAGES OR
>     >> > OTHER
>     >> > + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
>     >> > ARISING
>     >> > + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
>     OR OTHER
>     >> > DEALINGS
>     >> > + * IN THE SOFTWARE.
>     >> > + */
>     >> > +
>     >> > +#ifndef FAST_IDIV_BY_CONST_H
>     >> > +#define FAST_IDIV_BY_CONST_H
>     >> > +
>     >> > +/* Imported from:
>     >> > + *
>     >> >
>     https://raw.githubusercontent.com/ridiculousfish/libdivide/master/divide_by_constants_codegen_reference.c
>     >> > + */
>     >> > +
>     >> > +#include <inttypes.h>
>     >> > +#include <limits.h>
>     >> > +#include <assert.h>
>     >> > +
>     >> > +/* You can set these to different types to get different
>     precision. */
>     >> > +typedef int32_t sint_t;
>     >> > +typedef uint32_t uint_t;
>     >> > +
>     >> > +/* Computes "magic info" for performing signed division by a fixed
>     >> > integer D.
>     >> > + * The type 'sint_t' is assumed to be defined as a signed
>     integer type
>     >> > large
>     >> > + * enough to hold both the dividend and the divisor.
>     >> > + * Here >> is arithmetic (signed) shift, and >>> is logical shift.
>     >> > + *
>     >> > + * To emit code for n/d, rounding towards zero, use the following
>     >> > sequence:
>     >> > + *
>     >> > + *   m = compute_signed_magic_info(D)
>     >> > + *   emit("result = (m.multiplier * n) >> SINT_BITS");
>     >> > + *   if d > 0 and m.multiplier < 0: emit("result += n")
>     >> > + *   if d < 0 and m.multiplier > 0: emit("result -= n")
>     >> > + *   if m.post_shift > 0: emit("result >>= m.shift")
>     >> > + *   emit("result += (result < 0)")
>     >> > + *
>     >> > + * The shifts by SINT_BITS may be "free" if the high half of
>     the full
>     >> > multiply
>     >> > + * is put in a separate register.
>     >> > + *
>     >> > + * The final add can of course be implemented via the sign
>     bit, e.g.
>     >> > + *    result += (result >>> (SINT_BITS - 1))
>     >> > + * or
>     >> > + *    result -= (result >> (SINT_BITS - 1))
>     >> > + *
>     >> > + * This code is heavily indebted to Hacker's Delight by Henry
>     Warren.
>     >> > + * See http://www.hackersdelight.org/HDcode/magic.c.txt
>     >> > + * Used with permission from
>     >> > http://www.hackersdelight.org/permissions.htm
>     >> > + */
>     >> > +
>     >> > +struct util_fast_sdiv_info {
>     >> > +   sint_t multiplier; /* the "magic number" multiplier */
>     >> > +   unsigned shift; /* shift for the dividend after multiplying */
>     >> > +};
>     >> > +
>     >> > +struct util_fast_sdiv_info
>     >> > +util_compute_fast_sdiv_info(sint_t D);
>     >> > +
>     >> > +/* Computes "magic info" for performing unsigned division by a
>     fixed
>     >> > positive
>     >> > + * integer D. The type 'uint_t' is assumed to be defined as an
>     unsigned
>     >> > + * integer type large enough to hold both the dividend and the
>     divisor.
>     >> > + * num_bits can be set appropriately if n is known to be
>     smaller than
>     >> > + * the largest uint_t; if this is not known then pass
>     >> > + * "(sizeof(uint_t) * CHAR_BIT)" for num_bits.
>     >> > + *
>     >> > + * Assume we have a hardware register of width UINT_BITS, a known
>     >> > constant D
>     >> > + * which is  not zero and not a power of 2, and a variable n
>     of width
>     >> > num_bits
>     >> > + * (which may be up to UINT_BITS). To emit code for n/d, use
>     one of the
>     >> > two
>     >> > + * following sequences (here >>> refers to a logical bitshift):
>     >> > + *
>     >> > + *   m = compute_unsigned_magic_info(D, num_bits)
>     >> > + *   if m.pre_shift > 0: emit("n >>>= m.pre_shift")
>     >> > + *   if m.increment: emit("n = saturated_increment(n)")
>     >> > + *   emit("result = (m.multiplier * n) >>> UINT_BITS")
>     >> > + *   if m.post_shift > 0: emit("result >>>= m.post_shift")
>     >> > + *
>     >> > + * or
>     >> > + *
>     >> > + *   m = compute_unsigned_magic_info(D, num_bits)
>     >> > + *   if m.pre_shift > 0: emit("n >>>= m.pre_shift")
>     >> > + *   emit("result = m.multiplier * n")
>     >> > + *   if m.increment: emit("result = result + m.multiplier")
>     >> > + *   emit("result >>>= UINT_BITS")
>     >> > + *   if m.post_shift > 0: emit("result >>>= m.post_shift")
>     >> > + *
>     >> > + * The shifts by UINT_BITS may be "free" if the high half of
>     the full
>     >> > multiply
>     >> > + * is put in a separate register.
>     >> > + *
>     >> > + * saturated_increment(n) means "increment n unless it would
>     wrap to
>     >> > 0," i.e.
>     >> > + *   if n == (1 << UINT_BITS)-1: result = n
>     >> > + *   else: result = n+1
>     >> > + * A common way to implement this is with the carry bit. For
>     example,
>     >> > on x86:
>     >> > + *   add 1
>     >> > + *   sbb 0
>     >> > + *
>     >> > + * Some invariants:
>     >> > + *   1: At least one of pre_shift and increment is zero
>     >> > + *   2: multiplier is never zero
>     >> > + *
>     >> > + * This code incorporates the "round down" optimization per
>     >> > ridiculous_fish.
>     >> > + */
>     >> > +
>     >> > +struct util_fast_udiv_info {
>     >> > +   uint_t multiplier; /* the "magic number" multiplier */
>     >> > +   unsigned pre_shift; /* shift for the dividend before
>     multiplying */
>     >> > +   unsigned post_shift; /* shift for the dividend after
>     multiplying */
>     >> > +   int increment; /* 0 or 1; if set then increment the
>     numerator, using
>     >> > one of
>     >> > +                     the two strategies */
>     >> > +};
>     >> > +
>     >> > +struct util_fast_udiv_info
>     >> > +util_compute_fast_udiv_info(uint_t D, unsigned num_bits);
>     >> > +
>     >> > +/* Below are possible options for dividing by a uniform in a
>     shader
>     >> > where
>     >> > + * the divisor is constant but not known at compile time.
>     >> > + */
>     >> > +
>     >> > +/* Full version. */
>     >> > +static inline unsigned
>     >> > +fast_udiv(unsigned n, struct util_fast_udiv_info info)
>     >> > +{
>     >> > +    n = n >> info.pre_shift;
>     >> > +    /* For non-power-of-two divisors, use a 32-bit ADD that
>     clamps to
>     >> > UINT_MAX. */
>     >> > +    n = (((uint64_t)n + info.increment) * info.multiplier) >> 32;
>     >> > +    n = n >> info.post_shift;
>     >> > +    return n;
>     >> > +}
>     >> > +
>     >> > +/* A little more efficient version if n != UINT_MAX, i.e. no
>     unsigned
>     >> > + * wraparound in the computation.
>     >> > + */
>     >> > +static inline unsigned
>     >> > +fast_udiv_nuw(unsigned n, struct util_fast_udiv_info info)
>     >> > +{
>     >> > +    assert(n != UINT_MAX);
>     >> > +    n = n >> info.pre_shift;
>     >> > +    n = n + info.increment;
>     >> > +    n = ((uint64_t)n * info.multiplier) >> 32;
>     >> > +    n = n >> info.post_shift;
>     >> > +    return n;
>     >> > +}
>     >> > +
>     >> > +/* Even faster version but both operands must be 31-bit unsigned
>     >> > integers
>     >> > + * and the divisor must be greater than 1.
>     >> > + *
>     >> > + * info must be computed with num_bits == 31.
>     >> > + */
>     >> > +static inline unsigned
>     >> > +fast_udiv_u31_d_not_one(unsigned n, struct util_fast_udiv_info
>     info)
>     >> > +{
>     >> > +    assert(info.pre_shift == 0);
>     >> > +    assert(info.increment == 0);
>     >> > +    n = ((uint64_t)n * info.multiplier) >> 32;
>     >> > +    n = n >> info.post_shift;
>     >> > +    return n;
>     >> > +}
>     >> > +
>     >> > +#endif
>     >> > diff --git a/src/util/meson.build b/src/util/meson.build
>     >> > index 027bc5b..ebaeb47 100644
>     >> > --- a/src/util/meson.build
>     >> > +++ b/src/util/meson.build
>     >> > @@ -27,20 +27,22 @@ files_mesa_util = files(
>     >> >    'bitscan.h',
>     >> >    'bitset.h',
>     >> >    'build_id.c',
>     >> >    'build_id.h',
>     >> >    'crc32.c',
>     >> >    'crc32.h',
>     >> >    'debug.c',
>     >> >    'debug.h',
>     >> >    'disk_cache.c',
>     >> >    'disk_cache.h',
>     >> > +  'fast_idiv_by_const.c',
>     >> > +  'fast_idiv_by_const.h',
>     >> >    'format_r11g11b10f.h',
>     >> >    'format_rgb9e5.h',
>     >> >    'format_srgb.h',
>     >> >    'futex.h',
>     >> >    'half_float.c',
>     >> >    'half_float.h',
>     >> >    'hash_table.c',
>     >> >    'hash_table.h',
>     >> >    'list.h',
>     >> >    'macros.h',
>     >> >
>     >>
>     >> _______________________________________________
>     >> mesa-dev mailing list
>     >> mesa-dev at lists.freedesktop.org
>     <mailto:mesa-dev at lists.freedesktop.org>
>     >> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
> 



More information about the mesa-dev mailing list