[Mesa-dev] [PATCH 5/9] radv/gfx10: implement support for GS as NGG
Bas Nieuwenhuizen
bas at basnieuwenhuizen.nl
Thu Jul 11 09:37:02 UTC 2019
Reviewed-by: Bas Nieuwenhuizen <bas at basnieuwenhuizen.nl>
for the series.
On Thu, Jul 11, 2019 at 8:44 AM Samuel Pitoiset
<samuel.pitoiset at gmail.com> wrote:
>
> Signed-off-by: Samuel Pitoiset <samuel.pitoiset at gmail.com>
> ---
> src/amd/vulkan/radv_nir_to_llvm.c | 540 +++++++++++++++++++++++++++++-
> src/amd/vulkan/radv_pipeline.c | 5 +-
> src/amd/vulkan/radv_private.h | 24 ++
> src/amd/vulkan/radv_shader.c | 5 +
> 4 files changed, 568 insertions(+), 6 deletions(-)
>
> diff --git a/src/amd/vulkan/radv_nir_to_llvm.c b/src/amd/vulkan/radv_nir_to_llvm.c
> index 176e95537c1..dc37c937155 100644
> --- a/src/amd/vulkan/radv_nir_to_llvm.c
> +++ b/src/amd/vulkan/radv_nir_to_llvm.c
> @@ -105,7 +105,12 @@ struct radv_shader_context {
>
> bool is_gs_copy_shader;
> LLVMValueRef gs_next_vertex[4];
> + LLVMValueRef gs_curprim_verts[4];
> + LLVMValueRef gs_generated_prims[4];
> + LLVMValueRef gs_ngg_emit;
> + LLVMValueRef gs_ngg_scratch;
> unsigned gs_max_out_vertices;
> + unsigned gs_output_prim;
>
> unsigned tes_primitive_mode;
>
> @@ -116,6 +121,8 @@ struct radv_shader_context {
> uint32_t tcs_num_patches;
> uint32_t max_gsvs_emit_size;
> uint32_t gsvs_vertex_size;
> +
> + LLVMValueRef vertexptr; /* GFX10 only */
> };
>
> enum radeon_llvm_calling_convention {
> @@ -1846,6 +1853,10 @@ static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
> }
>
>
> +static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
> + unsigned stream,
> + LLVMValueRef *addrs);
> +
> static void
> visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addrs)
> {
> @@ -1854,6 +1865,11 @@ visit_emit_vertex(struct ac_shader_abi *abi, unsigned stream, LLVMValueRef *addr
> unsigned offset = 0;
> struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
>
> + if (ctx->options->key.vs_common_out.as_ngg) {
> + gfx10_ngg_gs_emit_vertex(ctx, stream, addrs);
> + return;
> + }
> +
> /* Write vertex attribute values to GSVS ring */
> gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
> ctx->gs_next_vertex[stream],
> @@ -1919,6 +1935,12 @@ static void
> visit_end_primitive(struct ac_shader_abi *abi, unsigned stream)
> {
> struct radv_shader_context *ctx = radv_shader_context_from_abi(abi);
> +
> + if (ctx->options->key.vs_common_out.as_ngg) {
> + LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_0, ctx->gs_curprim_verts[stream]);
> + return;
> + }
> +
> ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8), ctx->gs_wave_id);
> }
>
> @@ -2571,8 +2593,20 @@ radv_export_param(struct radv_shader_context *ctx, unsigned index,
> static LLVMValueRef
> radv_load_output(struct radv_shader_context *ctx, unsigned index, unsigned chan)
> {
> - LLVMValueRef output =
> - ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
> + LLVMValueRef output;
> +
> + if (ctx->vertexptr) {
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implicit C-style array */
> + ctx->ac.i32_0, /* second value of struct */
> + ctx->ac.i32_1, /* stream 1: source data index */
> + };
> +
> + gep_idx[2] = LLVMConstInt(ctx->ac.i32, ac_llvm_reg_index_soa(index, chan), false);
> + output = LLVMBuildGEP(ctx->ac.builder, ctx->vertexptr, gep_idx, 3, "");
> + } else {
> + output = ctx->abi.outputs[ac_llvm_reg_index_soa(index, chan)];
> + }
>
> return LLVMBuildLoad(ctx->ac.builder, output, "");
> }
> @@ -2940,7 +2974,7 @@ handle_vs_outputs_post(struct radv_shader_context *ctx,
> outputs[noutput].usage_mask =
> ctx->shader_info->info.tes.output_usage_mask[i];
> } else {
> - assert(ctx->is_gs_copy_shader);
> + assert(ctx->is_gs_copy_shader || ctx->options->key.vs_common_out.as_ngg);
> outputs[noutput].usage_mask =
> ctx->shader_info->info.gs.output_usage_mask[i];
> }
> @@ -3090,6 +3124,20 @@ static LLVMValueRef get_wave_id_in_tg(struct radv_shader_context *ctx)
> return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 24, 4);
> }
>
> +static LLVMValueRef get_tgsize(struct radv_shader_context *ctx)
> +{
> + return ac_unpack_param(&ctx->ac, ctx->merged_wave_info, 28, 4);
> +}
> +
> +static LLVMValueRef get_thread_id_in_tg(struct radv_shader_context *ctx)
> +{
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef tmp;
> + tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
> + LLVMConstInt(ctx->ac.i32, 64, false), "");
> + return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
> +}
> +
> static LLVMValueRef ngg_get_vtx_cnt(struct radv_shader_context *ctx)
> {
> return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
> @@ -3106,6 +3154,85 @@ static LLVMValueRef ngg_get_prim_cnt(struct radv_shader_context *ctx)
> false);
> }
>
> +static LLVMValueRef
> +ngg_gs_get_vertex_storage(struct radv_shader_context *ctx)
> +{
> + unsigned num_outputs = util_bitcount64(ctx->output_mask);
> +
> + LLVMTypeRef elements[2] = {
> + LLVMArrayType(ctx->ac.i32, 4 * num_outputs),
> + LLVMArrayType(ctx->ac.i8, 4),
> + };
> + LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
> + type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
> + return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
> +}
> +
> +/**
> + * Return a pointer to the LDS storage reserved for the N'th vertex, where N
> + * is in emit order; that is:
> + * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
> + * - during vertex emit, i.e. while the API GS shader invocation is running,
> + * N = threadidx * gs_max_out_vertices + emitidx
> + *
> + * Goals of the LDS memory layout:
> + * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
> + * in uniform control flow
> + * 2. Eliminate bank conflicts on read for export if, additionally, there is no
> + * culling
> + * 3. Agnostic to the number of waves (since we don't know it before compiling)
> + * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
> + * 5. Avoid wasting memory.
> + *
> + * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
> + * layout, elimination of bank conflicts requires that each vertex occupy an
> + * odd number of dwords. We use the additional dword to store the output stream
> + * index as well as a flag to indicate whether this vertex ends a primitive
> + * for rasterization.
> + *
> + * Swizzling is required to satisfy points 1 and 2 simultaneously.
> + *
> + * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
> + * Indices are swizzled in groups of 32, which ensures point 1 without
> + * disturbing point 2.
> + *
> + * \return an LDS pointer to type {[N x i32], [4 x i8]}
> + */
> +static LLVMValueRef
> +ngg_gs_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef vertexidx)
> +{
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
> +
> + /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
> + unsigned write_stride_2exp = ffs(ctx->gs_max_out_vertices) - 1;
> + if (write_stride_2exp) {
> + LLVMValueRef row =
> + LLVMBuildLShr(builder, vertexidx,
> + LLVMConstInt(ctx->ac.i32, 5, false), "");
> + LLVMValueRef swizzle =
> + LLVMBuildAnd(builder, row,
> + LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
> + false), "");
> + vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
> + }
> +
> + return ac_build_gep0(&ctx->ac, storage, vertexidx);
> +}
> +
> +static LLVMValueRef
> +ngg_gs_emit_vertex_ptr(struct radv_shader_context *ctx, LLVMValueRef gsthread,
> + LLVMValueRef emitidx)
> +{
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef tmp;
> +
> + tmp = LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false);
> + tmp = LLVMBuildMul(builder, tmp, gsthread, "");
> + const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
> + return ngg_gs_vertex_ptr(ctx, vertexidx);
> +}
> +
> /* Send GS Alloc Req message from the first wave of the group to SPI.
> * Message payload is:
> * - bits 0..10: vertices in group
> @@ -3247,6 +3374,369 @@ handle_ngg_outputs_post(struct radv_shader_context *ctx)
> ac_nir_build_endif(&if_state);
> }
>
> +static void gfx10_ngg_gs_emit_prologue(struct radv_shader_context *ctx)
> +{
> + /* Zero out the part of LDS scratch that is used to accumulate the
> + * per-stream generated primitive count.
> + */
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
> + LLVMValueRef tid = get_thread_id_in_tg(ctx);
> + LLVMValueRef tmp;
> +
> + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
> + ac_build_ifcc(&ctx->ac, tmp, 5090);
> + {
> + LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
> + LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
> + }
> + ac_build_endif(&ctx->ac, 5090);
> +
> + ac_build_s_barrier(&ctx->ac);
> +}
> +
> +static void gfx10_ngg_gs_emit_epilogue_1(struct radv_shader_context *ctx)
> +{
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
> + LLVMValueRef tmp;
> +
> + /* Zero out remaining (non-emitted) primitive flags.
> + *
> + * Note: Alternatively, we could pass the relevant gs_next_vertex to
> + * the emit threads via LDS. This is likely worse in the expected
> + * typical case where each GS thread emits the full set of
> + * vertices.
> + */
> + for (unsigned stream = 0; stream < 4; ++stream) {
> + unsigned num_components;
> +
> + num_components =
> + ctx->shader_info->info.gs.num_stream_output_components[stream];
> + if (!num_components)
> + continue;
> +
> + const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
> +
> + ac_build_bgnloop(&ctx->ac, 5100);
> +
> + const LLVMValueRef vertexidx =
> + LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
> + tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
> + LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
> + ac_build_ifcc(&ctx->ac, tmp, 5101);
> + ac_build_break(&ctx->ac);
> + ac_build_endif(&ctx->ac, 5101);
> +
> + tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
> + LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
> +
> + tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implied C-style array */
> + ctx->ac.i32_1, /* second entry of struct */
> + LLVMConstInt(ctx->ac.i32, stream, false),
> + };
> + tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
> + LLVMBuildStore(builder, i8_0, tmp);
> +
> + ac_build_endloop(&ctx->ac, 5100);
> + }
> +}
> +
> +static void gfx10_ngg_gs_emit_epilogue_2(struct radv_shader_context *ctx)
> +{
> + const unsigned verts_per_prim = si_conv_gl_prim_to_vertices(ctx->gs_output_prim);
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef tmp, tmp2;
> +
> + ac_build_s_barrier(&ctx->ac);
> +
> + const LLVMValueRef tid = get_thread_id_in_tg(ctx);
> + LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
> +
> + /* TODO: streamout */
> +
> + /* TODO: culling */
> +
> + /* Determine vertex liveness. */
> + LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
> +
> + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
> + ac_build_ifcc(&ctx->ac, tmp, 5120);
> + {
> + for (unsigned i = 0; i < verts_per_prim; ++i) {
> + const LLVMValueRef primidx =
> + LLVMBuildAdd(builder, tid,
> + LLVMConstInt(ctx->ac.i32, i, false), "");
> +
> + if (i > 0) {
> + tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
> + ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
> + }
> +
> + /* Load primitive liveness */
> + tmp = ngg_gs_vertex_ptr(ctx, primidx);
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implicit C-style array */
> + ctx->ac.i32_1, /* second value of struct */
> + ctx->ac.i32_0, /* stream 0 */
> + };
> + tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
> + tmp = LLVMBuildLoad(builder, tmp, "");
> + const LLVMValueRef primlive =
> + LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
> +
> + tmp = LLVMBuildLoad(builder, vertliveptr, "");
> + tmp = LLVMBuildOr(builder, tmp, primlive, ""),
> + LLVMBuildStore(builder, tmp, vertliveptr);
> +
> + if (i > 0)
> + ac_build_endif(&ctx->ac, 5121 + i);
> + }
> + }
> + ac_build_endif(&ctx->ac, 5120);
> +
> + /* Inclusive scan addition across the current wave. */
> + LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
> + struct ac_wg_scan vertlive_scan = {};
> + vertlive_scan.op = nir_op_iadd;
> + vertlive_scan.enable_reduce = true;
> + vertlive_scan.enable_exclusive = true;
> + vertlive_scan.src = vertlive;
> + vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
> + vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
> + vertlive_scan.numwaves = get_tgsize(ctx);
> + vertlive_scan.maxwaves = 8;
> +
> + ac_build_wg_scan(&ctx->ac, &vertlive_scan);
> +
> + /* Skip all exports (including index exports) when possible. At least on
> + * early gfx10 revisions this is also to avoid hangs.
> + */
> + LLVMValueRef have_exports =
> + LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
> + num_emit_threads =
> + LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
> +
> + /* Allocate export space. Send this message as early as possible, to
> + * hide the latency of the SQ <-> SPI roundtrip.
> + *
> + * Note: We could consider compacting primitives for export as well.
> + * PA processes 1 non-null prim / clock, but it fetches 4 DW of
> + * prim data per clock and skips null primitives at no additional
> + * cost. So compacting primitives can only be beneficial when
> + * there are 4 or more contiguous null primitives in the export
> + * (in the common case of single-dword prim exports).
> + */
> + build_sendmsg_gs_alloc_req(ctx, vertlive_scan.result_reduce, num_emit_threads);
> +
> + /* Setup the reverse vertex compaction permutation. We re-use stream 1
> + * of the primitive liveness flags, relying on the fact that each
> + * threadgroup can have at most 256 threads. */
> + ac_build_ifcc(&ctx->ac, vertlive, 5130);
> + {
> + tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implicit C-style array */
> + ctx->ac.i32_1, /* second value of struct */
> + ctx->ac.i32_1, /* stream 1 */
> + };
> + tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
> + tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
> + LLVMBuildStore(builder, tmp2, tmp);
> + }
> + ac_build_endif(&ctx->ac, 5130);
> +
> + ac_build_s_barrier(&ctx->ac);
> +
> + /* Export primitive data */
> + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
> + ac_build_ifcc(&ctx->ac, tmp, 5140);
> + {
> + struct ngg_prim prim = {};
> + prim.num_vertices = verts_per_prim;
> +
> + tmp = ngg_gs_vertex_ptr(ctx, tid);
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implicit C-style array */
> + ctx->ac.i32_1, /* second value of struct */
> + ctx->ac.i32_0, /* primflag */
> + };
> + tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
> + tmp = LLVMBuildLoad(builder, tmp, "");
> + prim.isnull = LLVMBuildICmp(builder, LLVMIntEQ, tmp,
> + LLVMConstInt(ctx->ac.i8, 0, false), "");
> +
> + for (unsigned i = 0; i < verts_per_prim; ++i) {
> + prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
> + LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
> + prim.edgeflag[i] = ctx->ac.i1false;
> + }
> +
> + build_export_prim(ctx, &prim);
> + }
> + ac_build_endif(&ctx->ac, 5140);
> +
> + /* Export position and parameter data */
> + tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
> + ac_build_ifcc(&ctx->ac, tmp, 5145);
> + {
> + struct radv_vs_output_info *outinfo = &ctx->shader_info->vs.outinfo;
> + struct radv_shader_output_values *outputs;
> + unsigned noutput = 0;
> +
> + /* Allocate a temporary array for the output values. */
> + unsigned num_outputs = util_bitcount64(ctx->output_mask);
> + outputs = calloc(num_outputs, sizeof(outputs[0]));
> +
> + memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
> + sizeof(outinfo->vs_output_param_offset));
> + outinfo->pos_exports = 0;
> +
> + tmp = ngg_gs_vertex_ptr(ctx, tid);
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implicit C-style array */
> + ctx->ac.i32_1, /* second value of struct */
> + ctx->ac.i32_1, /* stream 1: source data index */
> + };
> + tmp = LLVMBuildGEP(builder, tmp, gep_idx, 3, "");
> + tmp = LLVMBuildLoad(builder, tmp, "");
> + tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
> + const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
> +
> + if (ctx->output_mask & (1ull << VARYING_SLOT_PSIZ)) {
> + outinfo->writes_pointsize = true;
> + }
> +
> + if (ctx->output_mask & (1ull << VARYING_SLOT_LAYER)) {
> + outinfo->writes_layer = true;
> + }
> +
> + if (ctx->output_mask & (1ull << VARYING_SLOT_VIEWPORT)) {
> + outinfo->writes_viewport_index = true;
> + }
> +
> + unsigned out_idx = 0;
> + gep_idx[1] = ctx->ac.i32_0;
> + for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
> + if (!(ctx->output_mask & (1ull << i)))
> + continue;
> +
> + outputs[noutput].slot_name = i;
> + outputs[noutput].slot_index = i == VARYING_SLOT_CLIP_DIST1;
> +
> + if (ctx->stage == MESA_SHADER_VERTEX &&
> + !ctx->is_gs_copy_shader) {
> + outputs[noutput].usage_mask =
> + ctx->shader_info->info.vs.output_usage_mask[i];
> + } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
> + outputs[noutput].usage_mask =
> + ctx->shader_info->info.tes.output_usage_mask[i];
> + } else {
> + assert(ctx->is_gs_copy_shader || ctx->options->key.vs_common_out.as_ngg);
> + outputs[noutput].usage_mask =
> + ctx->shader_info->info.gs.output_usage_mask[i];
> + }
> +
> + for (unsigned j = 0; j < 4; j++, out_idx++) {
> + gep_idx[2] = LLVMConstInt(ctx->ac.i32, out_idx, false);
> + tmp = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
> + tmp = LLVMBuildLoad(builder, tmp, "");
> + outputs[noutput].values[j] = ac_to_float(&ctx->ac, tmp);
> + }
> +
> + noutput++;
> + }
> +
> + radv_llvm_export_vs(ctx, outputs, noutput, outinfo, false);
> + FREE(outputs);
> + }
> + ac_build_endif(&ctx->ac, 5145);
> +}
> +
> +static void gfx10_ngg_gs_emit_vertex(struct radv_shader_context *ctx,
> + unsigned stream,
> + LLVMValueRef *addrs)
> +{
> + LLVMBuilderRef builder = ctx->ac.builder;
> + LLVMValueRef tmp;
> + const LLVMValueRef vertexidx =
> + LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
> +
> + /* If this thread has already emitted the declared maximum number of
> + * vertices, skip the write: excessive vertex emissions are not
> + * supposed to have any effect.
> + */
> + const LLVMValueRef can_emit =
> + LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
> + LLVMConstInt(ctx->ac.i32, ctx->gs_max_out_vertices, false), "");
> + ac_build_kill_if_false(&ctx->ac, can_emit);
> +
> + tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
> + tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
> + LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
> +
> + const LLVMValueRef vertexptr =
> + ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
> + unsigned out_idx = 0;
> + for (unsigned i = 0; i < AC_LLVM_MAX_OUTPUTS; ++i) {
> + unsigned output_usage_mask =
> + ctx->shader_info->info.gs.output_usage_mask[i];
> + uint8_t output_stream =
> + ctx->shader_info->info.gs.output_streams[i];
> + LLVMValueRef *out_ptr = &addrs[i * 4];
> + int length = util_last_bit(output_usage_mask);
> +
> + if (!(ctx->output_mask & (1ull << i)) ||
> + output_stream != stream)
> + continue;
> +
> + for (unsigned j = 0; j < length; j++, out_idx++) {
> + if (!(output_usage_mask & (1 << j)))
> + continue;
> +
> + LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder,
> + out_ptr[j], "");
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implied C-style array */
> + ctx->ac.i32_0, /* first entry of struct */
> + LLVMConstInt(ctx->ac.i32, out_idx, false),
> + };
> + LLVMValueRef ptr = LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
> +
> + out_val = ac_to_integer(&ctx->ac, out_val);
> + LLVMBuildStore(builder, out_val, ptr);
> + }
> + }
> + assert(out_idx * 4 <= ctx->gsvs_vertex_size);
> +
> + /* Determine and store whether this vertex completed a primitive. */
> + const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
> +
> + tmp = LLVMConstInt(ctx->ac.i32, si_conv_gl_prim_to_vertices(ctx->gs_output_prim) - 1, false);
> + const LLVMValueRef iscompleteprim =
> + LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
> +
> + tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
> + LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
> +
> + LLVMValueRef gep_idx[3] = {
> + ctx->ac.i32_0, /* implied C-style array */
> + ctx->ac.i32_1, /* second struct entry */
> + LLVMConstInt(ctx->ac.i32, stream, false),
> + };
> + const LLVMValueRef primflagptr =
> + LLVMBuildGEP(builder, vertexptr, gep_idx, 3, "");
> +
> + tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
> + LLVMBuildStore(builder, tmp, primflagptr);
> +
> + tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
> + tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
> + LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
> +}
> +
> static void
> write_tess_factors(struct radv_shader_context *ctx)
> {
> @@ -3490,6 +3980,14 @@ handle_fs_outputs_post(struct radv_shader_context *ctx)
> static void
> emit_gs_epilogue(struct radv_shader_context *ctx)
> {
> + if (ctx->options->key.vs_common_out.as_ngg) {
> + gfx10_ngg_gs_emit_epilogue_1(ctx);
> + return;
> + }
> +
> + if (ctx->ac.chip_class >= GFX10)
> + LLVMBuildFence(ctx->ac.builder, LLVMAtomicOrderingRelease, false, "");
> +
> ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE, ctx->gs_wave_id);
> }
>
> @@ -3503,10 +4001,10 @@ handle_shader_outputs_post(struct ac_shader_abi *abi, unsigned max_outputs,
> case MESA_SHADER_VERTEX:
> if (ctx->options->key.vs_common_out.as_ls)
> handle_ls_outputs_post(ctx);
> - else if (ctx->options->key.vs_common_out.as_ngg)
> - break; /* handled outside of the shader body */
> else if (ctx->options->key.vs_common_out.as_es)
> handle_es_outputs_post(ctx, &ctx->shader_info->vs.es_info);
> + else if (ctx->options->key.vs_common_out.as_ngg)
> + break; /* handled outside of the shader body */
> else
> handle_vs_outputs_post(ctx, ctx->options->key.vs_common_out.export_prim_id,
> ctx->options->key.vs_common_out.export_clip_dists,
> @@ -3800,7 +4298,31 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
> ctx.gs_next_vertex[i] =
> ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
> }
> + if (ctx.options->key.vs_common_out.as_ngg) {
> + for (unsigned i = 0; i < 4; ++i) {
> + ctx.gs_curprim_verts[i] =
> + ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
> + ctx.gs_generated_prims[i] =
> + ac_build_alloca(&ctx.ac, ctx.ac.i32, "");
> + }
> +
> + /* TODO: streamout */
> +
> + LLVMTypeRef ai32 = LLVMArrayType(ctx.ac.i32, 8);
> + ctx.gs_ngg_scratch =
> + LLVMAddGlobalInAddressSpace(ctx.ac.module,
> + ai32, "ngg_scratch", AC_ADDR_SPACE_LDS);
> + LLVMSetInitializer(ctx.gs_ngg_scratch, LLVMGetUndef(ai32));
> + LLVMSetAlignment(ctx.gs_ngg_scratch, 4);
> +
> + ctx.gs_ngg_emit = LLVMBuildIntToPtr(ctx.ac.builder, ctx.ac.i32_0,
> + LLVMPointerType(LLVMArrayType(ctx.ac.i32, 0), AC_ADDR_SPACE_LDS),
> + "ngg_emit");
> + LLVMSetAlignment(ctx.gs_ngg_emit, 4);
> + }
> +
> ctx.gs_max_out_vertices = shaders[i]->info.gs.vertices_out;
> + ctx.gs_output_prim = shaders[i]->info.gs.output_primitive;
> ctx.abi.load_inputs = load_gs_input;
> ctx.abi.emit_primitive = visit_end_primitive;
> } else if (shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) {
> @@ -3861,6 +4383,11 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
> LLVMBuildCondBr(ctx.ac.builder, cond, then_block, merge_block);
>
> LLVMPositionBuilderAtEnd(ctx.ac.builder, then_block);
> +
> + if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
> + ctx.options->key.vs_common_out.as_ngg) {
> + gfx10_ngg_gs_emit_prologue(&ctx);
> + }
> }
>
> if (shaders[i]->info.stage == MESA_SHADER_FRAGMENT)
> @@ -3883,6 +4410,9 @@ LLVMModuleRef ac_translate_nir_to_llvm(struct ac_llvm_compiler *ac_llvm,
> ctx.options->key.vs_common_out.as_ngg &&
> i == shader_count - 1) {
> handle_ngg_outputs_post(&ctx);
> + } else if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY &&
> + ctx.options->key.vs_common_out.as_ngg) {
> + gfx10_ngg_gs_emit_epilogue_2(&ctx);
> }
>
> if (shaders[i]->info.stage == MESA_SHADER_GEOMETRY) {
> diff --git a/src/amd/vulkan/radv_pipeline.c b/src/amd/vulkan/radv_pipeline.c
> index 8417eab41db..5c97aae39a8 100644
> --- a/src/amd/vulkan/radv_pipeline.c
> +++ b/src/amd/vulkan/radv_pipeline.c
> @@ -2023,7 +2023,10 @@ static const struct radv_prim_vertex_count prim_size_table[] = {
> static const struct radv_vs_output_info *get_vs_output_info(const struct radv_pipeline *pipeline)
> {
> if (radv_pipeline_has_gs(pipeline))
> - return &pipeline->gs_copy_shader->info.vs.outinfo;
> + if (radv_pipeline_has_ngg(pipeline))
> + return &pipeline->shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo;
> + else
> + return &pipeline->gs_copy_shader->info.vs.outinfo;
> else if (radv_pipeline_has_tess(pipeline))
> return &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo;
> else
> diff --git a/src/amd/vulkan/radv_private.h b/src/amd/vulkan/radv_private.h
> index fd1f8972adc..f4dd526c89d 100644
> --- a/src/amd/vulkan/radv_private.h
> +++ b/src/amd/vulkan/radv_private.h
> @@ -2148,6 +2148,30 @@ struct radeon_winsys_sem;
>
> uint64_t radv_get_current_time(void);
>
> +static inline uint32_t
> +si_conv_gl_prim_to_vertices(unsigned gl_prim)
> +{
> + switch (gl_prim) {
> + case 0: /* GL_POINTS */
> + return 1;
> + case 1: /* GL_LINES */
> + case 3: /* GL_LINE_STRIP */
> + return 2;
> + case 4: /* GL_TRIANGLES */
> + case 5: /* GL_TRIANGLE_STRIP */
> + return 3;
> + case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
> + return 4;
> + case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
> + return 6;
> + case 7: /* GL_QUADS */
> + return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
> + default:
> + assert(0);
> + return 0;
> + }
> +}
> +
> #define RADV_DEFINE_HANDLE_CASTS(__radv_type, __VkType) \
> \
> static inline struct __radv_type * \
> diff --git a/src/amd/vulkan/radv_shader.c b/src/amd/vulkan/radv_shader.c
> index 1987d439612..4ec4e88349d 100644
> --- a/src/amd/vulkan/radv_shader.c
> +++ b/src/amd/vulkan/radv_shader.c
> @@ -927,6 +927,11 @@ radv_shader_variant_create(struct radv_device *device,
> sym->name = "esgs_ring";
> sym->size = 32 * 1024;
> sym->align = 64 * 1024;
> +
> + /* Make sure to have LDS space for NGG scratch. */
> + /* TODO: Compute this correctly somehow? */
> + if (binary->variant_info.is_ngg)
> + sym->size -= 32;
> }
> struct ac_rtld_open_info open_info = {
> .info = &device->physical_device->rad_info,
> --
> 2.22.0
>
> _______________________________________________
> mesa-dev mailing list
> mesa-dev at lists.freedesktop.org
> https://lists.freedesktop.org/mailman/listinfo/mesa-dev
More information about the mesa-dev
mailing list