[Nouveau] [PATCH v3 10/11] secboot/gm200: add secure-boot support
Alexandre Courbot
acourbot at nvidia.com
Wed Feb 24 05:42:23 UTC 2016
Add secure-boot for the dGPU set of GM20X chips, using the PMU as the
high-secure falcon.
This work is based on Deepak Goyal's initial port of Secure Boot to
Nouveau.
Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
drm/nouveau/include/nvkm/subdev/secboot.h | 2 +
drm/nouveau/nvkm/engine/device/base.c | 2 +
drm/nouveau/nvkm/engine/gr/gm200.c | 8 +-
drm/nouveau/nvkm/subdev/secboot/Kbuild | 1 +
drm/nouveau/nvkm/subdev/secboot/gm200.c | 1485 +++++++++++++++++++++++++++++
drm/nouveau/nvkm/subdev/secboot/priv.h | 178 ++++
6 files changed, 1669 insertions(+), 7 deletions(-)
create mode 100644 drm/nouveau/nvkm/subdev/secboot/gm200.c
diff --git a/drm/nouveau/include/nvkm/subdev/secboot.h b/drm/nouveau/include/nvkm/subdev/secboot.h
index f40b57567676..a509f2b4aa5f 100644
--- a/drm/nouveau/include/nvkm/subdev/secboot.h
+++ b/drm/nouveau/include/nvkm/subdev/secboot.h
@@ -53,4 +53,6 @@ bool nvkm_secboot_is_managed(struct nvkm_secboot *, enum nvkm_secboot_falcon);
int nvkm_secboot_reset(struct nvkm_secboot *, u32 falcon);
int nvkm_secboot_start(struct nvkm_secboot *, u32 falcon);
+int gm200_secboot_new(struct nvkm_device *, int, struct nvkm_secboot **);
+
#endif
diff --git a/drm/nouveau/nvkm/engine/device/base.c b/drm/nouveau/nvkm/engine/device/base.c
index ba44ba925f4b..ab56abac0bc5 100644
--- a/drm/nouveau/nvkm/engine/device/base.c
+++ b/drm/nouveau/nvkm/engine/device/base.c
@@ -2022,6 +2022,7 @@ nv124_chipset = {
.fifo = gm200_fifo_new,
.gr = gm200_gr_new,
.sw = gf100_sw_new,
+ .secboot = gm200_secboot_new,
};
static const struct nvkm_device_chip
@@ -2053,6 +2054,7 @@ nv126_chipset = {
.fifo = gm200_fifo_new,
.gr = gm206_gr_new,
.sw = gf100_sw_new,
+ .secboot = gm200_secboot_new,
};
static const struct nvkm_device_chip
diff --git a/drm/nouveau/nvkm/engine/gr/gm200.c b/drm/nouveau/nvkm/engine/gr/gm200.c
index 038f9b338a85..935360366dc1 100644
--- a/drm/nouveau/nvkm/engine/gr/gm200.c
+++ b/drm/nouveau/nvkm/engine/gr/gm200.c
@@ -231,12 +231,6 @@ gm200_gr_data[] = {
* PGRAPH engine/subdev functions
******************************************************************************/
-static int
-gm200_gr_init_ctxctl(struct gf100_gr *gr)
-{
- return 0;
-}
-
int
gm200_gr_init(struct gf100_gr *gr)
{
@@ -350,7 +344,7 @@ gm200_gr_init(struct gf100_gr *gr)
gf100_gr_zbc_init(gr);
- return gm200_gr_init_ctxctl(gr);
+ return gf100_gr_init_ctxctl(gr);
}
int gm200_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
diff --git a/drm/nouveau/nvkm/subdev/secboot/Kbuild b/drm/nouveau/nvkm/subdev/secboot/Kbuild
index e757096b2ff0..c1abf59410d1 100644
--- a/drm/nouveau/nvkm/subdev/secboot/Kbuild
+++ b/drm/nouveau/nvkm/subdev/secboot/Kbuild
@@ -1 +1,2 @@
nvkm-y += nvkm/subdev/secboot/base.o
+nvkm-y += nvkm/subdev/secboot/gm200.o
diff --git a/drm/nouveau/nvkm/subdev/secboot/gm200.c b/drm/nouveau/nvkm/subdev/secboot/gm200.c
new file mode 100644
index 000000000000..b7ceba59dfb2
--- /dev/null
+++ b/drm/nouveau/nvkm/subdev/secboot/gm200.c
@@ -0,0 +1,1485 @@
+/*
+ * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Secure boot is the process by which NVIDIA-signed firmware is loaded into
+ * some of the falcons of a GPU. For production devices this is the only way
+ * for the firmware to access useful (but sensitive) registers.
+ *
+ * A Falcon microprocessor supporting advanced security modes can run in one of
+ * three modes:
+ *
+ * - Non-secure (NS). In this mode, functionality is similar to Falcon
+ * architectures before security modes were introduced (pre-Maxwell), but
+ * capability is restricted. In particular, certain registers may be
+ * inaccessible for reads and/or writes, and physical memory access may be
+ * disabled (on certain Falcon instances). This is the only possible mode that
+ * can be used if you don't have microcode cryptographically signed by NVIDIA.
+ *
+ * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
+ * not possible to read or write any Falcon internal state or Falcon registers
+ * from outside the Falcon (for example, from the host system). The only way
+ * to enable this mode is by loading microcode that has been signed by NVIDIA.
+ * (The loading process involves tagging the IMEM block as secure, writing the
+ * signature into a Falcon register, and starting execution. The hardware will
+ * validate the signature, and if valid, grant HS privileges.)
+ *
+ * - Light Secure (LS). In this mode, the microprocessor has more privileges
+ * than NS but fewer than HS. Some of the microprocessor state is visible to
+ * host software to ease debugging. The only way to enable this mode is by HS
+ * microcode enabling LS mode. Some privileges available to HS mode are not
+ * available here. LS mode is introduced in GM20x.
+ *
+ * Secure boot consists in temporarily switching a HS-capable falcon (typically
+ * PMU) into HS mode in order to validate the LS firmwares of managed falcons,
+ * load them, and switch managed falcons into LS mode. Once secure boot
+ * completes, no falcon remains in HS mode.
+ *
+ * Secure boot requires a write-protected memory region (WPR) which can only be
+ * written by the secure falcon. On dGPU, the driver sets up the WPR region in
+ * video memory. On Tegra, it is set up by the bootloader and its location and
+ * size written into memory controller registers.
+ *
+ * The secure boot process takes place as follows:
+ *
+ * 1) A LS blob is constructed that contains all the LS firmwares we want to
+ * load, along with their signatures and bootloaders.
+ *
+ * 2) A HS blob (also called ACR) is created that contains the signed HS
+ * firmware in charge of loading the LS firmwares into their respective
+ * falcons.
+ *
+ * 3) The HS blob is loaded (via its own bootloader) and executed on the
+ * HS-capable falcon. It authenticates itself, switches the secure falcon to
+ * HS mode and setup the WPR region around the LS blob (dGPU) or copies the
+ * LS blob into the WPR region (Tegra).
+ *
+ * 4) The LS blob is now secure from all external tampering. The HS falcon
+ * checks the signatures of the LS firmwares and, if valid, switches the
+ * managed falcons to LS mode and makes them ready to run the LS firmware.
+ *
+ * 5) The managed falcons remain in LS mode and can be started.
+ *
+ */
+
+#include "priv.h"
+
+#include <core/gpuobj.h>
+#include <core/firmware.h>
+#include <subdev/fb.h>
+
+enum {
+ FALCON_DMAIDX_UCODE = 0,
+ FALCON_DMAIDX_VIRT = 1,
+ FALCON_DMAIDX_PHYS_VID = 2,
+ FALCON_DMAIDX_PHYS_SYS_COH = 3,
+ FALCON_DMAIDX_PHYS_SYS_NCOH = 4,
+};
+
+/**
+ * struct fw_bin_header - header of firmware files
+ * @bin_magic: always 0x3b1d14f0
+ * @bin_ver: version of the bin format
+ * @bin_size: entire image size including this header
+ * @header_offset: offset of the firmware/bootloader header in the file
+ * @data_offset: offset of the firmware/bootloader payload in the file
+ * @data_size: size of the payload
+ *
+ * This header is located at the beginning of the HS firmware and HS bootloader
+ * files, to describe where the headers and data can be found.
+ */
+struct fw_bin_header {
+ u32 bin_magic;
+ u32 bin_ver;
+ u32 bin_size;
+ u32 header_offset;
+ u32 data_offset;
+ u32 data_size;
+};
+
+/**
+ * struct fw_bl_desc - firmware bootloader descriptor
+ * @start_tag: starting tag of bootloader
+ * @desc_dmem_load_off: DMEM offset of flcn_bl_dmem_desc
+ * @code_off: offset of code section
+ * @code_size: size of code section
+ * @data_off: offset of data section
+ * @data_size: size of data section
+ *
+ * This structure is embedded in bootloader firmware files at to describe the
+ * IMEM and DMEM layout expected by the bootloader.
+ */
+struct fw_bl_desc {
+ u32 start_tag;
+ u32 dmem_load_off;
+ u32 code_off;
+ u32 code_size;
+ u32 data_off;
+ u32 data_size;
+};
+
+
+/*
+ *
+ * LS blob structures
+ *
+ */
+
+/**
+ * struct lsf_ucode_desc - LS falcon signatures
+ * @prd_keys: signature to use when the GPU is in production mode
+ * @dgb_keys: signature to use when the GPU is in debug mode
+ * @b_prd_present: whether the production key is present
+ * @b_dgb_present: whether the debug key is present
+ * @falcon_id: ID of the falcon the ucode applies to
+ *
+ * Directly loaded from a signature file.
+ */
+struct lsf_ucode_desc {
+ u8 prd_keys[2][16];
+ u8 dbg_keys[2][16];
+ u32 b_prd_present;
+ u32 b_dbg_present;
+ u32 falcon_id;
+};
+
+/**
+ * struct lsf_lsb_header - LS firmware header
+ * @signature: signature to verify the firmware against
+ * @ucode_off: offset of the ucode blob in the WPR region. The ucode
+ * blob contains the bootloader, code and data of the
+ * LS falcon
+ * @ucode_size: size of the ucode blob, including bootloader
+ * @data_size: size of the ucode blob data
+ * @bl_code_size: size of the bootloader code
+ * @bl_imem_off: offset in imem of the bootloader
+ * @bl_data_off: offset of the bootloader data in WPR region
+ * @bl_data_size: size of the bootloader data
+ * @app_code_off: offset of the app code relative to ucode_off
+ * @app_code_size: size of the app code
+ * @app_data_off: offset of the app data relative to ucode_off
+ * @app_data_size: size of the app data
+ * @flags: flags for the secure bootloader
+ *
+ * This structure is written into the WPR region for each managed falcon. Each
+ * instance is referenced by the lsb_offset member of the corresponding
+ * lsf_wpr_header.
+ */
+struct lsf_lsb_header {
+ struct lsf_ucode_desc signature;
+ u32 ucode_off;
+ u32 ucode_size;
+ u32 data_size;
+ u32 bl_code_size;
+ u32 bl_imem_off;
+ u32 bl_data_off;
+ u32 bl_data_size;
+ u32 app_code_off;
+ u32 app_code_size;
+ u32 app_data_off;
+ u32 app_data_size;
+ u32 flags;
+#define LSF_FLAG_LOAD_CODE_AT_0 1
+#define LSF_FLAG_DMACTL_REQ_CTX 4
+#define LSF_FLAG_FORCE_PRIV_LOAD 8
+};
+
+/**
+ * struct lsf_wpr_header - LS blob WPR Header
+ * @falcon_id: LS falcon ID
+ * @lsb_offset: offset of the lsb_lsf_header in the WPR region
+ * @bootstrap_owner: secure falcon reponsible for bootstrapping the LS falcon
+ * @lazy_bootstrap: skip bootstrapping by ACR
+ * @status: bootstrapping status
+ *
+ * An array of these is written at the beginning of the WPR region, one for
+ * each managed falcon. The array is terminated by an instance which falcon_id
+ * is LSF_FALCON_ID_INVALID.
+ */
+struct lsf_wpr_header {
+ u32 falcon_id;
+ u32 lsb_offset;
+ u32 bootstrap_owner;
+ u32 lazy_bootstrap;
+ u32 status;
+#define LSF_IMAGE_STATUS_NONE 0
+#define LSF_IMAGE_STATUS_COPY 1
+#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED 2
+#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED 3
+#define LSF_IMAGE_STATUS_VALIDATION_DONE 4
+#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED 5
+#define LSF_IMAGE_STATUS_BOOTSTRAP_READY 6
+};
+
+
+/**
+ * struct ls_ucode_img_desc - descriptor of firmware image
+ * @descriptor_size: size of this descriptor
+ * @image_size: size of the whole image
+ * @bootloader_start_offset: start offset of the bootloader in ucode image
+ * @bootloader_size: size of the bootloader
+ * @bootloader_imem_offset: start off set of the bootloader in IMEM
+ * @bootloader_entry_point: entry point of the bootloader in IMEM
+ * @app_start_offset: start offset of the LS firmware
+ * @app_size: size of the LS firmware's code and data
+ * @app_imem_offset: offset of the app in IMEM
+ * @app_imem_entry: entry point of the app in IMEM
+ * @app_dmem_offset: offset of the data in DMEM
+ * @app_resident_code_offset: offset of app code from app_start_offset
+ * @app_resident_code_size: size of the code
+ * @app_resident_data_offset: offset of data from app_start_offset
+ * @app_resident_data_size: size of data
+ *
+ * A firmware image contains the code, data, and bootloader of a given LS
+ * falcon in a single blob. This structure describes where everything is.
+ *
+ * This can be generated from a (bootloader, code, data) set if they have
+ * been loaded separately, or come directly from a file.
+ */
+struct ls_ucode_img_desc {
+ u32 descriptor_size;
+ u32 image_size;
+ u32 tools_version;
+ u32 app_version;
+ char date[64];
+ u32 bootloader_start_offset;
+ u32 bootloader_size;
+ u32 bootloader_imem_offset;
+ u32 bootloader_entry_point;
+ u32 app_start_offset;
+ u32 app_size;
+ u32 app_imem_offset;
+ u32 app_imem_entry;
+ u32 app_dmem_offset;
+ u32 app_resident_code_offset;
+ u32 app_resident_code_size;
+ u32 app_resident_data_offset;
+ u32 app_resident_data_size;
+ u32 nb_overlays;
+ struct {u32 start; u32 size; } load_ovl[64];
+ u32 compressed;
+};
+
+/**
+ * struct ls_ucode_img - temporary storage for loaded LS firmwares
+ * @node: to link within lsf_ucode_mgr
+ * @falcon_id: ID of the falcon this LS firmware is for
+ * @ucode_desc: loaded or generated map of ucode_data
+ * @ucode_header: header of the firmware
+ * @ucode_data: firmware payload (code and data)
+ * @ucode_size: size in bytes of data in ucode_data
+ * @wpr_header: WPR header to be written to the LS blob
+ * @lsb_header: LSB header to be written to the LS blob
+ *
+ * Preparing the WPR LS blob requires information about all the LS firmwares
+ * (size, etc) to be known. This structure contains all the data of one LS
+ * firmware.
+ */
+struct ls_ucode_img {
+ struct list_head node;
+ enum nvkm_secboot_falcon falcon_id;
+
+ struct ls_ucode_img_desc ucode_desc;
+ u32 *ucode_header;
+ u8 *ucode_data;
+ u32 ucode_size;
+
+ struct lsf_wpr_header wpr_header;
+ struct lsf_lsb_header lsb_header;
+};
+
+/**
+ * struct ls_ucode_mgr - manager for all LS falcon firmwares
+ * @count: number of managed LS falcons
+ * @wpr_size: size of the required WPR region in bytes
+ * @img_list: linked list of lsf_ucode_img
+ */
+struct ls_ucode_mgr {
+ u16 count;
+ u32 wpr_size;
+ struct list_head img_list;
+};
+
+
+/*
+ *
+ * HS blob structures
+ *
+ */
+
+/**
+ * struct hsf_fw_header - HS firmware descriptor
+ * @sig_dbg_offset: offset of the debug signature
+ * @sig_dbg_size: size of the debug signature
+ * @sig_prod_offset: offset of the production signature
+ * @sig_prod_size: size of the production signature
+ * @patch_loc: offset of the offset (sic) of where the signature is
+ * @patch_sig: offset of the offset (sic) to add to sig_*_offset
+ * @hdr_offset: offset of the load header (see struct hs_load_header)
+ * @hdr_size: size of above header
+ *
+ * This structure is embedded in the HS firmware image at
+ * hs_bin_hdr.header_offset.
+ */
+struct hsf_fw_header {
+ u32 sig_dbg_offset;
+ u32 sig_dbg_size;
+ u32 sig_prod_offset;
+ u32 sig_prod_size;
+ u32 patch_loc;
+ u32 patch_sig;
+ u32 hdr_offset;
+ u32 hdr_size;
+};
+
+/**
+ * struct hsf_load_header - HS firmware load header
+ */
+struct hsf_load_header {
+ u32 non_sec_code_off;
+ u32 non_sec_code_size;
+ u32 data_dma_base;
+ u32 data_size;
+ u32 num_apps;
+ struct {
+ u32 sec_code_off;
+ u32 sec_code_size;
+ } app[0];
+};
+
+/**
+ * Convenience function to duplicate a firmware file in memory and check that
+ * it has the required minimum size.
+ */
+static void *
+gm200_secboot_load_firmware(struct nvkm_subdev *subdev, const char *name,
+ size_t min_size)
+{
+ const struct firmware *fw;
+ void *blob;
+ int ret;
+
+ ret = nvkm_firmware_get(subdev->device, name, &fw);
+ if (ret)
+ return ERR_PTR(ret);
+ if (fw->size < min_size) {
+ nvkm_error(subdev, "%s is smaller than expected size %zu\n",
+ name, min_size);
+ nvkm_firmware_put(fw);
+ return ERR_PTR(-EINVAL);
+ }
+ blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
+ nvkm_firmware_put(fw);
+ if (!blob)
+ return ERR_PTR(-ENOMEM);
+
+ return blob;
+}
+
+
+/*
+ * Low-secure blob creation
+ */
+
+#define BL_DESC_BLK_SIZE 256
+/**
+ * Build a ucode image and descriptor from provided bootloader, code and data.
+ *
+ * @bl: bootloader image, including 16-bytes descriptor
+ * @code: LS firmware code segment
+ * @data: LS firmware data segment
+ * @desc: ucode descriptor to be written
+ *
+ * Return: allocated ucode image with corresponding descriptor information. desc
+ * is also updated to contain the right offsets within returned image.
+ */
+static void *
+ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
+ const struct firmware *data, struct ls_ucode_img_desc *desc)
+{
+ struct fw_bin_header *bin_hdr = (void *)bl->data;
+ struct fw_bl_desc *bl_desc = (void *)bl->data + bin_hdr->header_offset;
+ void *bl_data = (void *)bl->data + bin_hdr->data_offset;
+ u32 pos = 0;
+ void *image;
+
+ desc->bootloader_start_offset = pos;
+ desc->bootloader_size = ALIGN(bl_desc->code_size, sizeof(u32));
+ desc->bootloader_imem_offset = bl_desc->start_tag * 256;
+ desc->bootloader_entry_point = bl_desc->start_tag * 256;
+
+ pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
+ desc->app_start_offset = pos;
+ desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
+ ALIGN(data->size, BL_DESC_BLK_SIZE);
+ desc->app_imem_offset = 0;
+ desc->app_imem_entry = 0;
+ desc->app_dmem_offset = 0;
+ desc->app_resident_code_offset = 0;
+ desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);
+
+ pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
+ desc->app_resident_data_offset = pos - desc->app_start_offset;
+ desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);
+
+ desc->image_size = ALIGN(bl_desc->code_size, BL_DESC_BLK_SIZE) +
+ desc->app_size;
+
+ image = kzalloc(desc->image_size, GFP_KERNEL);
+ if (!image)
+ return ERR_PTR(-ENOMEM);
+
+ memcpy(image + desc->bootloader_start_offset, bl_data,
+ bl_desc->code_size);
+ memcpy(image + desc->app_start_offset, code->data, code->size);
+ memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
+ data->data, data->size);
+
+ return image;
+}
+
+/**
+ * ls_ucode_img_load_generic() - load and prepare a LS ucode image
+ *
+ * Load the LS microcode, bootloader and signature and pack them into a single
+ * blob. Also generate the corresponding ucode descriptor.
+ */
+static int
+ls_ucode_img_load_generic(struct nvkm_subdev *subdev,
+ struct ls_ucode_img *img, const char *falcon_name,
+ const u32 falcon_id)
+{
+ const struct firmware *bl, *code, *data;
+ struct lsf_ucode_desc *lsf_desc;
+ char f[64];
+ int ret;
+
+ img->ucode_header = NULL;
+
+ snprintf(f, sizeof(f), "gr/%s_bl", falcon_name);
+ ret = nvkm_firmware_get(subdev->device, f, &bl);
+ if (ret)
+ goto error;
+
+ snprintf(f, sizeof(f), "gr/%s_inst", falcon_name);
+ ret = nvkm_firmware_get(subdev->device, f, &code);
+ if (ret)
+ goto free_bl;
+
+ snprintf(f, sizeof(f), "gr/%s_data", falcon_name);
+ ret = nvkm_firmware_get(subdev->device, f, &data);
+ if (ret)
+ goto free_inst;
+
+ img->ucode_data = ls_ucode_img_build(bl, code, data,
+ &img->ucode_desc);
+ if (IS_ERR(img->ucode_data)) {
+ ret = PTR_ERR(img->ucode_data);
+ goto free_data;
+ }
+ img->ucode_size = img->ucode_desc.image_size;
+
+ snprintf(f, sizeof(f), "gr/%s_sig", falcon_name);
+ lsf_desc = gm200_secboot_load_firmware(subdev, f, sizeof(*lsf_desc));
+ if (IS_ERR(lsf_desc)) {
+ ret = PTR_ERR(lsf_desc);
+ goto free_image;
+ }
+ /* not needed? the signature should already have the right value */
+ lsf_desc->falcon_id = falcon_id;
+ memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
+ img->falcon_id = lsf_desc->falcon_id;
+ kfree(lsf_desc);
+
+ /* success path - only free requested firmware files */
+ goto free_data;
+
+free_image:
+ kfree(img->ucode_data);
+free_data:
+ nvkm_firmware_put(data);
+free_inst:
+ nvkm_firmware_put(code);
+free_bl:
+ nvkm_firmware_put(bl);
+error:
+ return ret;
+}
+
+typedef int (*lsf_load_func)(struct nvkm_subdev *, struct ls_ucode_img *);
+
+static int
+ls_ucode_img_load_fecs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
+{
+ return ls_ucode_img_load_generic(subdev, img, "fecs",
+ NVKM_SECBOOT_FALCON_FECS);
+}
+
+static int
+ls_ucode_img_load_gpccs(struct nvkm_subdev *subdev, struct ls_ucode_img *img)
+{
+ return ls_ucode_img_load_generic(subdev, img, "gpccs",
+ NVKM_SECBOOT_FALCON_GPCCS);
+}
+
+/**
+ * ls_ucode_img_load() - create a lsf_ucode_img and load it
+ */
+static struct ls_ucode_img *
+ls_ucode_img_load(struct nvkm_subdev *subdev, lsf_load_func load_func)
+{
+ struct ls_ucode_img *img;
+ int ret;
+
+ img = kzalloc(sizeof(*img), GFP_KERNEL);
+ if (!img)
+ return ERR_PTR(-ENOMEM);
+
+ ret = load_func(subdev, img);
+ if (ret) {
+ kfree(img);
+ return ERR_PTR(ret);
+ }
+
+ return img;
+}
+
+static const lsf_load_func lsf_load_funcs[] = {
+ [NVKM_SECBOOT_FALCON_END] = NULL, /* reserve enough space */
+ [NVKM_SECBOOT_FALCON_FECS] = ls_ucode_img_load_fecs,
+ [NVKM_SECBOOT_FALCON_GPCCS] = ls_ucode_img_load_gpccs,
+};
+
+/**
+ * ls_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image
+ * @img: ucode image to generate against
+ * @desc: descriptor to populate
+ * @sb: secure boot state to use for base addresses
+ *
+ * Populate the DMEM BL descriptor with the information contained in a
+ * ls_ucode_desc.
+ *
+ */
+static void
+ls_ucode_img_populate_bl_desc(struct ls_ucode_img *img, u64 wpr_addr,
+ struct gm200_flcn_bl_desc *desc)
+{
+ struct ls_ucode_img_desc *pdesc = &img->ucode_desc;
+ u64 addr_base;
+
+ addr_base = wpr_addr + img->lsb_header.ucode_off +
+ pdesc->app_start_offset;
+
+ memset(desc, 0, sizeof(*desc));
+ desc->ctx_dma = FALCON_DMAIDX_UCODE;
+ desc->code_dma_base.lo = lower_32_bits(
+ (addr_base + pdesc->app_resident_code_offset));
+ desc->code_dma_base.hi = upper_32_bits(
+ (addr_base + pdesc->app_resident_code_offset));
+ desc->non_sec_code_size = pdesc->app_resident_code_size;
+ desc->data_dma_base.lo = lower_32_bits(
+ (addr_base + pdesc->app_resident_data_offset));
+ desc->data_dma_base.hi = upper_32_bits(
+ (addr_base + pdesc->app_resident_data_offset));
+ desc->data_size = pdesc->app_resident_data_size;
+ desc->code_entry_point = pdesc->app_imem_entry;
+}
+
+#define LSF_LSB_HEADER_ALIGN 256
+#define LSF_BL_DATA_ALIGN 256
+#define LSF_BL_DATA_SIZE_ALIGN 256
+#define LSF_BL_CODE_SIZE_ALIGN 256
+#define LSF_UCODE_DATA_ALIGN 4096
+
+/**
+ * ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
+ * @gsb: secure boot device used
+ * @img: image to generate for
+ * @offset: offset in the WPR region where this image starts
+ *
+ * Allocate space in the WPR area from offset and write the WPR and LSB headers
+ * accordingly.
+ *
+ * Return: offset at the end of this image.
+ */
+static u32
+ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img,
+ u32 offset)
+{
+ struct lsf_wpr_header *whdr = &img->wpr_header;
+ struct lsf_lsb_header *lhdr = &img->lsb_header;
+ struct ls_ucode_img_desc *desc = &img->ucode_desc;
+
+ if (img->ucode_header) {
+ nvkm_fatal(&gsb->base.subdev,
+ "images withough loader are not supported yet!\n");
+ return offset;
+ }
+
+ /* Fill WPR header */
+ whdr->falcon_id = img->falcon_id;
+ whdr->bootstrap_owner = gsb->base.func->boot_falcon;
+ whdr->status = LSF_IMAGE_STATUS_COPY;
+
+ /* Align, save off, and include an LSB header size */
+ offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
+ whdr->lsb_offset = offset;
+ offset += sizeof(struct lsf_lsb_header);
+
+ /*
+ * Align, save off, and include the original (static) ucode
+ * image size
+ */
+ offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
+ lhdr->ucode_off = offset;
+ offset += img->ucode_size;
+
+ /*
+ * For falcons that use a boot loader (BL), we append a loader
+ * desc structure on the end of the ucode image and consider
+ * this the boot loader data. The host will then copy the loader
+ * desc args to this space within the WPR region (before locking
+ * down) and the HS bin will then copy them to DMEM 0 for the
+ * loader.
+ */
+ lhdr->bl_code_size = ALIGN(desc->bootloader_size,
+ LSF_BL_CODE_SIZE_ALIGN);
+ lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
+ LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
+ lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
+ lhdr->bl_code_size - lhdr->ucode_size;
+ /*
+ * Though the BL is located at 0th offset of the image, the VA
+ * is different to make sure that it doesn't collide the actual
+ * OS VA range
+ */
+ lhdr->bl_imem_off = desc->bootloader_imem_offset;
+ lhdr->app_code_off = desc->app_start_offset +
+ desc->app_resident_code_offset;
+ lhdr->app_code_size = desc->app_resident_code_size;
+ lhdr->app_data_off = desc->app_start_offset +
+ desc->app_resident_data_offset;
+ lhdr->app_data_size = desc->app_resident_data_size;
+
+ lhdr->flags = 0;
+ if (img->falcon_id == gsb->base.func->boot_falcon)
+ lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;
+
+ /* GPCCS will be loaded using PRI */
+ if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
+ lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;
+
+ /* Align (size bloat) and save off BL descriptor size */
+ lhdr->bl_data_size = ALIGN(sizeof(struct gm200_flcn_bl_desc),
+ LSF_BL_DATA_SIZE_ALIGN);
+ /*
+ * Align, save off, and include the additional BL data
+ */
+ offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
+ lhdr->bl_data_off = offset;
+ offset += lhdr->bl_data_size;
+
+ return offset;
+}
+
+static void
+ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
+{
+ memset(mgr, 0, sizeof(*mgr));
+ INIT_LIST_HEAD(&mgr->img_list);
+}
+
+static void
+ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
+{
+ struct ls_ucode_img *img, *t;
+
+ list_for_each_entry_safe(img, t, &mgr->img_list, node) {
+ kfree(img->ucode_data);
+ kfree(img->ucode_header);
+ kfree(img);
+ }
+}
+
+static void
+ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
+{
+ mgr->count++;
+ list_add_tail(&img->node, &mgr->img_list);
+}
+
+/**
+ * ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
+ */
+static void
+ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr)
+{
+ struct ls_ucode_img *img;
+ u32 offset;
+
+ /*
+ * Start with an array of WPR headers at the base of the WPR.
+ * The expectation here is that the secure falcon will do a single DMA
+ * read of this array and cache it internally so it's ok to pack these.
+ * Also, we add 1 to the falcon count to indicate the end of the array.
+ */
+ offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
+
+ /*
+ * Walk the managed falcons, accounting for the LSB structs
+ * as well as the ucode images.
+ */
+ list_for_each_entry(img, &mgr->img_list, node) {
+ offset = ls_ucode_img_fill_headers(gsb, img, offset);
+ }
+
+ mgr->wpr_size = offset;
+}
+
+/**
+ * ls_ucode_mgr_write_wpr - write the WPR blob contents
+ */
+static int
+ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr,
+ struct nvkm_gpuobj *wpr_blob)
+{
+ struct ls_ucode_img *img;
+ u32 pos = 0;
+
+ nvkm_kmap(wpr_blob);
+
+ list_for_each_entry(img, &mgr->img_list, node) {
+ nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
+ sizeof(img->wpr_header));
+
+ nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
+ &img->lsb_header, sizeof(img->lsb_header));
+
+ /* Generate and write BL descriptor */
+ if (!img->ucode_header) {
+ u8 desc[gsb->func->bl_desc_size];
+ struct gm200_flcn_bl_desc gdesc;
+
+ ls_ucode_img_populate_bl_desc(img, gsb->wpr_addr,
+ &gdesc);
+ gsb->func->fixup_bl_desc(&gdesc, &desc);
+ nvkm_gpuobj_memcpy_to(wpr_blob,
+ img->lsb_header.bl_data_off,
+ &desc, gsb->func->bl_desc_size);
+ }
+
+ /* Copy ucode */
+ nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
+ img->ucode_data, img->ucode_size);
+
+ pos += sizeof(img->wpr_header);
+ }
+
+ nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
+
+ nvkm_done(wpr_blob);
+
+ return 0;
+}
+
+/* Both size and address of WPR need to be 128K-aligned */
+#define WPR_ALIGNMENT 0x20000
+/**
+ * gm200_secboot_prepare_ls_blob() - prepare the LS blob
+ *
+ * For each securely managed falcon, load the FW, signatures and bootloaders and
+ * prepare a ucode blob. Then, compute the offsets in the WPR region for each
+ * blob, and finally write the headers and ucode blobs into a GPU object that
+ * will be copied into the WPR region by the HS firmware.
+ */
+static int
+gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb)
+{
+ struct nvkm_secboot *sb = &gsb->base;
+ struct nvkm_device *device = sb->subdev.device;
+ struct ls_ucode_mgr mgr;
+ int falcon_id;
+ int ret;
+
+ ls_ucode_mgr_init(&mgr);
+
+ /* Load all LS blobs */
+ for_each_set_bit(falcon_id, &gsb->base.func->managed_falcons,
+ NVKM_SECBOOT_FALCON_END) {
+ struct ls_ucode_img *img;
+
+ img = ls_ucode_img_load(&sb->subdev, lsf_load_funcs[falcon_id]);
+
+ if (IS_ERR(img)) {
+ ret = PTR_ERR(img);
+ goto cleanup;
+ }
+ ls_ucode_mgr_add_img(&mgr, img);
+ }
+
+ /*
+ * Fill the WPR and LSF headers with the right offsets and compute
+ * required WPR size
+ */
+ ls_ucode_mgr_fill_headers(gsb, &mgr);
+ mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);
+
+ /* Allocate GPU object that will contain the WPR region */
+ ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL,
+ &gsb->ls_blob);
+ if (ret)
+ goto cleanup;
+
+ nvkm_debug(&sb->subdev, "%d managed LS falcons, WPR size is %d bytes\n",
+ mgr.count, mgr.wpr_size);
+
+ /* If WPR address and size are not fixed, set them to fit the LS blob */
+ if (!gsb->wpr_size) {
+ gsb->wpr_addr = gsb->ls_blob->addr;
+ gsb->wpr_size = gsb->ls_blob->size;
+ }
+
+ /* Write LS blob */
+ ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob);
+
+cleanup:
+ ls_ucode_mgr_cleanup(&mgr);
+
+ return ret;
+}
+
+/*
+ * High-secure blob creation
+ */
+
+/**
+ * gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature
+ */
+static void
+gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image)
+{
+ struct nvkm_secboot *sb = &gsb->base;
+ struct fw_bin_header *hsbin_hdr = acr_image;
+ struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+ void *hs_data = acr_image + hsbin_hdr->data_offset;
+ void *sig;
+ u32 sig_size;
+
+ /* Falcon in debug or production mode? */
+ if ((nvkm_rd32(sb->subdev.device, sb->base + 0xc08) >> 20) & 0x1) {
+ sig = acr_image + fw_hdr->sig_dbg_offset;
+ sig_size = fw_hdr->sig_dbg_size;
+ } else {
+ sig = acr_image + fw_hdr->sig_prod_offset;
+ sig_size = fw_hdr->sig_prod_size;
+ }
+
+ /* Patch signature */
+ memcpy(hs_data + fw_hdr->patch_loc, sig + fw_hdr->patch_sig, sig_size);
+}
+
+/**
+ * gm200_secboot_populate_hsf_bl_desc() - populate BL descriptor for HS image
+ */
+static void
+gm200_secboot_populate_hsf_bl_desc(void *acr_image,
+ struct gm200_flcn_bl_desc *bl_desc)
+{
+ struct fw_bin_header *hsbin_hdr = acr_image;
+ struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+ struct hsf_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;
+
+ /*
+ * Descriptor for the bootloader that will load the ACR image into
+ * IMEM/DMEM memory.
+ */
+ fw_hdr = acr_image + hsbin_hdr->header_offset;
+ load_hdr = acr_image + fw_hdr->hdr_offset;
+ memset(bl_desc, 0, sizeof(*bl_desc));
+ bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
+ bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
+ bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
+ bl_desc->sec_code_off = load_hdr->app[0].sec_code_off;
+ bl_desc->sec_code_size = load_hdr->app[0].sec_code_size;
+ bl_desc->code_entry_point = 0;
+ /*
+ * We need to set code_dma_base to the virtual address of the acr_blob,
+ * and add this address to data_dma_base before writing it into DMEM
+ */
+ bl_desc->code_dma_base.lo = 0;
+ bl_desc->data_dma_base.lo = load_hdr->data_dma_base;
+ bl_desc->data_size = load_hdr->data_size;
+}
+
+/**
+ * gm200_secboot_prepare_hs_blob - load and prepare a HS blob and BL descriptor
+ *
+ * @gsb secure boot instance to prepare for
+ * @fw name of the HS firmware to load
+ * @blob pointer to gpuobj that will be allocated to receive the HS FW payload
+ * @bl_desc pointer to the BL descriptor to write for this firmware
+ * @patch whether we should patch the HS descriptor (only for HS loaders)
+ */
+static int
+gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb, const char *fw,
+ struct nvkm_gpuobj **blob,
+ struct gm200_flcn_bl_desc *bl_desc, bool patch)
+{
+ struct nvkm_subdev *subdev = &gsb->base.subdev;
+ void *acr_image;
+ struct fw_bin_header *hsbin_hdr;
+ struct hsf_fw_header *fw_hdr;
+ void *acr_data;
+ struct hsf_load_header *load_hdr;
+ struct hsflcn_acr_desc *desc;
+ int ret;
+
+ acr_image = gm200_secboot_load_firmware(subdev, fw, 0);
+ if (IS_ERR(acr_image))
+ return PTR_ERR(acr_image);
+ hsbin_hdr = acr_image;
+
+ /* Patch signature */
+ gm200_secboot_hsf_patch_signature(gsb, acr_image);
+
+ acr_data = acr_image + hsbin_hdr->data_offset;
+
+ /* Patch descriptor? */
+ if (patch) {
+ fw_hdr = acr_image + hsbin_hdr->header_offset;
+ load_hdr = acr_image + fw_hdr->hdr_offset;
+ desc = acr_data + load_hdr->data_dma_base;
+ gsb->func->fixup_hs_desc(gsb, desc);
+ }
+
+ /* Generate HS BL descriptor */
+ gm200_secboot_populate_hsf_bl_desc(acr_image, bl_desc);
+
+ /* Create ACR blob and copy HS data to it */
+ ret = nvkm_gpuobj_new(subdev->device, ALIGN(hsbin_hdr->data_size, 256),
+ 0x1000, false, NULL, blob);
+ if (ret)
+ goto cleanup;
+
+ nvkm_kmap(*blob);
+ nvkm_gpuobj_memcpy_to(*blob, 0, acr_data, hsbin_hdr->data_size);
+ nvkm_done(*blob);
+
+cleanup:
+ kfree(acr_image);
+
+ return ret;
+}
+
+/*
+ * High-secure bootloader blob creation
+ */
+
+static int
+gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb)
+{
+ struct nvkm_subdev *subdev = &gsb->base.subdev;
+
+ gsb->hsbl_blob = gm200_secboot_load_firmware(subdev, "acr/bl", 0);
+ if (IS_ERR(gsb->hsbl_blob)) {
+ int ret = PTR_ERR(gsb->hsbl_blob);
+
+ gsb->hsbl_blob = NULL;
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * gm20x_secboot_prepare_blobs - load blobs common to all GM20X GPUs.
+ *
+ * This includes the LS blob, HS ucode loading blob, and HS bootloader.
+ *
+ * The HS ucode unload blob is only used on dGPU.
+ */
+int
+gm20x_secboot_prepare_blobs(struct gm200_secboot *gsb)
+{
+ int ret;
+
+ /* Load and prepare the managed falcon's firmwares */
+ ret = gm200_secboot_prepare_ls_blob(gsb);
+ if (ret)
+ return ret;
+
+ /* Load the HS firmware that will load the LS firmwares */
+ ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_load",
+ &gsb->acr_load_blob,
+ &gsb->acr_load_bl_desc, true);
+ if (ret)
+ return ret;
+
+ /* Load the HS firmware bootloader */
+ ret = gm200_secboot_prepare_hsbl_blob(gsb);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int
+gm200_secboot_prepare_blobs(struct nvkm_secboot *sb)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+ int ret;
+
+ ret = gm20x_secboot_prepare_blobs(gsb);
+ if (ret)
+ return ret;
+
+ /* dGPU only: load the HS firmware that unprotects the WPR region */
+ ret = gm200_secboot_prepare_hs_blob(gsb, "acr/ucode_unload",
+ &gsb->acr_unload_blob,
+ &gsb->acr_unload_bl_desc, false);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+
+
+/*
+ * Secure Boot Execution
+ */
+
+/**
+ * gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM
+ */
+static void
+gm200_secboot_load_hs_bl(struct gm200_secboot *gsb, void *data, u32 data_size)
+{
+ struct nvkm_device *device = gsb->base.subdev.device;
+ struct fw_bin_header *hdr = gsb->hsbl_blob;
+ struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
+ void *blob_data = gsb->hsbl_blob + hdr->data_offset;
+ void *hsbl_code = blob_data + hsbl_desc->code_off;
+ void *hsbl_data = blob_data + hsbl_desc->data_off;
+ u32 code_size = ALIGN(hsbl_desc->code_size, 256);
+ const u32 base = gsb->base.base;
+ u32 blk;
+ u32 tag;
+ int i;
+
+ /*
+ * Copy HS bootloader data
+ */
+ nvkm_wr32(device, base + 0x1c0, (0x00000000 | (0x1 << 24)));
+ for (i = 0; i < hsbl_desc->data_size / 4; i++)
+ nvkm_wr32(device, base + 0x1c4, ((u32 *)hsbl_data)[i]);
+
+ /*
+ * Copy HS bootloader interface structure where the HS descriptor
+ * expects it to be
+ */
+ nvkm_wr32(device, base + 0x1c0,
+ (hsbl_desc->dmem_load_off | (0x1 << 24)));
+ for (i = 0; i < data_size / 4; i++)
+ nvkm_wr32(device, base + 0x1c4, ((u32 *)data)[i]);
+
+ /* Copy HS bootloader code to end of IMEM */
+ blk = (nvkm_rd32(device, base + 0x108) & 0x1ff) - (code_size >> 8);
+ tag = hsbl_desc->start_tag;
+ nvkm_wr32(device, base + 0x180, ((blk & 0xff) << 8) | (0x1 << 24));
+ for (i = 0; i < code_size / 4; i++) {
+ /* write new tag every 256B */
+ if ((i & 0x3f) == 0) {
+ nvkm_wr32(device, base + 0x188, tag & 0xffff);
+ tag++;
+ }
+ nvkm_wr32(device, base + 0x184, ((u32 *)hsbl_code)[i]);
+ }
+ nvkm_wr32(device, base + 0x188, 0);
+}
+
+/**
+ * gm200_secboot_setup_falcon() - set up the secure falcon for secure boot
+ */
+static int
+gm200_secboot_setup_falcon(struct gm200_secboot *gsb)
+{
+ struct nvkm_device *device = gsb->base.subdev.device;
+ struct fw_bin_header *hdr = gsb->hsbl_blob;
+ struct fw_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
+ /* virtual start address for boot vector */
+ u32 virt_addr = hsbl_desc->start_tag << 8;
+ const u32 base = gsb->base.base;
+ const u32 reg_base = base + 0xe00;
+ u32 inst_loc;
+ int ret;
+
+ ret = nvkm_secboot_falcon_reset(&gsb->base);
+ if (ret)
+ return ret;
+
+ /* setup apertures - virtual */
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0);
+ /* setup apertures - physical */
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH),
+ 0x4 | 0x1);
+ nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH),
+ 0x4 | 0x2);
+
+ /* Set context */
+ if (device->fb->ram)
+ inst_loc = 0x0; /* FB */
+ else
+ inst_loc = 0x3; /* Non-coherent sysmem */
+
+ nvkm_mask(device, base + 0x048, 0x1, 0x1);
+ nvkm_wr32(device, base + 0x480,
+ ((gsb->inst->addr >> 12) & 0xfffffff) |
+ (inst_loc << 28) | (1 << 30));
+
+ /* Set boot vector to code's starting virtual address */
+ nvkm_wr32(device, base + 0x104, virt_addr);
+
+ return 0;
+}
+
+/**
+ * gm200_secboot_run_hs_blob() - run the given high-secure blob
+ */
+static int
+gm200_secboot_run_hs_blob(struct gm200_secboot *gsb, struct nvkm_gpuobj *blob,
+ struct gm200_flcn_bl_desc *desc)
+{
+ struct nvkm_vma vma;
+ u64 vma_addr;
+ const u32 bl_desc_size = gsb->func->bl_desc_size;
+ u8 bl_desc[bl_desc_size];
+ int ret;
+
+ /* Map the HS firmware so the HS bootloader can see it */
+ ret = nvkm_gpuobj_map(blob, gsb->vm, NV_MEM_ACCESS_RW, &vma);
+ if (ret)
+ return ret;
+
+ /* Add the mapping address to the DMA bases */
+ vma_addr = flcn64_to_u64(desc->code_dma_base) + vma.offset;
+ desc->code_dma_base.lo = lower_32_bits(vma_addr);
+ desc->code_dma_base.hi = upper_32_bits(vma_addr);
+ vma_addr = flcn64_to_u64(desc->data_dma_base) + vma.offset;
+ desc->data_dma_base.lo = lower_32_bits(vma_addr);
+ desc->data_dma_base.hi = upper_32_bits(vma_addr);
+
+ /* Fixup the BL header */
+ gsb->func->fixup_bl_desc(desc, &bl_desc);
+
+ /* Reset the falcon and make it ready to run the HS bootloader */
+ ret = gm200_secboot_setup_falcon(gsb);
+ if (ret)
+ goto done;
+
+ /* Load the HS bootloader into the falcon's IMEM/DMEM */
+ gm200_secboot_load_hs_bl(gsb, &bl_desc, bl_desc_size);
+
+ /* Start the HS bootloader */
+ ret = nvkm_secboot_falcon_run(&gsb->base);
+ if (ret)
+ goto done;
+
+done:
+ /* Restore the original DMA addresses */
+ vma_addr = flcn64_to_u64(desc->code_dma_base) - vma.offset;
+ desc->code_dma_base.lo = lower_32_bits(vma_addr);
+ desc->code_dma_base.hi = upper_32_bits(vma_addr);
+ vma_addr = flcn64_to_u64(desc->data_dma_base) - vma.offset;
+ desc->data_dma_base.lo = lower_32_bits(vma_addr);
+ desc->data_dma_base.hi = upper_32_bits(vma_addr);
+
+ /* We don't need the ACR firmware anymore */
+ nvkm_gpuobj_unmap(&vma);
+
+ return ret;
+}
+
+/*
+ * gm200_secboot_reset() - execute secure boot from the prepared state
+ *
+ * Load the HS bootloader and ask the falcon to run it. This will in turn
+ * load the HS firmware and run it, so once the falcon stops all the managed
+ * falcons should have their LS firmware loaded and be ready to run.
+ */
+int
+gm200_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+ int ret;
+
+ /*
+ * Dummy GM200 implementation: perform secure boot each time we are
+ * called on FECS. Since only FECS and GPCCS are managed and started
+ * together, this ought to be safe.
+ *
+ * Once we have proper PMU firmware and support, this will be changed
+ * to a proper call to the PMU method.
+ */
+ if (falcon != NVKM_SECBOOT_FALCON_FECS)
+ goto end;
+
+ /* If WPR is set and we have an unload blob, run it to unlock WPR */
+ if (gsb->acr_unload_blob &&
+ gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE) {
+ ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob,
+ &gsb->acr_unload_bl_desc);
+ if (ret)
+ return ret;
+ }
+
+ /* Reload all managed falcons */
+ ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_load_blob,
+ &gsb->acr_load_bl_desc);
+ if (ret)
+ return ret;
+
+end:
+ gsb->falcon_state[falcon] = RESET;
+ return 0;
+}
+
+int
+gm200_secboot_start(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+ int base;
+
+ switch (falcon) {
+ case NVKM_SECBOOT_FALCON_FECS:
+ base = 0x409000;
+ break;
+ case NVKM_SECBOOT_FALCON_GPCCS:
+ base = 0x41a000;
+ break;
+ default:
+ nvkm_error(&sb->subdev, "cannot start unhandled falcon!\n");
+ return -EINVAL;
+ }
+
+ nvkm_wr32(sb->subdev.device, base + 0x130, 0x00000002);
+ gsb->falcon_state[falcon] = RUNNING;
+
+ return 0;
+}
+
+
+
+int
+gm200_secboot_init(struct nvkm_secboot *sb)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+ struct nvkm_device *device = sb->subdev.device;
+ struct nvkm_vm *vm;
+ const u64 vm_area_len = 600 * 1024;
+ int ret;
+
+ /* Allocate instance block and VM */
+ ret = nvkm_gpuobj_new(device, 0x1000, 0, true, NULL, &gsb->inst);
+ if (ret)
+ return ret;
+
+ ret = nvkm_gpuobj_new(device, 0x8000, 0, true, NULL, &gsb->pgd);
+ if (ret)
+ return ret;
+
+ ret = nvkm_vm_new(device, 0, vm_area_len, 0, NULL, &vm);
+ if (ret)
+ return ret;
+
+ atomic_inc(&vm->engref[NVKM_SUBDEV_PMU]);
+
+ ret = nvkm_vm_ref(vm, &gsb->vm, gsb->pgd);
+ nvkm_vm_ref(NULL, &vm, NULL);
+ if (ret)
+ return ret;
+
+ nvkm_kmap(gsb->inst);
+ nvkm_wo32(gsb->inst, 0x200, lower_32_bits(gsb->pgd->addr));
+ nvkm_wo32(gsb->inst, 0x204, upper_32_bits(gsb->pgd->addr));
+ nvkm_wo32(gsb->inst, 0x208, lower_32_bits(vm_area_len - 1));
+ nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
+ nvkm_done(gsb->inst);
+
+ return 0;
+}
+
+int
+gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+ int ret = 0;
+
+ /* Run the unload blob to unprotect the WPR region */
+ if (gsb->acr_unload_blob &&
+ gsb->falcon_state[NVKM_SECBOOT_FALCON_FECS] != NON_SECURE)
+ ret = gm200_secboot_run_hs_blob(gsb, gsb->acr_unload_blob,
+ &gsb->acr_unload_bl_desc);
+
+ return ret;
+}
+
+void *
+gm200_secboot_dtor(struct nvkm_secboot *sb)
+{
+ struct gm200_secboot *gsb = gm200_secboot(sb);
+
+ nvkm_gpuobj_del(&gsb->acr_unload_blob);
+
+ kfree(gsb->hsbl_blob);
+ nvkm_gpuobj_del(&gsb->acr_load_blob);
+ nvkm_gpuobj_del(&gsb->ls_blob);
+
+ nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd);
+ nvkm_gpuobj_del(&gsb->pgd);
+ nvkm_gpuobj_del(&gsb->inst);
+
+ return gsb;
+}
+
+
+static const struct nvkm_secboot_func
+gm200_secboot = {
+ .dtor = gm200_secboot_dtor,
+ .init = gm200_secboot_init,
+ .fini = gm200_secboot_fini,
+ .prepare_blobs = gm200_secboot_prepare_blobs,
+ .reset = gm200_secboot_reset,
+ .start = gm200_secboot_start,
+ .managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) |
+ BIT(NVKM_SECBOOT_FALCON_GPCCS),
+ .boot_falcon = NVKM_SECBOOT_FALCON_PMU,
+};
+
+/**
+ * gm200_fixup_bl_desc - just copy the BL descriptor
+ *
+ * Use the GM200 descriptor format by default.
+ */
+static void
+gm200_secboot_fixup_bl_desc(const struct gm200_flcn_bl_desc *desc, void *ret)
+{
+ memcpy(ret, desc, sizeof(*desc));
+}
+
+static void
+gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb,
+ struct hsflcn_acr_desc *desc)
+{
+ desc->ucode_blob_base = gsb->ls_blob->addr;
+ desc->ucode_blob_size = gsb->ls_blob->size;
+
+ desc->wpr_offset = 0;
+
+ /* WPR region information for the HS binary to set up */
+ desc->wpr_region_id = 1;
+ desc->regions.no_regions = 1;
+ desc->regions.region_props[0].region_id = 1;
+ desc->regions.region_props[0].start_addr = gsb->wpr_addr >> 8;
+ desc->regions.region_props[0].end_addr =
+ (gsb->wpr_addr + gsb->wpr_size) >> 8;
+}
+
+static const struct gm200_secboot_func
+gm200_secboot_func = {
+ .bl_desc_size = sizeof(struct gm200_flcn_bl_desc),
+ .fixup_bl_desc = gm200_secboot_fixup_bl_desc,
+ .fixup_hs_desc = gm200_secboot_fixup_hs_desc,
+};
+
+int
+gm200_secboot_new(struct nvkm_device *device, int index,
+ struct nvkm_secboot **psb)
+{
+ int ret;
+ struct gm200_secboot *gsb;
+
+ gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
+ if (!gsb) {
+ psb = NULL;
+ return -ENOMEM;
+ }
+ *psb = &gsb->base;
+
+ ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base);
+ if (ret)
+ return ret;
+
+ gsb->func = &gm200_secboot_func;
+
+ return 0;
+}
+
+MODULE_FIRMWARE("nvidia/gm200/acr/bl.bin");
+MODULE_FIRMWARE("nvidia/gm200/acr/ucode_load.bin");
+MODULE_FIRMWARE("nvidia/gm200/acr/ucode_unload.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/fecs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/fecs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/fecs_data.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/fecs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_data.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/gpccs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/sw_ctx.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/sw_nonctx.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/sw_bundle_init.bin");
+MODULE_FIRMWARE("nvidia/gm200/gr/sw_method_init.bin");
+
+MODULE_FIRMWARE("nvidia/gm204/acr/bl.bin");
+MODULE_FIRMWARE("nvidia/gm204/acr/ucode_load.bin");
+MODULE_FIRMWARE("nvidia/gm204/acr/ucode_unload.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/fecs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/fecs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/fecs_data.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/fecs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_data.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/gpccs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/sw_ctx.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/sw_nonctx.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/sw_bundle_init.bin");
+MODULE_FIRMWARE("nvidia/gm204/gr/sw_method_init.bin");
+
+MODULE_FIRMWARE("nvidia/gm206/acr/bl.bin");
+MODULE_FIRMWARE("nvidia/gm206/acr/ucode_load.bin");
+MODULE_FIRMWARE("nvidia/gm206/acr/ucode_unload.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/fecs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/fecs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/fecs_data.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/fecs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_bl.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_inst.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_data.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/gpccs_sig.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/sw_ctx.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/sw_nonctx.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/sw_bundle_init.bin");
+MODULE_FIRMWARE("nvidia/gm206/gr/sw_method_init.bin");
diff --git a/drm/nouveau/nvkm/subdev/secboot/priv.h b/drm/nouveau/nvkm/subdev/secboot/priv.h
index 44ef4b3d8824..f2b09dee7c5d 100644
--- a/drm/nouveau/nvkm/subdev/secboot/priv.h
+++ b/drm/nouveau/nvkm/subdev/secboot/priv.h
@@ -45,4 +45,182 @@ int nvkm_secboot_ctor(const struct nvkm_secboot_func *, struct nvkm_device *,
int nvkm_secboot_falcon_reset(struct nvkm_secboot *);
int nvkm_secboot_falcon_run(struct nvkm_secboot *);
+struct flcn_u64 {
+ u32 lo;
+ u32 hi;
+};
+static inline u64 flcn64_to_u64(const struct flcn_u64 f)
+{
+ return ((u64)f.hi) << 32 | f.lo;
+}
+
+/**
+ * struct gm200_flcn_bl_desc - DMEM bootloader descriptor
+ * @signature: 16B signature for secure code. 0s if no secure code
+ * @ctx_dma: DMA context to be used by BL while loading code/data
+ * @code_dma_base: 256B-aligned Physical FB Address where code is located
+ * (falcon's $xcbase register)
+ * @non_sec_code_off: offset from code_dma_base where the non-secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @non_sec_code_size: the size of the nonSecure code part.
+ * @sec_code_off: offset from code_dma_base where the secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @sec_code_size: offset from code_dma_base where the secure code is
+ * located. The offset must be multiple of 256 to help perf
+ * @code_entry_point: code entry point which will be invoked by BL after
+ * code is loaded.
+ * @data_dma_base: 256B aligned Physical FB Address where data is located.
+ * (falcon's $xdbase register)
+ * @data_size: size of data block. Should be multiple of 256B
+ *
+ * Structure used by the bootloader to load the rest of the code. This has
+ * to be filled by host and copied into DMEM at offset provided in the
+ * hsflcn_bl_desc.bl_desc_dmem_load_off.
+ */
+struct gm200_flcn_bl_desc {
+ u32 reserved[4];
+ u32 signature[4];
+ u32 ctx_dma;
+ struct flcn_u64 code_dma_base;
+ u32 non_sec_code_off;
+ u32 non_sec_code_size;
+ u32 sec_code_off;
+ u32 sec_code_size;
+ u32 code_entry_point;
+ struct flcn_u64 data_dma_base;
+ u32 data_size;
+};
+
+/**
+ * struct hsflcn_acr_desc - data section of the HS firmware
+ *
+ * This header is to be copied at the beginning of DMEM by the HS bootloader.
+ *
+ * @signature: signature of ACR ucode
+ * @wpr_region_id: region ID holding the WPR header and its details
+ * @wpr_offset: offset from the WPR region holding the wpr header
+ * @regions: region descriptors
+ * @nonwpr_ucode_blob_size: size of LS blob
+ * @nonwpr_ucode_blob_start: FB location of LS blob is
+ */
+struct hsflcn_acr_desc {
+ union {
+ u8 reserved_dmem[0x200];
+ u32 signatures[4];
+ } ucode_reserved_space;
+ u32 wpr_region_id;
+ u32 wpr_offset;
+ u32 mmu_mem_range;
+#define FLCN_ACR_MAX_REGIONS 2
+ struct {
+ u32 no_regions;
+ struct {
+ u32 start_addr;
+ u32 end_addr;
+ u32 region_id;
+ u32 read_mask;
+ u32 write_mask;
+ u32 client_mask;
+ } region_props[FLCN_ACR_MAX_REGIONS];
+ } regions;
+ u32 ucode_blob_size;
+ u64 ucode_blob_base __aligned(8);
+ struct {
+ u32 vpr_enabled;
+ u32 vpr_start;
+ u32 vpr_end;
+ u32 hdcp_policies;
+ } vpr_desc;
+};
+
+/**
+ * Contains the whole secure boot state, allowing it to be performed as needed
+ * @wpr_addr: physical address of the WPR region
+ * @wpr_size: size in bytes of the WPR region
+ * @ls_blob: LS blob of all the LS firmwares, signatures, bootloaders
+ * @ls_blob_size: size of the LS blob
+ * @ls_blob_nb_regions: number of LS firmwares that will be loaded
+ * @acr_blob: HS blob
+ * @acr_blob_vma: mapping of the HS blob into the secure falcon's VM
+ * @acr_bl_desc: bootloader descriptor of the HS blob
+ * @hsbl_blob: HS blob bootloader
+ * @inst: instance block for HS falcon
+ * @pgd: page directory for the HS falcon
+ * @vm: address space used by the HS falcon
+ * @bl_desc_size: size of the BL descriptor used by this chip.
+ * @fixup_bl_desc: hook that generates the proper BL descriptor format from
+ * the generic GM200 format into a data array of size
+ * bl_desc_size
+ */
+struct gm200_secboot {
+ struct nvkm_secboot base;
+ const struct gm200_secboot_func *func;
+
+ /*
+ * Address and size of the WPR region. On dGPU this will be the
+ * address of the LS blob. On Tegra this is a fixed region set by the
+ * bootloader
+ */
+ u64 wpr_addr;
+ u32 wpr_size;
+
+ /*
+ * HS FW - lock WPR region (dGPU only) and load LS FWs
+ * on Tegra the HS FW copies the LS blob into the fixed WPR instead
+ */
+ struct nvkm_gpuobj *acr_load_blob;
+ struct gm200_flcn_bl_desc acr_load_bl_desc;
+
+ /* HS FW - unlock WPR region (dGPU only) */
+ struct nvkm_gpuobj *acr_unload_blob;
+ struct gm200_flcn_bl_desc acr_unload_bl_desc;
+
+ /* HS bootloader */
+ void *hsbl_blob;
+
+ /* LS FWs, to be loaded by the HS ACR */
+ struct nvkm_gpuobj *ls_blob;
+
+ /* Instance block & address space used for HS FW execution */
+ struct nvkm_gpuobj *inst;
+ struct nvkm_gpuobj *pgd;
+ struct nvkm_vm *vm;
+
+ /* To keep track of the state of all managed falcons */
+ enum {
+ /* In non-secure state, no firmware loaded, no privileges*/
+ NON_SECURE = 0,
+ /* In low-secure mode and ready to be started */
+ RESET,
+ /* In low-secure mode and running */
+ RUNNING,
+ } falcon_state[NVKM_SECBOOT_FALCON_END];
+
+};
+#define gm200_secboot(sb) container_of(sb, struct gm200_secboot, base)
+
+struct gm200_secboot_func {
+ /*
+ * Size of the bootloader descriptor for this chip. A block of this
+ * size is allocated before booting a falcon and the fixup_bl_desc
+ * callback is called on it
+ */
+ u32 bl_desc_size;
+ void (*fixup_bl_desc)(const struct gm200_flcn_bl_desc *, void *);
+
+ /*
+ * Chip-specific modifications of the HS descriptor can be done here.
+ * On dGPU this is used to fill the information about the WPR region
+ * we want the HS FW to set up.
+ */
+ void (*fixup_hs_desc)(struct gm200_secboot *, struct hsflcn_acr_desc *);
+};
+
+int gm200_secboot_init(struct nvkm_secboot *);
+void *gm200_secboot_dtor(struct nvkm_secboot *);
+int gm200_secboot_reset(struct nvkm_secboot *, u32);
+int gm200_secboot_start(struct nvkm_secboot *, u32);
+
+int gm20x_secboot_prepare_blobs(struct gm200_secboot *);
+
#endif
--
2.7.1
More information about the Nouveau
mailing list