[Nouveau] [PATCH v2 4/5] secboot/gm200: add secure-boot support

Alexandre Courbot acourbot at nvidia.com
Sun Jan 17 22:10:46 PST 2016


This patch adds secure-boot for the dGPU set of GM20X chips, using the
PMU as the high-secure falcon.

This work is based on Deepak Goyal's initial port of Secure Boot to
Nouveau.

Signed-off-by: Alexandre Courbot <acourbot at nvidia.com>
---
 drm/nouveau/include/nvkm/subdev/secboot.h |    2 +
 drm/nouveau/nvkm/engine/device/base.c     |    2 +
 drm/nouveau/nvkm/engine/gr/gm204.c        |    8 +-
 drm/nouveau/nvkm/subdev/secboot/Kbuild    |    1 +
 drm/nouveau/nvkm/subdev/secboot/gm200.c   | 1308 +++++++++++++++++++++++++++++
 drm/nouveau/nvkm/subdev/secboot/priv.h    |  141 ++++
 6 files changed, 1455 insertions(+), 7 deletions(-)
 create mode 100644 drm/nouveau/nvkm/subdev/secboot/gm200.c

diff --git a/drm/nouveau/include/nvkm/subdev/secboot.h b/drm/nouveau/include/nvkm/subdev/secboot.h
index 0691db24be47..da3895f955ce 100644
--- a/drm/nouveau/include/nvkm/subdev/secboot.h
+++ b/drm/nouveau/include/nvkm/subdev/secboot.h
@@ -53,4 +53,6 @@ struct nvkm_secboot {
 bool nvkm_secboot_is_managed(struct nvkm_device *, enum nvkm_secboot_falcon);
 int nvkm_secboot_reset(struct nvkm_secboot *, u32 falcons_mask);
 
+int gm200_secboot_new(struct nvkm_device *, int, struct nvkm_secboot **);
+
 #endif
diff --git a/drm/nouveau/nvkm/engine/device/base.c b/drm/nouveau/nvkm/engine/device/base.c
index 95fc9a69d322..770d3ec130a3 100644
--- a/drm/nouveau/nvkm/engine/device/base.c
+++ b/drm/nouveau/nvkm/engine/device/base.c
@@ -1991,6 +1991,7 @@ nv124_chipset = {
 	.fifo = gm204_fifo_new,
 	.gr = gm204_gr_new,
 	.sw = gf100_sw_new,
+	.secboot = gm200_secboot_new,
 };
 
 static const struct nvkm_device_chip
@@ -2022,6 +2023,7 @@ nv126_chipset = {
 	.fifo = gm204_fifo_new,
 	.gr = gm206_gr_new,
 	.sw = gf100_sw_new,
+	.secboot = gm200_secboot_new,
 };
 
 static const struct nvkm_device_chip
diff --git a/drm/nouveau/nvkm/engine/gr/gm204.c b/drm/nouveau/nvkm/engine/gr/gm204.c
index 90381dde451a..69a3218bf49c 100644
--- a/drm/nouveau/nvkm/engine/gr/gm204.c
+++ b/drm/nouveau/nvkm/engine/gr/gm204.c
@@ -229,12 +229,6 @@ gm204_gr_data[] = {
  * PGRAPH engine/subdev functions
  ******************************************************************************/
 
-static int
-gm204_gr_init_ctxctl(struct gf100_gr *gr)
-{
-	return 0;
-}
-
 int
 gm204_gr_init(struct gf100_gr *gr)
 {
@@ -348,7 +342,7 @@ gm204_gr_init(struct gf100_gr *gr)
 
 	gf100_gr_zbc_init(gr);
 
-	return gm204_gr_init_ctxctl(gr);
+	return gf100_gr_init_ctxctl(gr);
 }
 
 static const struct gf100_gr_func
diff --git a/drm/nouveau/nvkm/subdev/secboot/Kbuild b/drm/nouveau/nvkm/subdev/secboot/Kbuild
index e757096b2ff0..c1abf59410d1 100644
--- a/drm/nouveau/nvkm/subdev/secboot/Kbuild
+++ b/drm/nouveau/nvkm/subdev/secboot/Kbuild
@@ -1 +1,2 @@
 nvkm-y += nvkm/subdev/secboot/base.o
+nvkm-y += nvkm/subdev/secboot/gm200.o
diff --git a/drm/nouveau/nvkm/subdev/secboot/gm200.c b/drm/nouveau/nvkm/subdev/secboot/gm200.c
new file mode 100644
index 000000000000..26ebf4d06ed1
--- /dev/null
+++ b/drm/nouveau/nvkm/subdev/secboot/gm200.c
@@ -0,0 +1,1308 @@
+/*
+ * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+/*
+ * Secure boot is the process by which NVIDIA-signed firmware is loaded into
+ * some of the falcons of a GPU. For production devices this is the only way
+ * for the firmware to access useful (but sensitive) registers.
+ *
+ * A Falcon microprocessor supporting advanced security modes can run in one of
+ * three modes:
+ *
+ * - Non-secure (NS). In this mode, functionality is similar to Falcon
+ *   architectures before security modes were introduced (pre-Maxwell), but
+ *   capability is restricted. In particular, certain registers may be
+ *   inaccessible for reads and/or writes, and physical memory access may be
+ *   disabled (on certain Falcon instances). This is the only possible mode that
+ *   can be used if you don't have microcode cryptographically signed by NVIDIA.
+ *
+ * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
+ *   not possible to read or write any Falcon internal state or Falcon registers
+ *   from outside the Falcon (for example, from the host system). The only way
+ *   to enable this mode is by loading microcode that has been signed by NVIDIA.
+ *   (The loading process involves tagging the IMEM block as secure, writing the
+ *   signature into a Falcon register, and starting execution. The hardware will
+ *   validate the signature, and if valid, grant HS privileges.)
+ *
+ * - Light Secure (LS). In this mode, the microprocessor has more privileges
+ *   than NS but fewer than HS. Some of the microprocessor state is visible to
+ *   host software to ease debugging. The only way to enable this mode is by HS
+ *   microcode enabling LS mode. Some privileges available to HS mode are not
+ *   available here. LS mode is introduced in GM20x.
+ *
+ * Secure boot consists in temporarily switchin a HS-capable falcon (typically
+ * PMU) into HS mode in order to validate the LS firmware of managed falcons,
+ * load it, and switch managed falcons into LS mode. Once secure boot completes,
+ * no falcon remains in HS mode.
+ *
+ * Secure boot requires a write-protected memory region (WPR) which can only be
+ * written by the secure falcon. On dGPU, the driver sets up the WPR region in
+ * video memory. On Tegra, it is set up by the bootloader and its location and
+ * size written into memory controller registers.
+ *
+ * The secure boot process takes place as follows:
+ *
+ * 1) A LS blob is constructed that contains all the LS firmwares we want to
+ *    load, along with their signatures and bootloaders.
+ *
+ * 2) A HS blob (also called ACR) is created that contains the signed HS
+ *    firmware in charge of loading the LS firmwares into their respective
+ *    falcons.
+ *
+ * 3) The HS blob is loaded (via its own bootloader) and executed on the
+ *    HS-capable falcon. It authenticates itself, switches the secure falcon to
+ *    HS mode and setup the WPR region around the LS blob (dGPU) or copies the
+ *    LS blob into the WPR region (Tegra).
+ *
+ * 4) The LS blob is now secure from all external tampering. The HS falcon
+ *    checks the signatures of the LS firmwares and, if valid, switches the
+ *    managed falcons to LS mode and makes them ready to run the LS firmware.
+ *
+ * 5) The managed falcons remain in LS mode and can be started.
+ *
+ */
+
+#include "priv.h"
+
+#include <core/gpuobj.h>
+#include <core/firmware.h>
+#include <subdev/fb.h>
+
+enum {
+	FALCON_DMAIDX_UCODE		= 0,
+	FALCON_DMAIDX_VIRT		= 1,
+	FALCON_DMAIDX_PHYS_VID		= 2,
+	FALCON_DMAIDX_PHYS_SYS_COH	= 3,
+	FALCON_DMAIDX_PHYS_SYS_NCOH	= 4,
+};
+
+/*
+ *
+ * LS blob structures
+ *
+ */
+
+/**
+ * struct lsf_ucode_desc - LS falcon signatures
+ * @prd_keys:		signature to use when the GPU is in production mode
+ * @dgb_keys:		signature to use when the GPU is in debug mode
+ * @b_prd_present:	whether the production key is present
+ * @b_dgb_present:	whether the debug key is present
+ * @falcon_id:		ID of the falcon the ucode applies to
+ *
+ * Directly loaded from a signature file.
+ */
+struct lsf_ucode_desc {
+	u8  prd_keys[2][16];
+	u8  dbg_keys[2][16];
+	u32 b_prd_present;
+	u32 b_dbg_present;
+	u32 falcon_id;
+};
+
+/**
+ * struct lsf_lsb_header - LS firmware header
+ * @signature:		signature to verify the firmware against
+ * @ucode_off:		offset of the ucode blob in the WPR region. The ucode
+ *                      blob contains the bootloader, code and data of the
+ *                      LS falcon
+ * @ucode_size:		size of the ucode blob, including bootloader
+ * @data_size:		size of the ucode blob data
+ * @bl_code_size:	size of the bootloader code
+ * @bl_imem_off:	offset in imem of the bootloader
+ * @bl_data_off:	offset of the bootloader data in WPR region
+ * @bl_data_size:	size of the bootloader data
+ * @app_code_off:	offset of the app code relative to ucode_off
+ * @app_code_size:	size of the app code
+ * @app_data_off:	offset of the app data relative to ucode_off
+ * @app_data_size:	size of the app data
+ * @flags:		flags for the secure bootloader
+ *
+ * This structure is written into the WPR region for each managed falcon. Each
+ * instance is referenced by the lsb_offset member of the corresponding
+ * lsf_wpr_header.
+ */
+struct lsf_lsb_header {
+	struct lsf_ucode_desc signature;
+	u32 ucode_off;
+	u32 ucode_size;
+	u32 data_size;
+	u32 bl_code_size;
+	u32 bl_imem_off;
+	u32 bl_data_off;
+	u32 bl_data_size;
+	u32 app_code_off;
+	u32 app_code_size;
+	u32 app_data_off;
+	u32 app_data_size;
+	u32 flags;
+#define LSF_FLAG_LOAD_CODE_AT_0		1
+#define LSF_FLAG_DMACTL_REQ_CTX		4
+#define LSF_FLAG_FORCE_PRIV_LOAD	8
+};
+
+/**
+ * struct lsf_wpr_header - LS blob WPR Header
+ * @falcon_id:		LS falcon ID
+ * @lsb_offset:		offset of the lsb_lsf_header in the WPR region
+ * @bootstrap_owner:	secure falcon reponsible for bootstrapping the LS falcon
+ * @lazy_bootstrap:	skip bootstrapping by ACR
+ * @status:		bootstrapping status
+ *
+ * An array of these is written at the beginning of the WPR region, one for
+ * each managed falcon. The array is terminated by an instance which falcon_id
+ * is LSF_FALCON_ID_INVALID.
+ */
+struct lsf_wpr_header {
+	u32  falcon_id;
+	u32  lsb_offset;
+	u32  bootstrap_owner;
+	u32  lazy_bootstrap;
+	u32  status;
+#define LSF_IMAGE_STATUS_NONE				0
+#define LSF_IMAGE_STATUS_COPY				1
+#define LSF_IMAGE_STATUS_VALIDATION_CODE_FAILED		2
+#define LSF_IMAGE_STATUS_VALIDATION_DATA_FAILED		3
+#define LSF_IMAGE_STATUS_VALIDATION_DONE		4
+#define LSF_IMAGE_STATUS_VALIDATION_SKIPPED		5
+#define LSF_IMAGE_STATUS_BOOTSTRAP_READY		6
+};
+
+
+/**
+ * struct ls_ucode_desc - descriptor of firmware image
+ * @descriptor_size:		size of this descriptor
+ * @image_size:			size of the whole image
+ * @bootloader_start_offset:	start offset of the bootloader in ucode image
+ * @bootloader_size:		size of the bootloader
+ * @bootloader_imem_offset:	start off set of the bootloader in IMEM
+ * @bootloader_entry_point:	entry point of the bootloader in IMEM
+ * @app_start_offset:		start offset of the LS firmware
+ * @app_size:			size of the LS firmware's code and data
+ * @app_imem_offset:		offset of the app in IMEM
+ * @app_imem_entry:		entry point of the app in IMEM
+ * @app_dmem_offset:		offset of the data in DMEM
+ * @app_resident_code_offset:	offset of app code from app_start_offset
+ * @app_resident_code_size:	size of the code
+ * @app_resident_data_offset:	offset of data from app_start_offset
+ * @app_resident_data_size:	size of data
+ *
+ * A firmware image contains the code, data, and bootloader of a given LS
+ * falcon in a single blob. This structure describes where everything is.
+ *
+ * This can be generated from a (bootloader, code, data) set if they have
+ * been loaded separately, or come directly from a file. For the later case,
+ * we need to keep the fields that are unused by the code.
+ */
+struct ls_ucode_desc {
+	u32 descriptor_size;
+	u32 image_size;
+	u32 tools_version;
+	u32 app_version;
+	char date[64];
+	u32 bootloader_start_offset;
+	u32 bootloader_size;
+	u32 bootloader_imem_offset;
+	u32 bootloader_entry_point;
+	u32 app_start_offset;
+	u32 app_size;
+	u32 app_imem_offset;
+	u32 app_imem_entry;
+	u32 app_dmem_offset;
+	u32 app_resident_code_offset;
+	u32 app_resident_code_size;
+	u32 app_resident_data_offset;
+	u32 app_resident_data_size;
+	u32 nb_overlays;
+	struct {u32 start; u32 size; } load_ovl[32];
+	u32 compressed;
+};
+
+/**
+ * struct ls_ucode_img - temporary storage for loaded LS firmwares
+ * @node:		to link within lsf_ucode_mgr
+ * @falcon_id:		ID of the falcon this LS firmware is for
+ * @ucode_desc:		loaded or generated map of ucode_data
+ * @ucode_header:	header of the firmware
+ * @ucode_data:		firmware payload (code and data)
+ * @ucode_size:		size in bytes of data in ucode_data
+ * @wpr_header:		WPR header to be written to the LS blob
+ * @lsb_header:		LSB header to be written to the LS blob
+ *
+ * Preparing the WPR LS blob requires information about all the LS firmwares
+ * (size, etc) to be known. This structure contains all the data of one LS
+ * firmware.
+ */
+struct ls_ucode_img {
+	struct list_head node;
+	enum nvkm_secboot_falcon falcon_id;
+
+	struct ls_ucode_desc ucode_desc;
+	u32 *ucode_header;
+	u8 *ucode_data;
+	u32 ucode_size;
+
+	struct lsf_wpr_header wpr_header;
+	struct lsf_lsb_header lsb_header;
+};
+
+/**
+ * struct lsf_ucode_mgr - manager for all LS falcon firmwares
+ * @count:	number of managed LS falcons
+ * @wpr_size:	size of the required WPR region in bytes
+ * @img_list:	linked list of lsf_ucode_img
+ */
+struct ls_ucode_mgr {
+	u16 count;
+	u32 wpr_size;
+	struct list_head img_list;
+};
+
+/*
+ *
+ * HS blob structures
+ *
+ */
+
+/**
+ * struct hs_bin_hdr - header of HS firmware and bootloader files
+ * @bin_magic:		always 0x10de
+ * @bin_ver:		version of the bin format
+ * @bin_size:		entire image size including this header
+ * @header_offset:	offset of the firmware/bootloader header in the file
+ * @data_offset:	offset of the firmware/bootloader payload in the file
+ * @data_size:		size of the payload
+ *
+ * This header is located at the beginning of the HS firmware and HS bootloader
+ * files, to describe where the headers and data can be found.
+ */
+struct hsf_bin_hdr {
+	u32 bin_magic;
+	u32 bin_ver;
+	u32 bin_size;
+	u32 header_offset;
+	u32 data_offset;
+	u32 data_size;
+};
+
+/**
+ * struct hsf_bl_desc - HS firmware bootloader descriptor
+ * @bl_start_tag:		starting tag of bootloader
+ * @bl_desc_dmem_load_off:	DMEM offset of flcn_bl_dmem_desc
+ * @bl_code_off:		offset of code section
+ * @bl_code_size:		size of code section
+ * @bl_data_off:		offset of data section
+ * @bl_data_size:		size of data section
+ *
+ * This structure is embedded in the HS bootloader firmware file at
+ * hs_bin_hdr.header_offset to describe the IMEM and DMEM layout expected by the
+ * HS bootloader.
+ */
+struct hsf_bl_desc {
+	u32 bl_start_tag;
+	u32 bl_desc_dmem_load_off;
+	u32 bl_code_off;
+	u32 bl_code_size;
+	u32 bl_data_off;
+	u32 bl_data_size;
+};
+
+/**
+ * struct hsf_fw_header - HS firmware descriptor
+ * @sig_dbg_offset:	offset of the debug signature
+ * @sig_dbg_size:	size of the debug signature
+ * @sig_prod_offset:	offset of the production signature
+ * @sig_prod_size:	size of the production signature
+ * @patch_loc:		offset of the offset (sic) of where the signature is
+ * @patch_sig:		offset of the offset (sic) to add to sig_*_offset
+ * @hdr_offset:		offset of the load header (see struct hs_load_header)
+ * @hdr_size:		size of above header
+ *
+ * This structure is embedded in the HS firmware image at
+ * hs_bin_hdr.header_offset.
+ */
+struct hsf_fw_header {
+	u32 sig_dbg_offset;
+	u32 sig_dbg_size;
+	u32 sig_prod_offset;
+	u32 sig_prod_size;
+	u32 patch_loc;
+	u32 patch_sig;
+	u32 hdr_offset;
+	u32 hdr_size;
+};
+
+/**
+ * struct hsf_load_header - HS firmware loading header
+ *
+ * Data to be copied as-is into the struct flcn_bl_dmem_desc for the HS firmware
+ */
+struct hsf_load_header {
+	u32 non_sec_code_off;
+	u32 non_sec_code_size;
+	u32 data_dma_base;
+	u32 data_size;
+	u32 reserved;
+	u32 sec_code_off;
+	u32 sec_code_size;
+};
+
+/**
+ * Convenience function to duplicate a firmware file in memory and check that
+ * it has the required minimum size.
+ */
+static void *
+gm200_secboot_load_firmware(struct nvkm_device *device, const char *name,
+		    size_t min_size)
+{
+	const struct firmware *fw;
+	void *blob;
+	int ret;
+
+	ret = nvkm_firmware_get(device, name, &fw);
+	if (ret)
+		return ERR_PTR(ret);
+	if (fw->size < min_size) {
+		nvkm_firmware_put(fw);
+		return ERR_PTR(-EINVAL);
+	}
+	blob = kmemdup(fw->data, fw->size, GFP_KERNEL);
+	nvkm_firmware_put(fw);
+	if (!blob)
+		return ERR_PTR(-ENOMEM);
+
+	return blob;
+}
+
+
+/*
+ * Low-secure blob creation
+ */
+
+#define BL_DESC_BLK_SIZE 256
+/**
+ * Build a ucode image and descriptor from provided bootloader, code and data.
+ *
+ * @bl:		bootloader image, including 16-bytes descriptor
+ * @code:	LS firmware code segment
+ * @data:	LS firmware data segment
+ * @desc:	ucode descriptor to be written
+ *
+ * Return: allocated ucode image with corresponding descriptor information. desc
+ *         is also updated to contain the right offsets within returned image.
+ */
+static void *
+ls_ucode_img_build(const struct firmware *bl, const struct firmware *code,
+		   const struct firmware *data, struct ls_ucode_desc *desc)
+{
+	struct {
+		u32 start_offset;
+		u32 size;
+		u32 imem_offset;
+		u32 entry_point;
+	} *bl_desc;
+	u32 *bl_image;
+	u32 pos = 0;
+	u8 *image;
+
+	bl_desc = (void *)bl->data;
+	bl_image = (void *)(bl_desc + 1);
+
+	desc->bootloader_start_offset = pos;
+	desc->bootloader_size = ALIGN(bl_desc->size, sizeof(u32));
+	desc->bootloader_imem_offset = bl_desc->imem_offset;
+	desc->bootloader_entry_point = bl_desc->entry_point;
+
+	pos = ALIGN(pos + desc->bootloader_size, BL_DESC_BLK_SIZE);
+	desc->app_start_offset = pos;
+	desc->app_size = ALIGN(code->size, BL_DESC_BLK_SIZE) +
+			 ALIGN(data->size, BL_DESC_BLK_SIZE);
+	desc->app_imem_offset = 0;
+	desc->app_imem_entry = 0;
+	desc->app_dmem_offset = 0;
+	desc->app_resident_code_offset = 0;
+	desc->app_resident_code_size = ALIGN(code->size, BL_DESC_BLK_SIZE);
+
+	pos = ALIGN(pos + desc->app_resident_code_size, BL_DESC_BLK_SIZE);
+	desc->app_resident_data_offset = pos - desc->app_start_offset;
+	desc->app_resident_data_size = ALIGN(data->size, BL_DESC_BLK_SIZE);
+
+	desc->image_size = ALIGN(bl_desc->size, BL_DESC_BLK_SIZE) +
+			   desc->app_size;
+
+	image = kzalloc(desc->image_size, GFP_KERNEL);
+	if (!image)
+		return ERR_PTR(-ENOMEM);
+
+	memcpy(image + desc->bootloader_start_offset, bl_image, bl_desc->size);
+	memcpy(image + desc->app_start_offset, code->data, code->size);
+	memcpy(image + desc->app_start_offset + desc->app_resident_data_offset,
+	       data->data, data->size);
+
+	return image;
+}
+
+/**
+ * ls_ucode_img_load_generic() - load and prepare a LS ucode image
+ *
+ * Load the LS microcode, bootloader and signature and pack them into a single
+ * blob. Also generate the corresponding ucode descriptor.
+ */
+static int
+ls_ucode_img_load_generic(struct nvkm_device *device,
+			  struct ls_ucode_img *img, const char *falcon_name,
+			  const u32 falcon_id)
+{
+	const struct firmware *bl, *code, *data;
+	struct lsf_ucode_desc *lsf_desc;
+	char f[64];
+	int ret;
+
+	img->ucode_header = NULL;
+
+	snprintf(f, sizeof(f), "%s_bl", falcon_name);
+	ret = nvkm_firmware_get(device, f, &bl);
+	if (ret)
+		goto error;
+
+	snprintf(f, sizeof(f), "%s_inst", falcon_name);
+	ret = nvkm_firmware_get(device, f, &code);
+	if (ret)
+		goto free_bl;
+
+	snprintf(f, sizeof(f), "%s_data", falcon_name);
+	ret = nvkm_firmware_get(device, f, &data);
+	if (ret)
+		goto free_inst;
+
+	img->ucode_data = ls_ucode_img_build(bl, code, data,
+					     &img->ucode_desc);
+	if (IS_ERR(img->ucode_data)) {
+		ret = PTR_ERR(img->ucode_data);
+		goto free_data;
+	}
+	img->ucode_size = img->ucode_desc.image_size;
+
+	snprintf(f, sizeof(f), "%s_sig", falcon_name);
+	lsf_desc = gm200_secboot_load_firmware(device, f, sizeof(*lsf_desc));
+	if (IS_ERR(lsf_desc)) {
+		ret = PTR_ERR(lsf_desc);
+		goto free_image;
+	}
+	/* not needed? the signature should already have the right value */
+	lsf_desc->falcon_id = falcon_id;
+	memcpy(&img->lsb_header.signature, lsf_desc, sizeof(*lsf_desc));
+	img->falcon_id = lsf_desc->falcon_id;
+	kfree(lsf_desc);
+
+	/* success path - only free requested firmware files */
+	goto free_data;
+
+free_image:
+	kfree(img->ucode_data);
+free_data:
+	nvkm_firmware_put(data);
+free_inst:
+	nvkm_firmware_put(code);
+free_bl:
+	nvkm_firmware_put(bl);
+error:
+	return ret;
+}
+
+static int
+ls_ucode_img_load_fecs(struct nvkm_device *device, struct ls_ucode_img *img)
+{
+	return ls_ucode_img_load_generic(device, img, "fecs",
+					 NVKM_SECBOOT_FALCON_FECS);
+}
+
+static int
+ls_ucode_img_load_gpccs(struct nvkm_device *device, struct ls_ucode_img *img)
+{
+	return ls_ucode_img_load_generic(device, img, "gpccs",
+					 NVKM_SECBOOT_FALCON_GPCCS);
+}
+
+/**
+ * ls_ucode_img_populate_bl_desc() - populate a DMEM BL descriptor for LS image
+ * @img:	ucode image to generate against
+ * @desc:	descriptor to populate
+ * @sb:		secure boot state to use for base addresses
+ *
+ * Populate the DMEM BL descriptor with the information contained in a
+ * ls_ucode_desc.
+ *
+ */
+static void
+ls_ucode_img_populate_bl_desc(struct ls_ucode_img *img, u64 wpr_addr,
+			      struct gm200_flcn_bl_desc *desc)
+{
+	struct ls_ucode_desc *pdesc = &img->ucode_desc;
+	u64 addr_base;
+
+	addr_base = wpr_addr + img->lsb_header.ucode_off +
+		    pdesc->app_start_offset;
+
+	memset(desc, 0, sizeof(*desc));
+	desc->ctx_dma = FALCON_DMAIDX_UCODE;
+	desc->code_dma_base.lo = lower_32_bits(
+		(addr_base + pdesc->app_resident_code_offset));
+	desc->code_dma_base.hi = upper_32_bits(
+		(addr_base + pdesc->app_resident_code_offset));
+	desc->non_sec_code_size = pdesc->app_resident_code_size;
+	desc->data_dma_base.lo = lower_32_bits(
+		(addr_base + pdesc->app_resident_data_offset));
+	desc->data_dma_base.hi = upper_32_bits(
+		(addr_base + pdesc->app_resident_data_offset));
+	desc->data_size = pdesc->app_resident_data_size;
+	desc->code_entry_point = pdesc->app_imem_entry;
+}
+
+typedef int (*lsf_load_func)(struct nvkm_device *, struct ls_ucode_img *);
+
+/**
+ * ls_ucode_img_load() - create a lsf_ucode_img and load it
+ */
+static struct ls_ucode_img *
+ls_ucode_img_load(struct nvkm_device *device, lsf_load_func load_func)
+{
+	struct ls_ucode_img *img;
+	int ret;
+
+	img = kzalloc(sizeof(*img), GFP_KERNEL);
+	if (!img)
+		return ERR_PTR(-ENOMEM);
+
+	ret = load_func(device, img);
+	if (ret) {
+		kfree(img);
+		return ERR_PTR(ret);
+	}
+
+	return img;
+}
+
+static const lsf_load_func lsf_load_funcs[] = {
+	[NVKM_SECBOOT_FALCON_END] = NULL, /* reserve enough space */
+	[NVKM_SECBOOT_FALCON_FECS] = ls_ucode_img_load_fecs,
+	[NVKM_SECBOOT_FALCON_GPCCS] = ls_ucode_img_load_gpccs,
+};
+
+#define LSF_LSB_HEADER_ALIGN 256
+#define LSF_BL_DATA_ALIGN 256
+#define LSF_BL_DATA_SIZE_ALIGN 256
+#define LSF_BL_CODE_SIZE_ALIGN 256
+#define LSF_UCODE_DATA_ALIGN 4096
+
+/**
+ * ls_ucode_img_fill_headers - fill the WPR and LSB headers of an image
+ * @gsb:	secure boot device used
+ * @img:	image to generate for
+ * @offset:	offset in the WPR region where this image starts
+ *
+ * Allocate space in the WPR area from offset and write the WPR and LSB headers
+ * accordingly.
+ *
+ * Return: offset at the end of this image.
+ */
+static u32
+ls_ucode_img_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_img *img,
+			  u32 offset)
+{
+	struct lsf_wpr_header *whdr = &img->wpr_header;
+	struct lsf_lsb_header *lhdr = &img->lsb_header;
+	struct ls_ucode_desc *desc = &img->ucode_desc;
+
+	if (img->ucode_header) {
+		nvdev_fatal(gsb->base.subdev.device,
+			    "images withough loader are not supported yet!\n");
+		return offset;
+	}
+
+	/* Fill WPR header */
+	whdr->falcon_id = img->falcon_id;
+	whdr->bootstrap_owner = gsb->base.func->boot_falcon;
+	whdr->status = LSF_IMAGE_STATUS_COPY;
+
+	/* Align, save off, and include an LSB header size */
+	offset = ALIGN(offset, LSF_LSB_HEADER_ALIGN);
+	whdr->lsb_offset = offset;
+	offset += sizeof(struct lsf_lsb_header);
+
+	/*
+	 * Align, save off, and include the original (static) ucode
+	 * image size
+	 */
+	offset = ALIGN(offset, LSF_UCODE_DATA_ALIGN);
+	lhdr->ucode_off = offset;
+	offset += img->ucode_size;
+
+	/*
+	 * For falcons that use a boot loader (BL), we append a loader
+	 * desc structure on the end of the ucode image and consider
+	 * this the boot loader data. The host will then copy the loader
+	 * desc args to this space within the WPR region (before locking
+	 * down) and the HS bin will then copy them to DMEM 0 for the
+	 * loader.
+	 */
+	lhdr->bl_code_size = ALIGN(desc->bootloader_size,
+				   LSF_BL_CODE_SIZE_ALIGN);
+	lhdr->ucode_size = ALIGN(desc->app_resident_data_offset,
+				 LSF_BL_CODE_SIZE_ALIGN) + lhdr->bl_code_size;
+	lhdr->data_size = ALIGN(desc->app_size, LSF_BL_CODE_SIZE_ALIGN) +
+				lhdr->bl_code_size - lhdr->ucode_size;
+	/*
+	 * Though the BL is located at 0th offset of the image, the VA
+	 * is different to make sure that it doesn't collide the actual
+	 * OS VA range
+	 */
+	lhdr->bl_imem_off = desc->bootloader_imem_offset;
+	lhdr->app_code_off = desc->app_start_offset +
+			     desc->app_resident_code_offset;
+	lhdr->app_code_size = desc->app_resident_code_size;
+	lhdr->app_data_off = desc->app_start_offset +
+			     desc->app_resident_data_offset;
+	lhdr->app_data_size = desc->app_resident_data_size;
+
+	lhdr->flags = 0;
+	if (img->falcon_id == gsb->base.func->boot_falcon)
+		lhdr->flags = LSF_FLAG_DMACTL_REQ_CTX;
+
+	/* GPCCS will be loaded using PRI */
+	if (img->falcon_id == NVKM_SECBOOT_FALCON_GPCCS)
+		lhdr->flags |= LSF_FLAG_FORCE_PRIV_LOAD;
+
+	/* Align (size bloat) and save off BL descriptor size */
+	lhdr->bl_data_size = ALIGN(sizeof(struct gm200_flcn_bl_desc),
+				   LSF_BL_DATA_SIZE_ALIGN);
+	/*
+	 * Align, save off, and include the additional BL data
+	 */
+	offset = ALIGN(offset, LSF_BL_DATA_ALIGN);
+	lhdr->bl_data_off = offset;
+	offset += lhdr->bl_data_size;
+
+	return offset;
+}
+
+static void
+ls_ucode_mgr_init(struct ls_ucode_mgr *mgr)
+{
+	memset(mgr, 0, sizeof(*mgr));
+	INIT_LIST_HEAD(&mgr->img_list);
+}
+
+static void
+ls_ucode_mgr_cleanup(struct ls_ucode_mgr *mgr)
+{
+	struct ls_ucode_img *img, *t;
+
+	list_for_each_entry_safe(img, t, &mgr->img_list, node) {
+		kfree(img->ucode_data);
+		kfree(img->ucode_header);
+		kfree(img);
+	}
+}
+
+static void
+ls_ucode_mgr_add_img(struct ls_ucode_mgr *mgr, struct ls_ucode_img *img)
+{
+	mgr->count++;
+	list_add_tail(&img->node, &mgr->img_list);
+}
+
+/**
+ * ls_ucode_mgr_fill_headers - fill WPR and LSB headers of all managed images
+ */
+static void
+ls_ucode_mgr_fill_headers(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr)
+{
+	struct ls_ucode_img *img;
+	u32 offset;
+
+	/*
+	 * Start with an array of WPR headers at the base of the WPR.
+	 * The expectation here is that the secure falcon will do a single DMA
+	 * read of this array and cache it internally so it's ok to pack these.
+	 * Also, we add 1 to the falcon count to indicate the end of the array.
+	 */
+	offset = sizeof(struct lsf_wpr_header) * (mgr->count + 1);
+
+	/*
+	 * Walk the managed falcons, accounting for the LSB structs
+	 * as well as the ucode images.
+	 */
+	list_for_each_entry(img, &mgr->img_list, node) {
+		offset = ls_ucode_img_fill_headers(gsb, img, offset);
+	}
+
+	mgr->wpr_size = offset;
+}
+
+/**
+ * ls_ucode_mgr_write_wpr - write the WPR blob contents
+ */
+static int
+ls_ucode_mgr_write_wpr(struct gm200_secboot *gsb, struct ls_ucode_mgr *mgr,
+		       struct nvkm_gpuobj *wpr_blob)
+{
+	struct ls_ucode_img *img;
+	u32 pos = 0;
+
+	nvkm_kmap(wpr_blob);
+
+	list_for_each_entry(img, &mgr->img_list, node) {
+		nvkm_gpuobj_memcpy_to(wpr_blob, pos, &img->wpr_header,
+				      sizeof(img->wpr_header));
+
+		nvkm_gpuobj_memcpy_to(wpr_blob, img->wpr_header.lsb_offset,
+				     &img->lsb_header, sizeof(img->lsb_header));
+
+		/* Generate and write BL descriptor */
+		if (!img->ucode_header) {
+			u8 desc[gsb->bl_desc_size];
+			struct gm200_flcn_bl_desc gdesc;
+
+			ls_ucode_img_populate_bl_desc(img, gsb->wpr_addr,
+						      &gdesc);
+			gsb->fixup_bl_desc(&gdesc, &desc);
+			nvkm_gpuobj_memcpy_to(wpr_blob,
+					      img->lsb_header.bl_data_off,
+					      &desc, gsb->bl_desc_size);
+		}
+
+		/* Copy ucode */
+		nvkm_gpuobj_memcpy_to(wpr_blob, img->lsb_header.ucode_off,
+				      img->ucode_data, img->ucode_size);
+
+		pos += sizeof(img->wpr_header);
+	}
+
+	nvkm_wo32(wpr_blob, pos, NVKM_SECBOOT_FALCON_INVALID);
+
+	nvkm_done(wpr_blob);
+
+	return 0;
+}
+
+/* Both size and address of WPR need to be 128K-aligned */
+#define WPR_ALIGNMENT	0x20000
+/**
+ * gm200_secboot_prepare_ls_blob() - prepare the LS blob
+ *
+ * For each securely managed falcon, load the FW, signatures and bootloaders and
+ * prepare a ucode blob. Then, compute the offsets in the WPR region for each
+ * blob, and finally write the headers and ucode blobs into a GPU object that
+ * will be copied into the WPR region by the HS firmware.
+ */
+static int
+gm200_secboot_prepare_ls_blob(struct gm200_secboot *gsb)
+{
+	struct nvkm_device *device = gsb->base.subdev.device;
+	struct ls_ucode_mgr mgr;
+	int falcon_id;
+	int ret;
+
+	ls_ucode_mgr_init(&mgr);
+
+	/* Load all LS blobs */
+	for_each_set_bit(falcon_id, &gsb->base.func->managed_falcons,
+			 NVKM_SECBOOT_FALCON_END) {
+		struct ls_ucode_img *img;
+
+		img = ls_ucode_img_load(device, lsf_load_funcs[falcon_id]);
+
+		if (IS_ERR(img)) {
+			ret = PTR_ERR(img);
+			goto cleanup;
+		}
+		ls_ucode_mgr_add_img(&mgr, img);
+	}
+
+	/*
+	 * Fill the WPR and LSF headers with the right offsets and compute
+	 * required WPR size
+	 */
+	ls_ucode_mgr_fill_headers(gsb, &mgr);
+	mgr.wpr_size = ALIGN(mgr.wpr_size, WPR_ALIGNMENT);
+
+	/* Allocate GPU object that will contain the WPR region */
+	ret = nvkm_gpuobj_new(device, mgr.wpr_size, WPR_ALIGNMENT, false, NULL,
+			      &gsb->ls_blob);
+	if (ret)
+		goto cleanup;
+
+	nvdev_debug(device, "%d managed LS falcons, WPR size is %d bytes\n",
+		    mgr.count, mgr.wpr_size);
+
+	/* If WPR address and size are not fixed, set them to fit the LS blob */
+	if (!gsb->wpr_size) {
+		gsb->wpr_addr = gsb->ls_blob->addr;
+		gsb->wpr_size = gsb->ls_blob->size;
+	}
+
+	/* Write LS blob */
+	ret = ls_ucode_mgr_write_wpr(gsb, &mgr, gsb->ls_blob);
+
+cleanup:
+	ls_ucode_mgr_cleanup(&mgr);
+
+	return ret;
+}
+
+/*
+ * High-secure blob creation
+ */
+
+/**
+ * gm200_secboot_hsf_patch_signature() - patch HS blob with correct signature
+ */
+static void
+gm200_secboot_hsf_patch_signature(struct gm200_secboot *gsb, void *acr_image)
+{
+	struct nvkm_secboot *sb = &gsb->base;
+	struct hsf_bin_hdr *hsbin_hdr = acr_image;
+	struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+	void *hs_data = acr_image + hsbin_hdr->data_offset;
+	u32 patch_loc;
+	u32 patch_sig;
+	void *sig;
+	u32 sig_size;
+
+	patch_loc = *(u32 *)(acr_image + fw_hdr->patch_loc);
+	patch_sig = *(u32 *)(acr_image + fw_hdr->patch_sig);
+
+	/* Falcon in debug or production mode? */
+	if ((nvkm_rd32(sb->subdev.device, sb->base + 0xc08) >> 20) & 0x1) {
+		sig = acr_image + fw_hdr->sig_dbg_offset;
+		sig_size = fw_hdr->sig_dbg_size;
+	} else {
+		sig = acr_image + fw_hdr->sig_prod_offset;
+		sig_size = fw_hdr->sig_prod_size;
+	}
+
+	/* Patch signature */
+	memcpy(hs_data + patch_loc, sig + patch_sig, sig_size);
+}
+
+static void
+gm200_secboot_fixup_hs_desc(struct gm200_secboot *gsb,
+			    struct hsflcn_acr_desc *desc)
+{
+	desc->ucode_blob_base = gsb->ls_blob->addr;
+	desc->ucode_blob_size = gsb->ls_blob->size;
+
+	desc->wpr_offset = 0;
+
+	/* WPR region information for the HS binary to set up */
+	desc->wpr_region_id = 1;
+	desc->regions.no_regions = 1;
+	desc->regions.region_props[0].region_id = 1;
+	desc->regions.region_props[0].start_addr = gsb->wpr_addr >> 8;
+	desc->regions.region_props[0].end_addr =
+		(gsb->wpr_addr + gsb->wpr_size) >> 8;
+}
+
+/**
+ * gm200_secboot_populate_hsf_bl_desc() - populate BL descriptor for HS image
+ */
+static void
+gm200_secboot_populate_hsf_bl_desc(void *acr_image,
+				   struct gm200_flcn_bl_desc *bl_desc)
+{
+	struct hsf_bin_hdr *hsbin_hdr = acr_image;
+	struct hsf_fw_header *fw_hdr = acr_image + hsbin_hdr->header_offset;
+	struct hsf_load_header *load_hdr = acr_image + fw_hdr->hdr_offset;
+
+	/*
+	 * Descriptor for the bootloader that will load the ACR image into
+	 * IMEM/DMEM memory.
+	 */
+	fw_hdr = acr_image + hsbin_hdr->header_offset;
+	load_hdr = acr_image + fw_hdr->hdr_offset;
+	memset(bl_desc, 0, sizeof(*bl_desc));
+	bl_desc->ctx_dma = FALCON_DMAIDX_VIRT;
+	bl_desc->non_sec_code_off = load_hdr->non_sec_code_off;
+	bl_desc->non_sec_code_size = load_hdr->non_sec_code_size;
+	bl_desc->sec_code_off = load_hdr->sec_code_off;
+	bl_desc->sec_code_size = load_hdr->sec_code_size;
+	bl_desc->code_entry_point = 0;
+	/*
+	 * We need to set code_dma_base to the virtual address of the acr_blob,
+	 * and add this address to data_dma_base before writing it into DMEM
+	 */
+	bl_desc->code_dma_base.lo = 0;
+	bl_desc->data_dma_base.lo = load_hdr->data_dma_base;
+	bl_desc->data_size = load_hdr->data_size;
+}
+
+static int
+gm200_secboot_prepare_hs_blob(struct gm200_secboot *gsb)
+{
+	struct nvkm_device *device = gsb->base.subdev.device;
+	void *acr_image;
+	struct hsf_bin_hdr *hsbin_hdr;
+	struct hsf_fw_header *fw_hdr;
+	struct hsf_load_header *load_hdr;
+	struct hsflcn_acr_desc *desc;
+	u32 img_size;
+	int ret;
+
+	acr_image = gm200_secboot_load_firmware(device, "acr_ucode_load", 0);
+	if (IS_ERR(acr_image))
+		return PTR_ERR(acr_image);
+	hsbin_hdr = acr_image;
+
+	/* Patch signature */
+	gm200_secboot_hsf_patch_signature(gsb, acr_image);
+
+	/* Patch descriptor */
+	fw_hdr = acr_image + hsbin_hdr->header_offset;
+	load_hdr = acr_image + fw_hdr->hdr_offset;
+	desc = acr_image + hsbin_hdr->data_offset + load_hdr->data_dma_base;
+	gsb->fixup_hs_desc(gsb, desc);
+
+	/* Generate HS BL descriptor */
+	gm200_secboot_populate_hsf_bl_desc(acr_image, &gsb->acr_bl_desc);
+
+	/* Create ACR blob and copy HS data to it */
+	img_size = ALIGN(hsbin_hdr->data_size, 256);
+	ret = nvkm_gpuobj_new(device, img_size, 0x1000, false, NULL,
+			      &gsb->acr_blob);
+	if (ret)
+		goto cleanup;
+
+	nvkm_kmap(gsb->acr_blob);
+	nvkm_gpuobj_memcpy_to(gsb->acr_blob, 0,
+			      acr_image + hsbin_hdr->data_offset, img_size);
+	nvkm_done(gsb->acr_blob);
+
+cleanup:
+	kfree(acr_image);
+
+	return ret;
+}
+
+/*
+ * High-secure bootloader blob creation
+ */
+
+static int
+gm200_secboot_prepare_hsbl_blob(struct gm200_secboot *gsb)
+{
+	struct nvkm_device *device = gsb->base.subdev.device;
+
+	gsb->hsbl_blob = gm200_secboot_load_firmware(device, "acr_bl", 0);
+	if (IS_ERR(gsb->hsbl_blob)) {
+		int ret = PTR_ERR(gsb->hsbl_blob);
+
+		gsb->hsbl_blob = NULL;
+		return ret;
+	}
+
+	return 0;
+}
+
+int
+gm200_secboot_prepare_blobs(struct nvkm_secboot *sb)
+{
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+	int ret;
+
+	/* Load and prepare the managed falcon's firmwares */
+	ret = gm200_secboot_prepare_ls_blob(gsb);
+	if (ret)
+		return ret;
+
+	/* Load the HS firmware for the performing falcon */
+	ret = gm200_secboot_prepare_hs_blob(gsb);
+	if (ret)
+		return ret;
+
+	/* Load the HS firmware bootloader */
+	ret = gm200_secboot_prepare_hsbl_blob(gsb);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+
+
+/*
+ * Secure Boot Execution
+ */
+
+/**
+ * gm200_secboot_load_hs_bl() - load HS bootloader into DMEM and IMEM
+ */
+static void
+gm200_secboot_load_hs_bl(struct nvkm_secboot *sb, void *data, u32 data_size)
+{
+	struct nvkm_device *device = sb->subdev.device;
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+	struct hsf_bin_hdr *hdr = gsb->hsbl_blob;
+	struct hsf_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
+	void *hsbl_code = gsb->hsbl_blob + hdr->data_offset;
+	u32 code_size = ALIGN(hsbl_desc->bl_code_size, 256);
+	u32 blk;
+	u32 tag;
+	int i;
+
+	/*
+	 * Copy HS bootloader interface structure where the HS descriptor
+	 * expects it to be
+	 */
+	nvkm_wr32(device, sb->base + 0x1c0,
+		  (hsbl_desc->bl_desc_dmem_load_off | (0x1 << 24)));
+	for (i = 0; i < data_size / 4; i++)
+		nvkm_wr32(device, sb->base + 0x1c4, ((u32 *)data)[i]);
+
+	/* Copy HS bootloader code to end of IMEM */
+	blk = (nvkm_rd32(device, sb->base + 0x108) & 0x1ff) - (code_size >> 8);
+	tag = hsbl_desc->bl_start_tag;
+	nvkm_wr32(device, sb->base + 0x180, ((blk & 0xff) << 8) | (0x1 << 24));
+	for (i = 0; i < code_size / 4; i++) {
+		/* write new tag every 256B */
+		if ((i & 0x3f) == 0) {
+			nvkm_wr32(device, sb->base + 0x188, tag & 0xffff);
+			tag++;
+		}
+		nvkm_wr32(device, sb->base + 0x184, ((u32 *)hsbl_code)[i]);
+	}
+	nvkm_wr32(device, sb->base + 0x188, 0);
+}
+
+/**
+ * gm200_secboot_setup_falcon() - set up the secure falcon for secure boot
+ */
+static int
+gm200_secboot_setup_falcon(struct nvkm_secboot *sb)
+{
+	struct nvkm_device *device = sb->subdev.device;
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+	struct hsf_bin_hdr *hdr = gsb->hsbl_blob;
+	struct hsf_bl_desc *hsbl_desc = gsb->hsbl_blob + hdr->header_offset;
+	/* virtual start address for boot vector */
+	u32 virt_addr = hsbl_desc->bl_start_tag << 8;
+	const u32 reg_base = sb->base + 0xe00;
+	u32 inst_loc;
+	int ret;
+
+	ret = nvkm_secboot_falcon_reset(sb);
+	if (ret)
+		return ret;
+
+	/* setup apertures - virtual */
+	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_UCODE), 0x4);
+	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_VIRT), 0x0);
+	/* setup apertures - physical */
+	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_VID), 0x4);
+	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_COH),
+		  0x4 | 0x1);
+	nvkm_wr32(device, reg_base + 4 * (FALCON_DMAIDX_PHYS_SYS_NCOH),
+		  0x4 | 0x2);
+
+	/* Set context */
+	if (device->fb->ram)
+		inst_loc = 0x0; /* FB */
+	else
+		inst_loc = 0x3; /* Non-coherent sysmem */
+
+	nvkm_mask(device, sb->base + 0x048, 0x1, 0x1);
+	nvkm_wr32(device, sb->base + 0x480,
+		  ((gsb->inst->addr >> 12) & 0xfffffff) |
+		  (inst_loc << 28) | (1 << 30));
+
+	/* Set boot vector to code's starting virtual address */
+	nvkm_wr32(device, sb->base + 0x104, virt_addr);
+
+	return 0;
+}
+
+/*
+ * gm200_secboot_run() - execute secure boot from the prepared state
+ *
+ * Load the HS bootloader and ask the falcon to run it. This will in turn
+ * load the HS firmware and run it, so once the falcon stops all the managed
+ * falcons should have their LS firmware loaded and be ready to run.
+ */
+int
+gm200_secboot_run(struct nvkm_secboot *sb)
+{
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+	struct gm200_flcn_bl_desc *desc = &gsb->acr_bl_desc;
+	struct nvkm_vma *vma = &gsb->acr_blob_vma;
+	u64 vma_addr;
+	u8 bl_desc[gsb->bl_desc_size];
+	int ret;
+
+	/* Map the HS firmware so the HS bootloader can see it */
+	ret = nvkm_gpuobj_map(gsb->acr_blob, gsb->vm, NV_MEM_ACCESS_RW,
+			      &gsb->acr_blob_vma);
+	if (ret)
+		return ret;
+
+	/* Add the mapping address to the DMA bases */
+	vma_addr = flcn64_to_u64(desc->code_dma_base) + vma->offset;
+	desc->code_dma_base.lo = lower_32_bits(vma_addr);
+	desc->code_dma_base.hi = upper_32_bits(vma_addr);
+	vma_addr = flcn64_to_u64(desc->data_dma_base) + vma->offset;
+	desc->data_dma_base.lo = lower_32_bits(vma_addr);
+	desc->data_dma_base.hi = upper_32_bits(vma_addr);
+
+	/* Fixup the BL header */
+	gsb->fixup_bl_desc(&gsb->acr_bl_desc, &bl_desc);
+
+	/* Reset the falcon and make it ready to run the HS bootloader */
+	ret = gm200_secboot_setup_falcon(sb);
+	if (ret)
+		goto done;
+
+	/* Load the HS bootloader into the falcon's IMEM/DMEM */
+	gm200_secboot_load_hs_bl(sb, &bl_desc, gsb->bl_desc_size);
+
+	/* Start the HS bootloader */
+	ret = nvkm_secboot_falcon_run(sb);
+	if (ret)
+		goto done;
+
+done:
+	/* Restore the original DMA addresses */
+	vma_addr = flcn64_to_u64(desc->code_dma_base) - vma->offset;
+	desc->code_dma_base.lo = lower_32_bits(vma_addr);
+	desc->code_dma_base.hi = upper_32_bits(vma_addr);
+	vma_addr = flcn64_to_u64(desc->data_dma_base) - vma->offset;
+	desc->data_dma_base.lo = lower_32_bits(vma_addr);
+	desc->data_dma_base.hi = upper_32_bits(vma_addr);
+
+	/* We don't need the ACR firmware anymore */
+	nvkm_gpuobj_unmap(&gsb->acr_blob_vma);
+
+	return ret;
+}
+
+
+
+int
+gm200_secboot_init(struct nvkm_secboot *sb)
+{
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+	struct nvkm_device *device = sb->subdev.device;
+	struct nvkm_vm *vm;
+	const u64 vm_area_len = 600 * 1024;
+	int ret;
+
+	/* Allocate instance block and VM */
+	ret = nvkm_gpuobj_new(device, 0x1000, 0, true, NULL, &gsb->inst);
+	if (ret)
+		return ret;
+
+	ret = nvkm_gpuobj_new(device, 0x8000, 0, true, NULL, &gsb->pgd);
+	if (ret)
+		return ret;
+
+	ret = nvkm_vm_new(device, 0, vm_area_len, 0, NULL, &vm);
+	if (ret)
+		return ret;
+
+	atomic_inc(&vm->engref[NVKM_SUBDEV_PMU]);
+
+	ret = nvkm_vm_ref(vm, &gsb->vm, gsb->pgd);
+	nvkm_vm_ref(NULL, &vm, NULL);
+	if (ret)
+		return ret;
+
+	nvkm_kmap(gsb->inst);
+	nvkm_wo32(gsb->inst, 0x200, lower_32_bits(gsb->pgd->addr));
+	nvkm_wo32(gsb->inst, 0x204, upper_32_bits(gsb->pgd->addr));
+	nvkm_wo32(gsb->inst, 0x208, lower_32_bits(vm_area_len - 1));
+	nvkm_wo32(gsb->inst, 0x20c, upper_32_bits(vm_area_len - 1));
+	nvkm_done(gsb->inst);
+
+	return 0;
+}
+
+void *
+gm200_secboot_dtor(struct nvkm_secboot *sb)
+{
+	struct gm200_secboot *gsb = gm200_secboot(sb);
+
+	kfree(gsb->hsbl_blob);
+	nvkm_gpuobj_del(&gsb->acr_blob);
+	nvkm_gpuobj_del(&gsb->ls_blob);
+
+	nvkm_vm_ref(NULL, &gsb->vm, gsb->pgd);
+	nvkm_gpuobj_del(&gsb->pgd);
+	nvkm_gpuobj_del(&gsb->inst);
+
+	return gsb;
+}
+
+
+static const struct nvkm_secboot_func
+gm200_secboot = {
+	.dtor = gm200_secboot_dtor,
+	.init = gm200_secboot_init,
+	.prepare_blobs = gm200_secboot_prepare_blobs,
+	.run = gm200_secboot_run,
+	.managed_falcons = BIT(NVKM_SECBOOT_FALCON_FECS) |
+			   BIT(NVKM_SECBOOT_FALCON_GPCCS),
+	.boot_falcon = NVKM_SECBOOT_FALCON_PMU,
+};
+
+/**
+ * gm200_fixup_bl_desc - just copy the BL descriptor
+ *
+ * Use the GM200 descriptor format by default.
+ */
+static void
+gm200_fixup_bl_desc(const struct gm200_flcn_bl_desc *desc, void *ret)
+{
+	memcpy(ret, desc, sizeof(*desc));
+}
+
+int
+gm200_secboot_new(struct nvkm_device *device, int index,
+		  struct nvkm_secboot **psb)
+{
+	int ret;
+	struct gm200_secboot *gsb;
+
+	gsb = kzalloc(sizeof(*gsb), GFP_KERNEL);
+	if (!gsb) {
+		psb = NULL;
+		return -ENOMEM;
+	}
+	*psb = &gsb->base;
+
+	ret = nvkm_secboot_ctor(&gm200_secboot, device, index, &gsb->base);
+	if (ret)
+		return ret;
+
+	gsb->bl_desc_size = sizeof(struct gm200_flcn_bl_desc);
+	gsb->fixup_bl_desc = gm200_fixup_bl_desc;
+	gsb->fixup_hs_desc = gm200_secboot_fixup_hs_desc;
+
+	return 0;
+}
diff --git a/drm/nouveau/nvkm/subdev/secboot/priv.h b/drm/nouveau/nvkm/subdev/secboot/priv.h
index 990d490ee0e8..72d79aee7fc3 100644
--- a/drm/nouveau/nvkm/subdev/secboot/priv.h
+++ b/drm/nouveau/nvkm/subdev/secboot/priv.h
@@ -43,4 +43,145 @@ int nvkm_secboot_ctor(const struct nvkm_secboot_func *, struct nvkm_device *,
 int nvkm_secboot_falcon_reset(struct nvkm_secboot *);
 int nvkm_secboot_falcon_run(struct nvkm_secboot *);
 
+struct flcn_u64 {
+	u32 lo;
+	u32 hi;
+};
+static inline u64 flcn64_to_u64(const struct flcn_u64 f)
+{
+	return ((u64)f.hi) << 32 | f.lo;
+}
+
+/**
+ * struct gm200_flcn_bl_desc - DMEM bootloader descriptor
+ * @signature:		16B signature for secure code. 0s if no secure code
+ * @ctx_dma:		DMA context to be used by BL while loading code/data
+ * @code_dma_base:	256B-aligned Physical FB Address where code is located
+ *			(falcon's $xcbase register)
+ * @non_sec_code_off:	offset from code_dma_base where the non-secure code is
+ *                      located. The offset must be multiple of 256 to help perf
+ * @non_sec_code_size:	the size of the nonSecure code part.
+ * @sec_code_off:	offset from code_dma_base where the secure code is
+ *                      located. The offset must be multiple of 256 to help perf
+ * @sec_code_size:	offset from code_dma_base where the secure code is
+ *                      located. The offset must be multiple of 256 to help perf
+ * @code_entry_point:	code entry point which will be invoked by BL after
+ *                      code is loaded.
+ * @data_dma_base:	256B aligned Physical FB Address where data is located.
+ *			(falcon's $xdbase register)
+ * @data_size:		size of data block. Should be multiple of 256B
+ *
+ * Structure used by the bootloader to load the rest of the code. This has
+ * to be filled by host and copied into DMEM at offset provided in the
+ * hsflcn_bl_desc.bl_desc_dmem_load_off.
+ */
+struct gm200_flcn_bl_desc {
+	u32 reserved[4];
+	u32 signature[4];
+	u32 ctx_dma;
+	struct flcn_u64 code_dma_base;
+	u32 non_sec_code_off;
+	u32 non_sec_code_size;
+	u32 sec_code_off;
+	u32 sec_code_size;
+	u32 code_entry_point;
+	struct flcn_u64 data_dma_base;
+	u32 data_size;
+};
+
+/**
+ * struct hsflcn_acr_desc - data section of the HS firmware
+ *
+ * This header is to be copied at the beginning of DMEM by the HS bootloader.
+ *
+ * @signature:		signature of ACR ucode
+ * @wpr_region_id:	region ID holding the WPR header and its details
+ * @wpr_offset:		offset from the WPR region holding the wpr header
+ * @regions:		region descriptors
+ * @nonwpr_ucode_blob_size:	size of LS blob
+ * @nonwpr_ucode_blob_start:	FB location of LS blob is
+ */
+struct hsflcn_acr_desc {
+	union {
+		u8 reserved_dmem[0x200];
+		u32 signatures[4];
+	} ucode_reserved_space;
+	u32 wpr_region_id;
+	u32 wpr_offset;
+	u32 mmu_mem_range;
+#define FLCN_ACR_MAX_REGIONS 2
+	struct {
+		u32 no_regions;
+		struct {
+			u32 start_addr;
+			u32 end_addr;
+			u32 region_id;
+			u32 read_mask;
+			u32 write_mask;
+			u32 client_mask;
+		} region_props[FLCN_ACR_MAX_REGIONS];
+	} regions;
+	u32 ucode_blob_size;
+	u64 ucode_blob_base __aligned(8);
+	struct {
+		u32 vpr_enabled;
+		u32 vpr_start;
+		u32 vpr_end;
+		u32 hdcp_policies;
+	} vpr_desc;
+};
+
+/**
+ * Contains the whole secure boot state, allowing it to be performed as needed
+ * @wpr_addr:		physical address of the WPR region
+ * @wpr_size:		size in bytes of the WPR region
+ * @ls_blob:		LS blob of all the LS firmwares, signatures, bootloaders
+ * @ls_blob_size:	size of the LS blob
+ * @ls_blob_nb_regions:	number of LS firmwares that will be loaded
+ * @acr_blob:		HS blob
+ * @acr_blob_vma:	mapping of the HS blob into the secure falcon's VM
+ * @acr_bl_desc:	bootloader descriptor of the HS blob
+ * @hsbl_blob:		HS blob bootloader
+ * @inst:		instance block for HS falcon
+ * @pgd:		page directory for the HS falcon
+ * @vm:			address space used by the HS falcon
+ * @bl_desc_size:	size of the BL descriptor used by this chip.
+ * @fixup_bl_desc:	hook that generates the proper BL descriptor format from
+ *			the generic GM200 format into a data array of size
+ *			bl_desc_size
+ */
+struct gm200_secboot {
+	struct nvkm_secboot base;
+
+	u64 wpr_addr;
+	u32 wpr_size;
+	struct nvkm_vma acr_blob_vma;
+
+	/* LS FWs, to be loaded by the HS ACR */
+	struct nvkm_gpuobj *ls_blob;
+
+	/* HS FW */
+	struct nvkm_gpuobj *acr_blob;
+
+	/* HS bootloader */
+	void *hsbl_blob;
+
+	struct gm200_flcn_bl_desc acr_bl_desc;
+
+	/* Instance block & address space */
+	struct nvkm_gpuobj *inst;
+	struct nvkm_gpuobj *pgd;
+	struct nvkm_vm *vm;
+
+	u32 bl_desc_size;
+	void (*fixup_bl_desc)(const struct gm200_flcn_bl_desc *, void *);
+	void (*fixup_hs_desc)(struct gm200_secboot *, struct hsflcn_acr_desc *);
+};
+#define gm200_secboot(sb) container_of(sb, struct gm200_secboot, base)
+
+int gm200_secboot_init(struct nvkm_secboot *);
+void *gm200_secboot_dtor(struct nvkm_secboot *);
+int gm200_secboot_prepare_blobs(struct nvkm_secboot *);
+int gm200_secboot_run(struct nvkm_secboot *);
+
 #endif
-- 
2.7.0



More information about the Nouveau mailing list