[Piglit] [PATCH 1/2] util: Add utility to simulate GLSL packing functions

Paul Berry stereotype441 at gmail.com
Fri Jan 11 09:39:16 PST 2013


On 9 January 2013 23:58, Chad Versace <chad.versace at linux.intel.com> wrote:

> In order to generate tests for the GLSL packing functions (packSnorm2x16
> and friends), we must be able to simulate them. This patch adds
> a C executable that does exactly that.
>
> I originally tried to write this tool in Python, but manipulating 16-bit
> unsigned integers is not one of Python's strengths.
>
> Signed-off-by: Chad Versace <chad.versace at linux.intel.com>
> ---
>  tests/util/CMakeLists.no_api.txt |   3 +
>  tests/util/glsl-packing.c        | 799
> +++++++++++++++++++++++++++++++++++++++
>  2 files changed, 802 insertions(+)
>  create mode 100644 tests/util/glsl-packing.c
>
> diff --git a/tests/util/CMakeLists.no_api.txt
> b/tests/util/CMakeLists.no_api.txt
> index c331368..f1ac407 100644
> --- a/tests/util/CMakeLists.no_api.txt
> +++ b/tests/util/CMakeLists.no_api.txt
> @@ -6,8 +6,11 @@ piglit_add_library (piglitutil
>         ${UTIL_SOURCES}
>  )
>
> +piglit_add_executable(glsl-packing glsl-packing.c)
> +
>  if(UNIX)
>         target_link_libraries(piglitutil m)
> +       target_link_libraries(glsl-packing m)
>  endif(UNIX)
>
>  # vim: ft=cmake:
> diff --git a/tests/util/glsl-packing.c b/tests/util/glsl-packing.c
> new file mode 100644
> index 0000000..317f0d1
> --- /dev/null
> +++ b/tests/util/glsl-packing.c
> @@ -0,0 +1,799 @@
> +/*
> + * Copyright © 2012 Intel Corporation
> + *
> + * Permission is hereby granted, free of charge, to any person obtaining a
> + * copy of this software and associated documentation files (the
> "Software"),
> + * to deal in the Software without restriction, including without
> limitation
> + * the rights to use, copy, modify, merge, publish, distribute,
> sublicense,
> + * and/or sell copies of the Software, and to permit persons to whom the
> + * Software is furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice (including the
> next
> + * paragraph) shall be included in all copies or substantial portions of
> the
> + * Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
> EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
> MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT
> SHALL
> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
> OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
> + * DEALINGS IN THE SOFTWARE.
> + */
> +
> +#include <assert.h>
> +#include <inttypes.h>
> +#include <math.h>
> +#include <stdarg.h>
> +#include <stdbool.h>
> +#include <stdio.h>
> +#include <stdlib.h>
> +#include <string.h>
> +
> +/* TODO: Reject round options for pack/unpackHalf.
> + * TODO: Discuss choices in packHalf.
> + */
> +
> +#define PRIf32_PRECISION "24"
> +#define PRIf32 "%." PRIf32_PRECISION "f"
>

This seems like premature generalization to me.  My preference would be to
just say "%.24f" in the printf() calls.  If we later determine that
precision needs to be tweakable, we can introduce something more
complicated.


> +
> +static const char *help_text =
> +       "NAME\n"
> +       "    glsl-packing - Print the result of a GLSL packing function\n"
> +       "\n"
> +       "SYNOPSIS\n"
> +       "    glsl-packing PACK_FUNC X Y [FUNC_OPTS]\n"
> +       "    glsl-packing UNPACK_FUNC U [FUNC_OPTS]\n"
> +       "    glsl-packing print-float16-info\n"
> +       "\n"
> +       "COMMANDS\n"
> +       "    All floats are printed with the printf specifier " PRIf32
> ".\n"
> +       "\n"
> +       "    glsl-packing PACK_FUNC X Y [FUNC_OPTS]\n"
> +       "        Print the result of calling PACK_FUNC on vec2(X, Y).\n"
> +       "\n"
> +       "        PACK_FUNC must be one of:\n"
> +       "            packSnorm2x16\n"
> +       "            packUnorm2x16\n"
> +       "            packHalf2x16\n"
> +       "\n"
> +       "        X and Y must be floating point numbers in a format
> consumable\n"
> +       "        by strof(3).\n"
> +       "\n"
> +       "    glsl-packing UNPACK_FUNC U [FUNC_OPTS]\n"
> +       "        Print the result of calling UNPACK_FUNC on uint(U).\n"
> +       "\n"
> +       "        UNPACK_FUNC must be one of:\n"
> +       "            unpackSnorm2x16\n"
> +       "            unpackUnorm2x16\n"
> +       "            unpackHalf2x16\n"
> +       "\n"
> +       "        U must be an unsigned integer in a format consumable by
> scanf(3).\n"
> +       "\n"
> +       "    glsl-packing print-float16-info\n"
> +       "        Print the following special values of IEEE 754 16-bit
> floats:\n"
> +       "            subnormal_min\n"
> +       "            subnormal_max\n"
> +       "            normal_min\n"
> +       "            normal_max\n"
> +       "            min_step\n"
> +       "            max_step\n"
> +       "\n"
> +       "FUNC_OPTS\n"
> +       "    flush_float16\n"
> +       "    flush_float32\n"
> +       "        All PACK_FUNC and UNPACK_FUNC commands accept the flush
> options.\n"
> +       "\n"
> +       "        The GLSL ES 3.00 and GLSL 4.10 specs allows
> implementations to truncate\n"
> +       "        subnormal floats to zero. From section 4.5.1 \"Range and
> Precision\"\n"
> +       "        of the two specs:\n"
> +       "            Any subnormal (denormalized) value input into a
> shader or\n"
> +       "            potentially generated by any operation in a shader
> can be\n"
> +       "            flushed to 0.\n"
> +       "\n"
> +       "        If flush_float32 is specified, then glsl-packing will
> simulate the behavior\n"
> +       "        of a GLSL implementation that flushes subnormal 32-bit
> floating-point values\n"
> +       "        to 0. Likewise if flush_float16 is enabled.\n"
> +       "\n"
> +       "        Enabling flush_float16 implicitly enables
> flush_float32.\n"
> +       "\n"
> +       "    round_to_nearest\n"
> +       "    round_to_even\n"
> +       "        All PACK_FUNC and UNPACK_FUNC commands except
> pack/unpackHalf2x16 accept\n"
> +       "        the rounding option. At most one rounding option may be
> specified.\n"
> +       "\n"
> +       "        For some packing functions, the GLSL ES 3.00
> specification's\n"
> +       "        definition of the function's behavior involves the
> `round()`\n"
> +       "        function, whose behavior at 0.5 is not specified. From
> section \n"
> +       "        8.3 of the spec:\n"
> +       "            The fraction 0.5 will round in a direction chosen by
> the\n"
> +       "            implementation, presumably the direction that is
> fastest.\n"
> +       "\n"
> +       "        If a rounding option is given, it determines the rounding
> behavior at 0.5.\n"
> +       ;
> +
> +struct func_options;
> +
> +typedef uint16_t
> +(*pack_1x16_func_t)(float, struct func_options*);
> +
> +typedef void
> +(*unpack_1x16_func_t)(uint16_t, float*, struct func_options*);
> +
> +typedef float
> +(*round_func_t)(float);
> +
> +struct func_options {
> +       round_func_t round;
> +       bool flush_float16;
> +       bool flush_float32;
> +};
> +
> +/**
> + * Flush subnormal 32-bit floating point numbers to ±0.0, preserving the
> + * sign bit.
> + */
> +static float
> +flush_float32(float f)
> +{
> +       if (fpclassify(f) == FP_SUBNORMAL) {
> +               return copysign(0.0, f);
> +       } else {
> +               return f;
> +       }
> +}
> +
> +/**
> + * Flush subnormal 16-bit floating point numbers to to ±0.0, preserving
> the
> + * sign bit.
> + */
> +static uint16_t
> +flush_float16(uint16_t u)
> +{
> +       if (!(u & 0x7c00)) {
> +               return u & 0x8000;
> +       } else {
> +               return u;
> +       }
> +}
> +
> +static float
> +clampf(float x, float min, float max)
> +{
> +       if (x < min)
> +               return min;
> +       else if (x > max)
> +               return max;
> +       else
> +               return x;
> +}
> +
> +static float
> +round_to_nearest(float x)
> +{
> +       float i;
> +       float f;
> +
> +       f = modff(x, &i);
> +
> +       if (fabs(f) < 0.5f)
> +               return i;
> +       else
> +               return i + copysignf(1.0f, x);
> +}
> +
> +static float
> +round_to_even(float x)
> +{
> +       float i;
> +       float f;
> +
> +       f = modff(x, &i);
> +
> +       if (fabs(f) < 0.5f)
> +               return i;
> +       else if (fabs(f) == 0.5f)
> +               return i + fmodf(i, copysignf(2.0f, x));
> +       else
> +               return i + copysignf(1.0f, x);
> +}
> +
> +static void
> +func_options_init(struct func_options *func_opts)
> +{
> +       memset(func_opts, 0, sizeof(*func_opts));
> +}
> +
> +static uint32_t
> +pack_2x16(pack_1x16_func_t pack_1x16,
> +         float x, float y,
> +         struct func_options *func_opts)
> +{
> +       uint16_t ux;
> +       uint16_t uy;
> +
> +       if (func_opts->flush_float32) {
> +               x = flush_float32(x);
> +               y = flush_float32(y);
> +       }
> +
> +       ux = pack_1x16(x, func_opts);
> +       uy = pack_1x16(y, func_opts);
> +
> +       if (func_opts->flush_float16) {
> +               ux = flush_float16(ux);
> +               uy = flush_float16(uy);
> +       }
> +
> +       return ((uint32_t) uy << 16) | ux;
> +}
> +
> +static void
> +unpack_2x16(unpack_1x16_func_t unpack_1x16,
> +            uint32_t u,
> +            float *x, float *y,
> +            struct func_options *func_opts)
> +
> +{
> +        uint16_t ux = u & 0xffff;
> +        uint16_t uy = u >> 16;
> +
> +        if (func_opts->flush_float16) {
> +                ux = flush_float16(ux);
> +                uy = flush_float16(uy);
> +        }
> +
> +        unpack_1x16(ux, x, func_opts);
> +        unpack_1x16(uy, y, func_opts);
> +
> +        if (func_opts->flush_float32) {
> +                *x = flush_float32(*x);
> +                *y = flush_float32(*y);
> +        }
> +}
> +
> +static uint16_t
> +pack_snorm_1x16(float x, struct func_options *func_opts)
> +{
> +       return (uint16_t) func_opts->round(clampf(x, -1.0f, +1.0f) *
> 32767.0f);
> +}
> +
> +static void
> +unpack_snorm_1x16(uint16_t u, float *f, struct func_options *func_opts)
> +{
> +        *f = clampf((int16_t) u / 32767.0f, -1.0f, +1.0f);
> +}
> +
> +static uint16_t
> +pack_unorm_1x16(float x, struct func_options *func_opts)
> +{
> +       return (uint16_t) func_opts->round(clampf(x, 0.0f, 1.0f) *
> 65535.0f);
> +}
> +
> +static void
> +unpack_unorm_1x16(uint16_t u, float *f, struct func_options *func_opts)
> +{
> +        *f = (float) u / 65535.0f;
> +}
> +
> +static uint16_t
> +pack_half_1x16(float x, struct func_options *func_opts)
> +{
> +       /* The bit layout of a float16 is:
> +        *   sign: 15
> +        *   exponent: 10:14
> +        *   mantissa: 0:9
> +        *
> +        * The sign, exponent, and mantissa of a float16 determine its
> value
> +        * thus:
> +        *
> +        *  if e = 0 and m = 0, then zero:       (-1)^s * 0
> +        *  if e = 0 and m != 0, then subnormal: (-1)^s * 2^(e - 14) * m /
> 2^10
> +        *  if 0 < e < 31, then normal:          (-1)^s * 2^(e - 15) * (1
> + m / 2^10)
> +        *  if e = 31 and m = 0, then inf:       (-1)^s * inf
> +        *  if e = 31 and m != 0, then nan
> +        *
> +        *  where 0 <= m < 2^10 .
> +        */
> +
> +       /* Calculate the resultant float16's sign, exponent, and mantissa
> +        * bits.
> +        */
> +       const int s = (copysignf(1.0f, x) < 0) ? 1 : 0;
> +       int e;
> +       int m;
> +
> +       switch (fpclassify(x)) {
> +       case FP_NAN:
> +               return 0xffffu;
> +       case FP_INFINITE:
> +               e = 31;
> +               m = 0;
> +               break;
> +       case FP_SUBNORMAL:
> +       case FP_ZERO:
> +               e = 0;
> +               m = 0;
> +               break;
> +       case FP_NORMAL: {
> +               /* Recall that the form of subnormal and normal float16
> values
> +                * are
> +                *
> +                *   subnormal: 2^(e - 14) * m / 2^10 where e = 0
> +                *   normal: 2^(e - 15) * (1 + m / 2^10) where 1 <= e <= 30
> +                *
> +                * where 0 <= m < 2^10. Therefore some key boundary values
> of
> +                * float16 are:
> +                *
> +                *   min_subnormal = 2^(-14) * 1 / 2^10
> +                *   max_subnormal = 2^(-14) * 1023 / 2^10
> +                *   min_normal    = 2^(1-15) * (1 + 0 / 2^10)
> +                *   max_normal    = 2^(30 - 15) * (1 + 1023 / 2^10)
> +                *
> +                * Representing the same boundary values in the form
> returned
> +                * by frexpf(), 2^e * f where 0.5 <= f < 1, gives
> +                *
> +                *   min_subnormal = 2^(-14) * 1 / 2^10
> +                *                 = 2^(-23) * 1 / 2
> +                *                 = 2^(-23) * 0.5
> +                *
> +                *   max_subnormal = 2^(-14) * 1023 / 2^10
> +                *                 = 2^(-14) * 0.9990234375
> +                *
> +                *   min_normal    = 2^(1 - 15) * (1 + 0 / 2^10)
> +                *                 = 2^(-14)
> +                *                 = 2^(-13) * 0.5
> +                *
> +                *   max_normal    = 2^(30 - 15) * (1 + 1023 / 2^10)
> +                *                 = 2^15 * (2^10 + 1023) / 2^10
> +                *                 = 2^16 * (2^10 + 1023) / 2^11
> +                *                 = 2^16 * 0.99951171875
> +                */
> +
> +               /* Represent the absolute value of the input in form 2^E *
> F
> +                * where 0.5 <= F < 1.
> +                */
> +               int E;
> +               float F;
> +
> +               F = frexpf(fabs(x), &E);
> +
> +               /* Now calculate the results's exponent and mantissa by
> +                * comparing the input against the boundary values above.
> +                */
> +               if (E == -23 && F < 0.5f) {
> +                       /* The float32 input is too small to be
> represented as
> +                        * a float16. The result is zero.
> +                        */
> +                       e = 0;
> +                       m = 0;
> +               } else if (E < -13 || (E == -13 && F < 0.5f)) {
> +                       /* The resultant float16 value is subnormal. Let's
> +                        * calculate m.
> +                        *
> +                        *   2^E * F = 2^(-14) * m / 2^10
> +                        *         m = 2^(E + 24) * F
> +                        */
> +                       e = 0;
> +                       m = powf(2, E + 24) * F;
> +               } else if (E < 16 || (E == 16 && F <= 0.99951171875f)) {
> +                       /* The resultant float16 is normal. Let's calculate
> +                        * e and m.
> +                        *
> +                        *   2^E * F = 2^(e - 15) * (1 + m / 2^10)
>  (1)
> +                        *           = 2^(e - 15) * (2^10 + m) / 2^10
>   (2)
> +                        *           = 2^(e - 14) * (2^10 + m) / 2^11
>   (3)
> +                        *
> +                        * Substituting
> +                        *
> +                        *   e1 := E
>  (4)
> +                        *   f1 := F
>  (5)
> +                        *   e2 := e - 14
>   (6)
> +                        *   f2 := (2^10 + m) / 2^11
>  (7)
> +                        *
> +                        * transforms the equation to
> +                        *
> +                        *   2^e1 * f1 = 2^e2 * f2
>  (8)
> +                        *
> +                        * By definition, f1 lies in the range [0.5, 1). By
> +                        * equation 7, f2 lies there also. This observation
> +                        * combined with equation 8 implies f1 = f2, which
> in
> +                        * turn implies e1 = e2. Therefore
> +                        *
> +                        *   e = E + 14
> +                        *   m = 2^11 * F - 2^10
> +                        */
> +                       e = E + 14;
> +                       m = powf(2, 11) * F - powf(2, 10);
> +               } else {
> +                       /* The float32 input is too large to represent as a
> +                        * float16. The result is infinite.
> +                        */
> +                       e = 31;
> +                       m = 0;
> +               }
> +               break;
> +       }
> +       default:
> +               assert(0);
> +               break;
> +       }
> +
> +       assert(s == 0 || s == 1);
> +       assert(0 <= e && e <= 31);
> +       assert(0 <= m && m <= 1023);
> +
> +       return (s << 15) | (e << 10) | m;
> +}
> +
> +static void
> +unpack_half_1x16(uint16_t u, float *f, struct func_options *func_opts)
> +{
> +       /* The bit layout of a float16 is:
> +        *   sign: 15
> +        *   exponent: 10:14
> +        *   mantissa: 0:9
> +        *
> +        * The sign, exponent, and mantissa of a float16 determine its
> value
> +        * thus:
> +        *
> +        *  if e = 0 and m = 0, then zero:       (-1)^s * 0
> +        *  if e = 0 and m != 0, then subnormal: (-1)^s * 2^(e - 14) * m /
> 2^10
> +        *  if 0 < e < 31, then normal:          (-1)^s * 2^(e - 15) * (1
> + m / 2^10)
> +        *  if e = 31 and m = 0, then inf:       (-1)^s * inf
> +        *  if e = 31 and m != 0, then nan
> +        *
> +        *  where 0 <= m < 2^10 .
> +        */
> +
> +       int s = (u >> 15) & 0x1;
> +       int e = (u >> 10) & 0x1f;
> +       int m = u & 0x3ff;
> +
> +       float sign = s ? -1 : 1;
> +
> +       if (e == 0) {
> +               *f = sign * pow(2, -24) * m;
> +       } else if (1 <= e && e <= 30) {
> +               *f = sign * pow(2, e - 15) * (1.0 + m / 1024.0);
> +       } else if (e == 31 && m == 0) {
> +               *f = sign * INFINITY;
> +       } else if (e == 31 && m != 0) {
> +               *f = NAN;
> +       } else {
> +               assert(0);
> +       }
> +}
> +
> +struct round_func_key {
> +       const char *name;
> +       round_func_t func;
> +};
>

Minor nit pick: calling this struct a "key" seems kind of weird, because it
actually represents a key/value pair.  The "name" field is the key.  Having
said that, I don't have a good recommendation for anything better :)


> +
> +static struct round_func_key round_func_list[] = {
> +       {"round_to_even",           round_to_even},
> +       {"round_to_nearest",        round_to_nearest},
> +       {0,                         0},
> +};
> +
> +struct pack_func_2x16_key {
> +       const char *name;
> +       pack_1x16_func_t func;
> +};
> +
> +static struct pack_func_2x16_key pack_func_2x16_list[] = {
> +       {"packSnorm2x16",           pack_snorm_1x16},
> +       {"packUnorm2x16",           pack_unorm_1x16},
> +       {"packHalf2x16",            pack_half_1x16},
> +       {0,                         0},
> +};
> +
> +struct unpack_2x16_func_key {
> +       const char *name;
> +       unpack_1x16_func_t func;
> +};
> +
> +static struct unpack_2x16_func_key unpack_2x16_func_list[] = {
> +       {"unpackSnorm2x16",         unpack_snorm_1x16},
> +       {"unpackUnorm2x16",         unpack_unorm_1x16},
> +       {"unpackHalf2x16",          unpack_half_1x16},
> +       {0,                         0},
> +};
> +
> +struct pack_2x16_args {
> +       pack_1x16_func_t pack_func;
> +       float x;
> +       float y;
> +       struct func_options func_opts;
> +};
> +
> +struct unpack_2x16_args {
> +       unpack_1x16_func_t unpack_func;
> +       uint32_t u;
> +       struct func_options func_opts;
> +};
> +
> +struct args {
> +       enum {
> +               ARG_HELP,
> +               ARG_PACK_2x16,
> +               ARG_UNPACK_2x16,
> +               ARG_PRINT_FLOAT16_INFO,
> +       } tag;
> +
> +       union {
> +               struct pack_2x16_args pack_2x16;
> +               struct unpack_2x16_args unpack_2x16;
> +       };
> +};
> +
> +static void
> +usage_error(const char *fmt, ...)
> +{
> +       printf("usage error");
> +       if (fmt && strcmp(fmt, "") != 0) {
> +               va_list va;
> +               va_start(va, fmt);
> +               printf(": ");
> +               vprintf(fmt, va);
> +               va_end(va);
> +       }
> +       printf("\n");
> +       printf("for help, call `glsl-packing -h`\n");
> +       exit(1);
> +}
> +
> +static void
> +parse_func_opts(struct func_options *func_opts,
> +                const char *command_name,
> +                int argc, char **argv)
> +{
> +       int i;
> +
> +       assert(strcmp(command_name, "print-float16-info") != 0);
> +
> +       func_options_init(func_opts);
> +
> +       for (i = 0; i < argc; ++i) {
> +               const char *arg = argv[i];
> +
> +               if (strcmp(arg, "flush_float16") == 0) {
> +                       /* flush_float16 implies flush_float32. */
> +                       func_opts->flush_float16 = true;
> +                       func_opts->flush_float32 = true;
> +                       continue;
> +               } else if (strcmp(arg, "flush_float32") == 0) {
> +                       func_opts->flush_float32 = true;
> +                       continue;
> +               } else {
> +                       /* Assume the arg is a rounding options. */
> +                       round_func_t round_func = NULL;
> +                       int i;
> +
> +                       for (i = 0; round_func_list[i].name != NULL; ++i) {
> +                               if (strcmp(arg, round_func_list[i].name)
> == 0) {
> +                                       round_func =
> round_func_list[i].func;
> +                                       break;
> +                               }
> +                       }
>

Considering there are only two possible rounding options, having a for loop
to walk an array seems like overkill to me.  Consider just doing this:

if (strcmp(arg, "round_to_even") == 0)
   round_func = round_to_even;
else if (strcmp(arg, "round_to_nearest") == 0)
   round_func = round_to_nearest;


> +
> +                       if (round_func) {
> +                               if (func_opts->round) {
> +                                       usage_error("multiple rounding "
> +                                                   "options were given");
> +                               }
> +
> +                               func_opts->round = round_func;
> +                               continue;
> +                       }
> +               }
> +
> +               usage_error("unrecognized option: %s", arg);
> +       }
> +
> +       if (func_opts->round != NULL
> +           && (strncmp(command_name, "packHalf", 8) == 0 ||
> +               strncmp(command_name, "unpackHalf", 10) == 0)) {
> +          usage_error("Half functions do not accept any rounding
> options");
> +       }
> +
> +       if (!func_opts->round ) {
> +               /* default */
> +               func_opts->round = round_to_even;
> +       }
> +}
> +
> +static bool
> +parse_pack_2x16_args(struct pack_2x16_args *args, int argc, char **argv)
> +{
> +       int i;
> +       char *endptr;
> +       const char *func_name = NULL;
> +
> +       memset(args, 0, sizeof(*args));
> +
> +       /* Parse function name. */
> +       if (argc < 2)
> +               return false;
> +
> +       for (i = 0; (func_name = pack_func_2x16_list[i].name) != NULL;
> ++i) {
> +               if (strcmp(argv[1], func_name) == 0) {
> +                       args->pack_func = pack_func_2x16_list[i].func;
> +                       break;
> +               }
> +       }
>

Similar nit pick here (and in parse_unpack_2x16_args below).


> +
> +       if (args->pack_func == NULL) {
> +               /* Failed to parse function name. */
> +               return false;
> +       }
> +
> +       /* Parse inputs to packing function. */
> +       if (argc < 4)
> +               usage_error("not enough inputs for pack function");
> +
> +       args->x = strtof(argv[2], &endptr);
> +       if (endptr == argv[2])
> +               usage_error("unable parse input to pack function: %s",
> argv[2]);
>

This permits extra garbage after the argument.  I'd recommend instead doing:

if (*endptr != '\0')


> +
> +       args->y = strtof(argv[3], &endptr);
> +       if (endptr == argv[3])
> +               usage_error("unable parse input to pack function: %s",
> argv[3]);
> +
> +       parse_func_opts(&args->func_opts, func_name, argc - 4, argv + 4);
> +       return true;
> +}
> +
> +static bool
> +parse_unpack_2x16_args(struct unpack_2x16_args *args, int argc, char
> **argv)
> +{
> +       int i;
> +        const char *func_name = NULL;
> +
> +       memset(args, 0, sizeof(*args));
> +
> +       /* Parse function name. */
> +       if (argc < 2)
> +               return false;
> +
> +       for (i = 0; (func_name = unpack_2x16_func_list[i].name) != NULL;
> ++i) {
> +               if (strcmp(argv[1], func_name) == 0) {
> +                       args->unpack_func = unpack_2x16_func_list[i].func;
> +                       break;
> +               }
> +       }
> +
> +       if (args->unpack_func == NULL) {
> +               /* Failed to parse function name. */
> +               return false;
> +       }
> +
> +       /* Parse inputs to unpacking function. */
> +       if (argc < 3)
> +               usage_error("not enough inputs for unpack function");
> +       if (sscanf(argv[2],"%u", &args->u) != 1)
> +               usage_error("unable to parse input to unpack function:
> %s", argv[2]);
> +
> +       parse_func_opts(&args->func_opts, func_name, argc - 3, argv + 3);
> +       return true;
> +}
> +
> +static void
> +parse_args(struct args *args, int argc, char **argv)
> +{
> +       memset(args, 0, sizeof(*args));
> +
> +       if (argc < 2) {
> +               usage_error("no command was given");
> +       }
> +
> +       if (strcmp(argv[1], "-h") == 0 ||
> +           strcmp(argv[1], "--help") == 0) {
> +          args->tag = ARG_HELP;
> +          return;
> +       }
> +
> +       if (parse_pack_2x16_args(&args->pack_2x16, argc, argv)) {
> +               args->tag = ARG_PACK_2x16;
> +               return;
> +       }
> +
> +       if (parse_unpack_2x16_args(&args->unpack_2x16, argc, argv)) {
> +               args->tag = ARG_UNPACK_2x16;
> +               return;
> +       }
> +
> +       if (strcmp(argv[1], "print-float16-info") == 0) {
> +               if (argc > 2) {
> +                       usage_error("print-float16-info takes no args");
> +               }
> +               args->tag = ARG_PRINT_FLOAT16_INFO;
> +               return;
> +       };
> +
> +       usage_error("unrecognized command: %s", argv[1]);
> +}
> +
> +static void
> +cmd_pack_2x16(struct pack_2x16_args *args)
> +{
> +       uint32_t u = pack_2x16(args->pack_func,
> +                              args->x, args->y,
> +                              &args->func_opts);
> +       printf("%u\n", u);
> +}
> +
> +static void
> +cmd_unpack_2x16(struct unpack_2x16_args *args)
> +{
> +       float x;
> +       float y;
> +
> +       unpack_2x16(args->unpack_func,
> +                   args->u, &x, &y,
> +                   &args->func_opts);
> +       printf(PRIf32 " " PRIf32 "\n", x, y);
> +}
> +
> +static void
> +print_float16_value(const char *name, int e, int m)
> +{
> +       struct func_options func_opts;
> +       int s = 0;
> +       float f;
> +
> +       func_options_init(&func_opts);
> +       unpack_half_1x16((s << 15) | (e << 10) | m, &f, &func_opts);
> +       printf("%s: " PRIf32 "\n", name, f);
> +
> +}
> +
> +static void
> +print_float16_step(const char *name, int exp)
> +{
> +       printf("%s: " PRIf32 "\n", name, powf(2, exp));
> +}
> +
> +static void
> +cmd_print_float16_info(void)
> +{
> +       print_float16_value("subnormal_min", 0, 1);
> +       print_float16_value("subnormal_max", 0, 1023);
> +       print_float16_value("normal_min", 1, 0);
> +       print_float16_value("normal_max", 30, 1023);
> +       print_float16_step("min_step", -14 - 10);
> +       print_float16_step("max_step", 15 - 10);
> +}
> +
> +static void
> +exec_args(struct args *args)
> +{
> +       switch (args->tag) {
> +       case ARG_HELP:
> +               printf("%s", help_text);
> +               break;
> +       case ARG_PACK_2x16:
> +               cmd_pack_2x16(&args->pack_2x16);
> +               break;
> +       case ARG_UNPACK_2x16:
> +               cmd_unpack_2x16(&args->unpack_2x16);
> +               break;
> +       case ARG_PRINT_FLOAT16_INFO:
> +               cmd_print_float16_info();
> +               break;
> +       default:
> +               assert(0);
> +               break;
> +       }
> +}
>

The separation between parse_args and exec_args seems artificial to me.  My
preference would be to fuse these into one function, so that we don't need
struct args (with its union) to carry data between them.


> +
> +int
> +main(int argc, char **argv)
> +{
> +       struct args args;
> +
> +       parse_args(&args, argc, argv);
> +       exec_args(&args);
> +
> +       return 0;
> +}
> --
> 1.8.1
>
> _______________________________________________
> Piglit mailing list
> Piglit at lists.freedesktop.org
> http://lists.freedesktop.org/mailman/listinfo/piglit
>

A lot of my comments on this patch have been nit-picks--the rounding stuff
I spoke about yesterday is the only thing I think is critical to fix.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.freedesktop.org/archives/piglit/attachments/20130111/d1ec5793/attachment-0001.html>


More information about the Piglit mailing list