[Pixman] [PATCH v11 01/14] demos/scale: Compute filter size using boundary of xformed ellipse, not rectangle
spitzak at gmail.com
spitzak at gmail.com
Thu Feb 4 23:48:55 PST 2016
From: Bill Spitzak <spitzak at gmail.com>
This is much more accurate and less blurry. In particular the filtering does
not change as the image is rotated.
Signed-off-by: Bill Spitzak <spitzak at gmail.com>
Reviewed-by: Oded Gabbay <oded.gabbay at gmail.com>
---
demos/scale.c | 102 +++++++++++++++++++++++++++++++++++-----------------------
1 file changed, 61 insertions(+), 41 deletions(-)
diff --git a/demos/scale.c b/demos/scale.c
index d00307e..0995ad0 100644
--- a/demos/scale.c
+++ b/demos/scale.c
@@ -55,50 +55,70 @@ get_widget (app_t *app, const char *name)
return widget;
}
-static double
-min4 (double a, double b, double c, double d)
-{
- double m1, m2;
-
- m1 = MIN (a, b);
- m2 = MIN (c, d);
- return MIN (m1, m2);
-}
-
-static double
-max4 (double a, double b, double c, double d)
-{
- double m1, m2;
-
- m1 = MAX (a, b);
- m2 = MAX (c, d);
- return MAX (m1, m2);
-}
-
+/* Figure out the boundary of a diameter=1 circle transformed into an ellipse
+ * by trans. Proof that this is the correct calculation:
+ *
+ * Transform x,y to u,v by this matrix calculation:
+ *
+ * |u| |a c| |x|
+ * |v| = |b d|*|y|
+ *
+ * Horizontal component:
+ *
+ * u = ax+cy (1)
+ *
+ * For each x,y on a radius-1 circle (p is angle to the point):
+ *
+ * x^2+y^2 = 1
+ * x = cos(p)
+ * y = sin(p)
+ * dx/dp = -sin(p) = -y
+ * dy/dp = cos(p) = x
+ *
+ * Figure out derivative of (1) relative to p:
+ *
+ * du/dp = a(dx/dp) + c(dy/dp)
+ * = -ay + cx
+ *
+ * The min and max u are when du/dp is zero:
+ *
+ * -ay + cx = 0
+ * cx = ay
+ * c = ay/x (2)
+ * y = cx/a (3)
+ *
+ * Substitute (2) into (1) and simplify:
+ *
+ * u = ax + ay^2/x
+ * = a(x^2+y^2)/x
+ * = a/x (because x^2+y^2 = 1)
+ * x = a/u (4)
+ *
+ * Substitute (4) into (3) and simplify:
+ *
+ * y = c(a/u)/a
+ * y = c/u (5)
+ *
+ * Square (4) and (5) and add:
+ *
+ * x^2+y^2 = (a^2+c^2)/u^2
+ *
+ * But x^2+y^2 is 1:
+ *
+ * 1 = (a^2+c^2)/u^2
+ * u^2 = a^2+c^2
+ * u = hypot(a,c)
+ *
+ * Similarily the max/min of v is at:
+ *
+ * v = hypot(b,d)
+ *
+ */
static void
compute_extents (pixman_f_transform_t *trans, double *sx, double *sy)
{
- double min_x, max_x, min_y, max_y;
- pixman_f_vector_t v[4] =
- {
- { { 1, 1, 1 } },
- { { -1, 1, 1 } },
- { { -1, -1, 1 } },
- { { 1, -1, 1 } },
- };
-
- pixman_f_transform_point (trans, &v[0]);
- pixman_f_transform_point (trans, &v[1]);
- pixman_f_transform_point (trans, &v[2]);
- pixman_f_transform_point (trans, &v[3]);
-
- min_x = min4 (v[0].v[0], v[1].v[0], v[2].v[0], v[3].v[0]);
- max_x = max4 (v[0].v[0], v[1].v[0], v[2].v[0], v[3].v[0]);
- min_y = min4 (v[0].v[1], v[1].v[1], v[2].v[1], v[3].v[1]);
- max_y = max4 (v[0].v[1], v[1].v[1], v[2].v[1], v[3].v[1]);
-
- *sx = (max_x - min_x) / 2.0;
- *sy = (max_y - min_y) / 2.0;
+ *sx = hypot (trans->m[0][0], trans->m[0][1]) / trans->m[2][2];
+ *sy = hypot (trans->m[1][0], trans->m[1][1]) / trans->m[2][2];
}
typedef struct
--
1.9.1
More information about the Pixman
mailing list