[pulseaudio-commits] r1707 - in /branches/lennart/src/pulsecore/speex: ./ arch.h fixed_generic.h resample.c speex_resampler.h
svnmailer-noreply at 0pointer.de
svnmailer-noreply at 0pointer.de
Thu Aug 23 15:31:02 PDT 2007
Author: lennart
Date: Fri Aug 24 00:31:01 2007
New Revision: 1707
URL: http://0pointer.de/cgi-bin/viewcvs.cgi?rev=3D1707&root=3Dpulseaudio&vi=
ew=3Drev
Log:
add a copy of the speex resampler to our sources
Added:
branches/lennart/src/pulsecore/speex/
branches/lennart/src/pulsecore/speex/arch.h
branches/lennart/src/pulsecore/speex/fixed_generic.h
branches/lennart/src/pulsecore/speex/resample.c
branches/lennart/src/pulsecore/speex/speex_resampler.h
Added: branches/lennart/src/pulsecore/speex/arch.h
URL: http://0pointer.de/cgi-bin/viewcvs.cgi/branches/lennart/src/pulsecore/=
speex/arch.h?rev=3D1707&root=3Dpulseaudio&view=3Dauto
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D
--- branches/lennart/src/pulsecore/speex/arch.h (added)
+++ branches/lennart/src/pulsecore/speex/arch.h Fri Aug 24 00:31:01 2007
@@ -1,0 +1,197 @@
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file arch.h
+ @brief Various architecture definitions Speex
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+ =
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ =
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+ =
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+ =
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION =
OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef ARCH_H
+#define ARCH_H
+
+#ifndef OUTSIDE_SPEEX
+#include "speex/speex_types.h"
+#endif
+
+#define ABS(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute integer value. =
*/
+#define ABS16(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 16-bit value. =
*/
+#define MIN16(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 16-bit value. =
*/
+#define MAX16(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 16-bit value. =
*/
+#define ABS32(x) ((x) < 0 ? (-(x)) : (x)) /**< Absolute 32-bit value. =
*/
+#define MIN32(a,b) ((a) < (b) ? (a) : (b)) /**< Maximum 32-bit value. =
*/
+#define MAX32(a,b) ((a) > (b) ? (a) : (b)) /**< Maximum 32-bit value. =
*/
+
+#ifdef FIXED_POINT
+
+typedef spx_int16_t spx_word16_t;
+typedef spx_int32_t spx_word32_t;
+typedef spx_word32_t spx_mem_t;
+typedef spx_word16_t spx_coef_t;
+typedef spx_word16_t spx_lsp_t;
+typedef spx_word32_t spx_sig_t;
+
+#define Q15ONE 32767
+
+#define LPC_SCALING 8192
+#define SIG_SCALING 16384
+#define LSP_SCALING 8192.
+#define GAMMA_SCALING 32768.
+#define GAIN_SCALING 64
+#define GAIN_SCALING_1 0.015625
+
+#define LPC_SHIFT 13
+#define LSP_SHIFT 13
+#define SIG_SHIFT 14
+
+#define VERY_SMALL 0
+#define VERY_LARGE32 ((spx_word32_t)2147483647)
+#define VERY_LARGE16 ((spx_word16_t)32767)
+#define Q15_ONE ((spx_word16_t)32767)
+
+
+#ifdef FIXED_DEBUG
+#include "fixed_debug.h"
+#else
+
+#include "fixed_generic.h"
+
+#ifdef ARM5E_ASM
+#include "fixed_arm5e.h"
+#elif defined (ARM4_ASM)
+#include "fixed_arm4.h"
+#elif defined (ARM5E_ASM)
+#include "fixed_arm5e.h"
+#elif defined (BFIN_ASM)
+#include "fixed_bfin.h"
+#endif
+
+#endif
+
+
+#else
+
+typedef float spx_mem_t;
+typedef float spx_coef_t;
+typedef float spx_lsp_t;
+typedef float spx_sig_t;
+typedef float spx_word16_t;
+typedef float spx_word32_t;
+
+#define Q15ONE 1.0f
+#define LPC_SCALING 1.f
+#define SIG_SCALING 1.f
+#define LSP_SCALING 1.f
+#define GAMMA_SCALING 1.f
+#define GAIN_SCALING 1.f
+#define GAIN_SCALING_1 1.f
+
+#define LPC_SHIFT 0
+#define LSP_SHIFT 0
+#define SIG_SHIFT 0
+
+#define VERY_SMALL 1e-15f
+#define VERY_LARGE32 1e15f
+#define VERY_LARGE16 1e15f
+#define Q15_ONE ((spx_word16_t)1.f)
+
+#define QCONST16(x,bits) (x)
+#define QCONST32(x,bits) (x)
+
+#define NEG16(x) (-(x))
+#define NEG32(x) (-(x))
+#define EXTRACT16(x) (x)
+#define EXTEND32(x) (x)
+#define SHR16(a,shift) (a)
+#define SHL16(a,shift) (a)
+#define SHR32(a,shift) (a)
+#define SHL32(a,shift) (a)
+#define PSHR16(a,shift) (a)
+#define PSHR32(a,shift) (a)
+#define VSHR32(a,shift) (a)
+#define SATURATE16(x,a) (x)
+#define SATURATE32(x,a) (x)
+
+#define PSHR(a,shift) (a)
+#define SHR(a,shift) (a)
+#define SHL(a,shift) (a)
+#define SATURATE(x,a) (x)
+
+#define ADD16(a,b) ((a)+(b))
+#define SUB16(a,b) ((a)-(b))
+#define ADD32(a,b) ((a)+(b))
+#define SUB32(a,b) ((a)-(b))
+#define MULT16_16_16(a,b) ((a)*(b))
+#define MULT16_16(a,b) ((spx_word32_t)(a)*(spx_word32_t)(b))
+#define MAC16_16(c,a,b) ((c)+(spx_word32_t)(a)*(spx_word32_t)(b))
+
+#define MULT16_32_Q11(a,b) ((a)*(b))
+#define MULT16_32_Q13(a,b) ((a)*(b))
+#define MULT16_32_Q14(a,b) ((a)*(b))
+#define MULT16_32_Q15(a,b) ((a)*(b))
+#define MULT16_32_P15(a,b) ((a)*(b))
+
+#define MAC16_32_Q11(c,a,b) ((c)+(a)*(b))
+#define MAC16_32_Q15(c,a,b) ((c)+(a)*(b))
+
+#define MAC16_16_Q11(c,a,b) ((c)+(a)*(b))
+#define MAC16_16_Q13(c,a,b) ((c)+(a)*(b))
+#define MAC16_16_P13(c,a,b) ((c)+(a)*(b))
+#define MULT16_16_Q11_32(a,b) ((a)*(b))
+#define MULT16_16_Q13(a,b) ((a)*(b))
+#define MULT16_16_Q14(a,b) ((a)*(b))
+#define MULT16_16_Q15(a,b) ((a)*(b))
+#define MULT16_16_P15(a,b) ((a)*(b))
+#define MULT16_16_P13(a,b) ((a)*(b))
+#define MULT16_16_P14(a,b) ((a)*(b))
+
+#define DIV32_16(a,b) (((spx_word32_t)(a))/(spx_word16_t)(b))
+#define PDIV32_16(a,b) (((spx_word32_t)(a))/(spx_word16_t)(b))
+#define DIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
+#define PDIV32(a,b) (((spx_word32_t)(a))/(spx_word32_t)(b))
+
+
+#endif
+
+
+#if defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
+
+/* 2 on TI C5x DSP */
+#define BYTES_PER_CHAR 2 =
+#define BITS_PER_CHAR 16
+#define LOG2_BITS_PER_CHAR 4
+
+#else =
+
+#define BYTES_PER_CHAR 1
+#define BITS_PER_CHAR 8
+#define LOG2_BITS_PER_CHAR 3
+
+#endif
+
+#endif
Added: branches/lennart/src/pulsecore/speex/fixed_generic.h
URL: http://0pointer.de/cgi-bin/viewcvs.cgi/branches/lennart/src/pulsecore/=
speex/fixed_generic.h?rev=3D1707&root=3Dpulseaudio&view=3Dauto
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D
--- branches/lennart/src/pulsecore/speex/fixed_generic.h (added)
+++ branches/lennart/src/pulsecore/speex/fixed_generic.h Fri Aug 24 00:31:0=
1 2007
@@ -1,0 +1,106 @@
+/* Copyright (C) 2003 Jean-Marc Valin */
+/**
+ @file fixed_generic.h
+ @brief Generic fixed-point operations
+*/
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+ =
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ =
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+ =
+ - Neither the name of the Xiph.org Foundation nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+ =
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION =
OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifndef FIXED_GENERIC_H
+#define FIXED_GENERIC_H
+
+#define QCONST16(x,bits) ((spx_word16_t)(.5+(x)*(((spx_word32_t)1)<<(bits)=
)))
+#define QCONST32(x,bits) ((spx_word32_t)(.5+(x)*(((spx_word32_t)1)<<(bits)=
)))
+
+#define NEG16(x) (-(x))
+#define NEG32(x) (-(x))
+#define EXTRACT16(x) ((spx_word16_t)(x))
+#define EXTEND32(x) ((spx_word32_t)(x))
+#define SHR16(a,shift) ((a) >> (shift))
+#define SHL16(a,shift) ((a) << (shift))
+#define SHR32(a,shift) ((a) >> (shift))
+#define SHL32(a,shift) ((a) << (shift))
+#define PSHR16(a,shift) (SHR16((a)+((1<<((shift))>>1)),shift))
+#define PSHR32(a,shift) (SHR32((a)+((1<<((shift))>>1)),shift))
+#define VSHR32(a, shift) (((shift)>0) ? SHR32(a, shift) : SHL32(a, -(shift=
)))
+#define SATURATE16(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+#define SATURATE32(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+
+#define SHR(a,shift) ((a) >> (shift))
+#define SHL(a,shift) ((spx_word32_t)(a) << (shift))
+#define PSHR(a,shift) (SHR((a)+((1<<((shift))>>1)),shift))
+#define SATURATE(x,a) (((x)>(a) ? (a) : (x)<-(a) ? -(a) : (x)))
+
+
+#define ADD16(a,b) ((spx_word16_t)((spx_word16_t)(a)+(spx_word16_t)(b)))
+#define SUB16(a,b) ((spx_word16_t)(a)-(spx_word16_t)(b))
+#define ADD32(a,b) ((spx_word32_t)(a)+(spx_word32_t)(b))
+#define SUB32(a,b) ((spx_word32_t)(a)-(spx_word32_t)(b))
+
+
+/* result fits in 16 bits */
+#define MULT16_16_16(a,b) ((((spx_word16_t)(a))*((spx_word16_t)(b))))
+
+/* (spx_word32_t)(spx_word16_t) gives TI compiler a hint that it's 16x16->=
32 multiply */
+#define MULT16_16(a,b) (((spx_word32_t)(spx_word16_t)(a))*((spx_word32=
_t)(spx_word16_t)(b)))
+
+#define MAC16_16(c,a,b) (ADD32((c),MULT16_16((a),(b))))
+#define MULT16_32_Q12(a,b) ADD32(MULT16_16((a),SHR((b),12)), SHR(MULT16_16=
((a),((b)&0x00000fff)),12))
+#define MULT16_32_Q13(a,b) ADD32(MULT16_16((a),SHR((b),13)), SHR(MULT16_16=
((a),((b)&0x00001fff)),13))
+#define MULT16_32_Q14(a,b) ADD32(MULT16_16((a),SHR((b),14)), SHR(MULT16_16=
((a),((b)&0x00003fff)),14))
+
+#define MULT16_32_Q11(a,b) ADD32(MULT16_16((a),SHR((b),11)), SHR(MULT16_16=
((a),((b)&0x000007ff)),11))
+#define MAC16_32_Q11(c,a,b) ADD32(c,ADD32(MULT16_16((a),SHR((b),11)), SHR(=
MULT16_16((a),((b)&0x000007ff)),11)))
+
+#define MULT16_32_P15(a,b) ADD32(MULT16_16((a),SHR((b),15)), PSHR(MULT16_1=
6((a),((b)&0x00007fff)),15))
+#define MULT16_32_Q15(a,b) ADD32(MULT16_16((a),SHR((b),15)), SHR(MULT16_16=
((a),((b)&0x00007fff)),15))
+#define MAC16_32_Q15(c,a,b) ADD32(c,ADD32(MULT16_16((a),SHR((b),15)), SHR(=
MULT16_16((a),((b)&0x00007fff)),15)))
+
+
+#define MAC16_16_Q11(c,a,b) (ADD32((c),SHR(MULT16_16((a),(b)),11)))
+#define MAC16_16_Q13(c,a,b) (ADD32((c),SHR(MULT16_16((a),(b)),13)))
+#define MAC16_16_P13(c,a,b) (ADD32((c),SHR(ADD32(4096,MULT16_16((a),(b=
))),13)))
+
+#define MULT16_16_Q11_32(a,b) (SHR(MULT16_16((a),(b)),11))
+#define MULT16_16_Q13(a,b) (SHR(MULT16_16((a),(b)),13))
+#define MULT16_16_Q14(a,b) (SHR(MULT16_16((a),(b)),14))
+#define MULT16_16_Q15(a,b) (SHR(MULT16_16((a),(b)),15))
+
+#define MULT16_16_P13(a,b) (SHR(ADD32(4096,MULT16_16((a),(b))),13))
+#define MULT16_16_P14(a,b) (SHR(ADD32(8192,MULT16_16((a),(b))),14))
+#define MULT16_16_P15(a,b) (SHR(ADD32(16384,MULT16_16((a),(b))),15))
+
+#define MUL_16_32_R15(a,bh,bl) ADD32(MULT16_16((a),(bh)), SHR(MULT16_16((a=
),(bl)),15))
+
+#define DIV32_16(a,b) ((spx_word16_t)(((spx_word32_t)(a))/((spx_word16_t)(=
b))))
+#define PDIV32_16(a,b) ((spx_word16_t)(((spx_word32_t)(a)+((spx_word16_t)(=
b)>>1))/((spx_word16_t)(b))))
+#define DIV32(a,b) (((spx_word32_t)(a))/((spx_word32_t)(b)))
+#define PDIV32(a,b) (((spx_word32_t)(a)+((spx_word16_t)(b)>>1))/((spx_word=
32_t)(b)))
+
+#endif
Added: branches/lennart/src/pulsecore/speex/resample.c
URL: http://0pointer.de/cgi-bin/viewcvs.cgi/branches/lennart/src/pulsecore/=
speex/resample.c?rev=3D1707&root=3Dpulseaudio&view=3Dauto
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D
--- branches/lennart/src/pulsecore/speex/resample.c (added)
+++ branches/lennart/src/pulsecore/speex/resample.c Fri Aug 24 00:31:01 2007
@@ -1,0 +1,1114 @@
+/* Copyright (C) 2007 Jean-Marc Valin
+ =
+ File: resample.c
+ Arbitrary resampling code
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright notic=
e,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTI=
ES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+*/
+
+/*
+ The design goals of this code are:
+ - Very fast algorithm
+ - SIMD-friendly algorithm
+ - Low memory requirement
+ - Good *perceptual* quality (and not best SNR)
+
+ The code is working, but it's in a very early stage, so it may have
+ artifacts, noise or subliminal messages from satan. Also, the API =
+ isn't stable and I can actually promise that I *will* change the API
+ some time in the future.
+
+TODO list:
+ - Variable calculation resolution depending on quality setting
+ - Single vs double in float mode
+ - 16-bit vs 32-bit (sinc only) in fixed-point mode
+ - Make sure the filter update works even when changing params =
+ after only a few samples procesed
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#ifdef OUTSIDE_SPEEX
+#include <stdlib.h>
+static void *speex_alloc (int size) {return calloc(size,1);}
+static void *speex_realloc (void *ptr, int size) {return realloc(ptr, size=
);}
+static void speex_free (void *ptr) {free(ptr);}
+#include "speex_resampler.h"
+#include "arch.h"
+#else /* OUTSIDE_SPEEX */
+ =
+#include "speex/speex_resampler.h"
+#include "misc.h"
+#endif /* OUTSIDE_SPEEX */
+
+#include <math.h>
+
+#ifndef M_PI
+#define M_PI 3.14159263
+#endif
+
+#ifdef FIXED_POINT
+#define WORD2INT(x) ((x) < -32767 ? -32768 : ((x) > 32766 ? 32767 : (x))) =
+#else
+#define WORD2INT(x) ((x) < -32767.5f ? -32768 : ((x) > 32766.5f ? 32767 : =
floor(.5+(x)))) =
+#endif
+ =
+/*#define float double*/
+#define FILTER_SIZE 64
+#define OVERSAMPLE 8
+
+#define IMAX(a,b) ((a) > (b) ? (a) : (b))
+#define IMIN(a,b) ((a) < (b) ? (a) : (b))
+
+#ifndef NULL
+#define NULL 0
+#endif
+
+typedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , =
const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *);
+
+struct SpeexResamplerState_ {
+ spx_uint32_t in_rate;
+ spx_uint32_t out_rate;
+ spx_uint32_t num_rate;
+ spx_uint32_t den_rate;
+ =
+ int quality;
+ spx_uint32_t nb_channels;
+ spx_uint32_t filt_len;
+ spx_uint32_t mem_alloc_size;
+ int int_advance;
+ int frac_advance;
+ float cutoff;
+ spx_uint32_t oversample;
+ int initialised;
+ int started;
+ =
+ /* These are per-channel */
+ spx_int32_t *last_sample;
+ spx_uint32_t *samp_frac_num;
+ spx_uint32_t *magic_samples;
+ =
+ spx_word16_t *mem;
+ spx_word16_t *sinc_table;
+ spx_uint32_t sinc_table_length;
+ resampler_basic_func resampler_ptr;
+ =
+ int in_stride;
+ int out_stride;
+} ;
+
+static double kaiser12_table[68] =3D {
+ 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076,
+ 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014,
+ 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601,
+ 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014,
+ 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490,
+ 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546,
+ 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178,
+ 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947,
+ 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058,
+ 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438,
+ 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.000052773=
4,
+ 0.00001000, 0.00000000};
+/*
+static double kaiser12_table[36] =3D {
+ 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741,
+ 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762,
+ 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274,
+ 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466,
+ 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291,
+ 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.0000000=
0};
+*/
+static double kaiser10_table[36] =3D {
+ 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446,
+ 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347,
+ 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962,
+ 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451,
+ 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739,
+ 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000};
+
+static double kaiser8_table[36] =3D {
+ 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200,
+ 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126,
+ 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272,
+ 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758,
+ 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490,
+ 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000};
+ =
+static double kaiser6_table[36] =3D {
+ 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003,
+ 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565,
+ 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561,
+ 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058,
+ 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600,
+ 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000};
+
+struct FuncDef {
+ double *table;
+ int oversample;
+};
+ =
+static struct FuncDef _KAISER12 =3D {kaiser12_table, 64};
+#define KAISER12 (&_KAISER12)
+/*static struct FuncDef _KAISER12 =3D {kaiser12_table, 32};
+#define KAISER12 (&_KAISER12)*/
+static struct FuncDef _KAISER10 =3D {kaiser10_table, 32};
+#define KAISER10 (&_KAISER10)
+static struct FuncDef _KAISER8 =3D {kaiser8_table, 32};
+#define KAISER8 (&_KAISER8)
+static struct FuncDef _KAISER6 =3D {kaiser6_table, 32};
+#define KAISER6 (&_KAISER6)
+
+struct QualityMapping {
+ int base_length;
+ int oversample;
+ float downsample_bandwidth;
+ float upsample_bandwidth;
+ struct FuncDef *window_func;
+};
+
+
+/* This table maps conversion quality to internal parameters. There are two
+ reasons that explain why the up-sampling bandwidth is larger than the =
+ down-sampling bandwidth:
+ 1) When up-sampling, we can assume that the spectrum is already attenua=
ted
+ close to the Nyquist rate (from an A/D or a previous resampling filt=
er)
+ 2) Any aliasing that occurs very close to the Nyquist rate will be mask=
ed
+ by the sinusoids/noise just below the Nyquist rate (guaranteed only =
for
+ up-sampling).
+*/
+static const struct QualityMapping quality_map[11] =3D {
+ { 8, 4, 0.830f, 0.860f, KAISER6 }, /* Q0 */
+ { 16, 4, 0.850f, 0.880f, KAISER6 }, /* Q1 */
+ { 32, 4, 0.882f, 0.910f, KAISER6 }, /* Q2 */ /* 82.3% cutoff ( ~60 dB=
stop) 6 */
+ { 48, 8, 0.895f, 0.917f, KAISER8 }, /* Q3 */ /* 84.9% cutoff ( ~80 dB=
stop) 8 */
+ { 64, 8, 0.921f, 0.940f, KAISER8 }, /* Q4 */ /* 88.7% cutoff ( ~80 dB=
stop) 8 */
+ { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */ /* 89.1% cutoff (~100 dB=
stop) 10 */
+ { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */ /* 91.5% cutoff (~100 dB=
stop) 10 */
+ {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */ /* 93.1% cutoff (~100 dB=
stop) 10 */
+ {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */ /* 94.5% cutoff (~100 dB=
stop) 10 */
+ {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */ /* 95.5% cutoff (~100 dB=
stop) 10 */
+ {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB=
stop) 10 */
+};
+/*8,24,40,56,80,104,128,160,200,256,320*/
+static double compute_func(float x, struct FuncDef *func)
+{
+ float y, frac;
+ double interp[4];
+ int ind; =
+ y =3D x*func->oversample;
+ ind =3D (int)floor(y);
+ frac =3D (y-ind);
+ /* CSE with handle the repeated powers */
+ interp[3] =3D -0.1666666667*frac + 0.1666666667*(frac*frac*frac);
+ interp[2] =3D frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac);
+ /*interp[2] =3D 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
+ interp[0] =3D -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac=
*frac*frac);
+ /* Just to make sure we don't have rounding problems */
+ interp[1] =3D 1.f-interp[3]-interp[2]-interp[0];
+ =
+ /*sum =3D frac*accum[1] + (1-frac)*accum[2];*/
+ return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + inte=
rp[2]*func->table[ind+2] + interp[3]*func->table[ind+3];
+}
+
+#if 0
+#include <stdio.h>
+int main(int argc, char **argv)
+{
+ int i;
+ for (i=3D0;i<256;i++)
+ {
+ printf ("%f\n", compute_func(i/256., KAISER12));
+ }
+ return 0;
+}
+#endif
+
+#ifdef FIXED_POINT
+/* The slow way of computing a sinc for the table. Should improve that som=
e day */
+static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *win=
dow_func)
+{
+ /*fprintf (stderr, "%f ", x);*/
+ float xx =3D x * cutoff;
+ if (fabs(x)<1e-6f)
+ return WORD2INT(32768.*cutoff);
+ else if (fabs(x) > .5f*N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fab=
s(2.*x/N), window_func));
+}
+#else
+/* The slow way of computing a sinc for the table. Should improve that som=
e day */
+static spx_word16_t sinc(float cutoff, float x, int N, struct FuncDef *win=
dow_func)
+{
+ /*fprintf (stderr, "%f ", x);*/
+ float xx =3D x * cutoff;
+ if (fabs(x)<1e-6)
+ return cutoff;
+ else if (fabs(x) > .5*N)
+ return 0;
+ /*FIXME: Can it really be any slower than this? */
+ return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), windo=
w_func);
+}
+#endif
+
+#ifdef FIXED_POINT
+static void cubic_coef(spx_word16_t x, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corres=
ponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ spx_word16_t x2, x3;
+ x2 =3D MULT16_16_P15(x, x);
+ x3 =3D MULT16_16_P15(x, x2);
+ interp[0] =3D PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(Q=
CONST16(0.16667f, 15),x3),15);
+ interp[1] =3D EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32=
(x3)),1));
+ interp[3] =3D PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(Q=
CONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15);
+ /* Just to make sure we don't have rounding problems */
+ interp[2] =3D Q15_ONE-interp[0]-interp[1]-interp[3];
+ if (interp[2]<32767)
+ interp[2]+=3D1;
+}
+#else
+static void cubic_coef(spx_word16_t frac, spx_word16_t interp[4])
+{
+ /* Compute interpolation coefficients. I'm not sure whether this corres=
ponds to cubic interpolation
+ but I know it's MMSE-optimal on a sinc */
+ interp[0] =3D -0.16667f*frac + 0.16667f*frac*frac*frac;
+ interp[1] =3D frac + 0.5f*frac*frac - 0.5f*frac*frac*frac;
+ /*interp[2] =3D 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/
+ interp[3] =3D -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac;
+ /* Just to make sure we don't have rounding problems */
+ interp[2] =3D 1.-interp[0]-interp[1]-interp[3];
+}
+#endif
+
+static int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint=
32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word1=
6_t *out, spx_uint32_t *out_len)
+{
+ int N =3D st->filt_len;
+ int out_sample =3D 0;
+ spx_word16_t *mem;
+ int last_sample =3D st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num =3D st->samp_frac_num[channel_index];
+ mem =3D st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >=3D (spx_int32_t)*in_len || out_sample >=3D (spx_=
int32_t)*out_len))
+ {
+ int j;
+ spx_word32_t sum=3D0;
+ =
+ /* We already have all the filter coefficients pre-computed in the t=
able */
+ const spx_word16_t *ptr;
+ /* Do the memory part */
+ for (j=3D0;last_sample-N+1+j < 0;j++)
+ {
+ sum +=3D MULT16_16(mem[last_sample+j],st->sinc_table[samp_frac_nu=
m*st->filt_len+j]);
+ }
+ =
+ /* Do the new part */
+ ptr =3D in+st->in_stride*(last_sample-N+1+j);
+ for (;j<N;j++)
+ {
+ sum +=3D MULT16_16(*ptr,st->sinc_table[samp_frac_num*st->filt_len=
+j]);
+ ptr +=3D st->in_stride;
+ }
+ =
+ *out =3D PSHR32(sum,15);
+ out +=3D st->out_stride;
+ out_sample++;
+ last_sample +=3D st->int_advance;
+ samp_frac_num +=3D st->frac_advance;
+ if (samp_frac_num >=3D st->den_rate)
+ {
+ samp_frac_num -=3D st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] =3D last_sample;
+ st->samp_frac_num[channel_index] =3D samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precisi=
on accumulator */
+static int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint=
32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word1=
6_t *out, spx_uint32_t *out_len)
+{
+ int N =3D st->filt_len;
+ int out_sample =3D 0;
+ spx_word16_t *mem;
+ int last_sample =3D st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num =3D st->samp_frac_num[channel_index];
+ mem =3D st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >=3D (spx_int32_t)*in_len || out_sample >=3D (spx_=
int32_t)*out_len))
+ {
+ int j;
+ double sum=3D0;
+ =
+ /* We already have all the filter coefficients pre-computed in the t=
able */
+ const spx_word16_t *ptr;
+ /* Do the memory part */
+ for (j=3D0;last_sample-N+1+j < 0;j++)
+ {
+ sum +=3D MULT16_16(mem[last_sample+j],(double)st->sinc_table[samp=
_frac_num*st->filt_len+j]);
+ }
+ =
+ /* Do the new part */
+ ptr =3D in+st->in_stride*(last_sample-N+1+j);
+ for (;j<N;j++)
+ {
+ sum +=3D MULT16_16(*ptr,(double)st->sinc_table[samp_frac_num*st->=
filt_len+j]);
+ ptr +=3D st->in_stride;
+ }
+ =
+ *out =3D sum;
+ out +=3D st->out_stride;
+ out_sample++;
+ last_sample +=3D st->int_advance;
+ samp_frac_num +=3D st->frac_advance;
+ if (samp_frac_num >=3D st->den_rate)
+ {
+ samp_frac_num -=3D st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] =3D last_sample;
+ st->samp_frac_num[channel_index] =3D samp_frac_num;
+ return out_sample;
+}
+#endif
+
+static int resampler_basic_interpolate_single(SpeexResamplerState *st, spx=
_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_=
word16_t *out, spx_uint32_t *out_len)
+{
+ int N =3D st->filt_len;
+ int out_sample =3D 0;
+ spx_word16_t *mem;
+ int last_sample =3D st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num =3D st->samp_frac_num[channel_index];
+ mem =3D st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >=3D (spx_int32_t)*in_len || out_sample >=3D (spx_=
int32_t)*out_len))
+ {
+ int j;
+ spx_word32_t sum=3D0;
+ =
+ /* We need to interpolate the sinc filter */
+ spx_word32_t accum[4] =3D {0.f,0.f, 0.f, 0.f};
+ spx_word16_t interp[4];
+ const spx_word16_t *ptr;
+ int offset;
+ spx_word16_t frac;
+ offset =3D samp_frac_num*st->oversample/st->den_rate;
+#ifdef FIXED_POINT
+ frac =3D PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,=
15),st->den_rate);
+#else
+ frac =3D ((float)((samp_frac_num*st->oversample) % st->den_rate))/st=
->den_rate;
+#endif
+ /* This code is written like this to make it easy to optimise wit=
h SIMD.
+ For most DSPs, it would be best to split the loops in two because mo=
st DSPs =
+ have only two accumulators */
+ for (j=3D0;last_sample-N+1+j < 0;j++)
+ {
+ spx_word16_t curr_mem =3D mem[last_sample+j];
+ accum[0] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset-2]);
+ accum[1] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset-1]);
+ accum[2] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset]);
+ accum[3] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset+1]);
+ }
+ ptr =3D in+st->in_stride*(last_sample-N+1+j);
+ /* Do the new part */
+ for (;j<N;j++)
+ {
+ spx_word16_t curr_in =3D *ptr;
+ ptr +=3D st->in_stride;
+ accum[0] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset-2]);
+ accum[1] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset-1]);
+ accum[2] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset]);
+ accum[3] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset+1]);
+ }
+ cubic_coef(frac, interp);
+ sum =3D MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],=
accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],acc=
um[3]);
+ =
+ *out =3D PSHR32(sum,15);
+ out +=3D st->out_stride;
+ out_sample++;
+ last_sample +=3D st->int_advance;
+ samp_frac_num +=3D st->frac_advance;
+ if (samp_frac_num >=3D st->den_rate)
+ {
+ samp_frac_num -=3D st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] =3D last_sample;
+ st->samp_frac_num[channel_index] =3D samp_frac_num;
+ return out_sample;
+}
+
+#ifdef FIXED_POINT
+#else
+/* This is the same as the previous function, except with a double-precisi=
on accumulator */
+static int resampler_basic_interpolate_double(SpeexResamplerState *st, spx=
_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_=
word16_t *out, spx_uint32_t *out_len)
+{
+ int N =3D st->filt_len;
+ int out_sample =3D 0;
+ spx_word16_t *mem;
+ int last_sample =3D st->last_sample[channel_index];
+ spx_uint32_t samp_frac_num =3D st->samp_frac_num[channel_index];
+ mem =3D st->mem + channel_index * st->mem_alloc_size;
+ while (!(last_sample >=3D (spx_int32_t)*in_len || out_sample >=3D (spx_=
int32_t)*out_len))
+ {
+ int j;
+ spx_word32_t sum=3D0;
+ =
+ /* We need to interpolate the sinc filter */
+ double accum[4] =3D {0.f,0.f, 0.f, 0.f};
+ float interp[4];
+ const spx_word16_t *ptr;
+ float alpha =3D ((float)samp_frac_num)/st->den_rate;
+ int offset =3D samp_frac_num*st->oversample/st->den_rate;
+ float frac =3D alpha*st->oversample - offset;
+ /* This code is written like this to make it easy to optimise wit=
h SIMD.
+ For most DSPs, it would be best to split the loops in two because mo=
st DSPs =
+ have only two accumulators */
+ for (j=3D0;last_sample-N+1+j < 0;j++)
+ {
+ double curr_mem =3D mem[last_sample+j];
+ accum[0] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset-2]);
+ accum[1] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset-1]);
+ accum[2] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset]);
+ accum[3] +=3D MULT16_16(curr_mem,st->sinc_table[4+(j+1)*st->overs=
ample-offset+1]);
+ }
+ ptr =3D in+st->in_stride*(last_sample-N+1+j);
+ /* Do the new part */
+ for (;j<N;j++)
+ {
+ double curr_in =3D *ptr;
+ ptr +=3D st->in_stride;
+ accum[0] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset-2]);
+ accum[1] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset-1]);
+ accum[2] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset]);
+ accum[3] +=3D MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversa=
mple-offset+1]);
+ }
+ cubic_coef(frac, interp);
+ sum =3D interp[0]*accum[0] + interp[1]*accum[1] + interp[2]*accum[2]=
+ interp[3]*accum[3];
+ =
+ *out =3D PSHR32(sum,15);
+ out +=3D st->out_stride;
+ out_sample++;
+ last_sample +=3D st->int_advance;
+ samp_frac_num +=3D st->frac_advance;
+ if (samp_frac_num >=3D st->den_rate)
+ {
+ samp_frac_num -=3D st->den_rate;
+ last_sample++;
+ }
+ }
+ st->last_sample[channel_index] =3D last_sample;
+ st->samp_frac_num[channel_index] =3D samp_frac_num;
+ return out_sample;
+}
+#endif
+
+static void update_filter(SpeexResamplerState *st)
+{
+ spx_uint32_t old_length;
+ =
+ old_length =3D st->filt_len;
+ st->oversample =3D quality_map[st->quality].oversample;
+ st->filt_len =3D quality_map[st->quality].base_length;
+ =
+ if (st->num_rate > st->den_rate)
+ {
+ /* down-sampling */
+ st->cutoff =3D quality_map[st->quality].downsample_bandwidth * st->d=
en_rate / st->num_rate;
+ /* FIXME: divide the numerator and denominator by a certain amount i=
f they're too large */
+ st->filt_len =3D st->filt_len*st->num_rate / st->den_rate;
+ /* Round down to make sure we have a multiple of 4 */
+ st->filt_len &=3D (~0x3);
+ if (2*st->den_rate < st->num_rate)
+ st->oversample >>=3D 1;
+ if (4*st->den_rate < st->num_rate)
+ st->oversample >>=3D 1;
+ if (8*st->den_rate < st->num_rate)
+ st->oversample >>=3D 1;
+ if (16*st->den_rate < st->num_rate)
+ st->oversample >>=3D 1;
+ if (st->oversample < 1)
+ st->oversample =3D 1;
+ } else {
+ /* up-sampling */
+ st->cutoff =3D quality_map[st->quality].upsample_bandwidth;
+ }
+
+ /* Choose the resampling type that requires the least amount of memory =
*/
+ if (st->den_rate <=3D st->oversample)
+ {
+ spx_uint32_t i;
+ if (!st->sinc_table)
+ st->sinc_table =3D (spx_word16_t *)speex_alloc(st->filt_len*st->d=
en_rate*sizeof(spx_word16_t));
+ else if (st->sinc_table_length < st->filt_len*st->den_rate)
+ {
+ st->sinc_table =3D (spx_word16_t *)speex_realloc(st->sinc_table,s=
t->filt_len*st->den_rate*sizeof(spx_word16_t));
+ st->sinc_table_length =3D st->filt_len*st->den_rate;
+ }
+ for (i=3D0;i<st->den_rate;i++)
+ {
+ spx_int32_t j;
+ for (j=3D0;j<st->filt_len;j++)
+ {
+ st->sinc_table[i*st->filt_len+j] =3D sinc(st->cutoff,((j-(spx_=
int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_m=
ap[st->quality].window_func);
+ }
+ }
+#ifdef FIXED_POINT
+ st->resampler_ptr =3D resampler_basic_direct_single;
+#else
+ if (st->quality>8)
+ st->resampler_ptr =3D resampler_basic_direct_double;
+ else
+ st->resampler_ptr =3D resampler_basic_direct_single;
+#endif
+ /*fprintf (stderr, "resampler uses direct sinc table and normalised =
cutoff %f\n", cutoff);*/
+ } else {
+ spx_int32_t i;
+ if (!st->sinc_table)
+ st->sinc_table =3D (spx_word16_t *)speex_alloc((st->filt_len*st->=
oversample+8)*sizeof(spx_word16_t));
+ else if (st->sinc_table_length < st->filt_len*st->oversample+8)
+ {
+ st->sinc_table =3D (spx_word16_t *)speex_realloc(st->sinc_table,(=
st->filt_len*st->oversample+8)*sizeof(spx_word16_t));
+ st->sinc_table_length =3D st->filt_len*st->oversample+8;
+ }
+ for (i=3D-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++)
+ st->sinc_table[i+4] =3D sinc(st->cutoff,(i/(float)st->oversample =
- st->filt_len/2), st->filt_len, quality_map[st->quality].window_func);
+#ifdef FIXED_POINT
+ st->resampler_ptr =3D resampler_basic_interpolate_single;
+#else
+ if (st->quality>8)
+ st->resampler_ptr =3D resampler_basic_interpolate_double;
+ else
+ st->resampler_ptr =3D resampler_basic_interpolate_single;
+#endif
+ /*fprintf (stderr, "resampler uses interpolated sinc table and norma=
lised cutoff %f\n", cutoff);*/
+ }
+ st->int_advance =3D st->num_rate/st->den_rate;
+ st->frac_advance =3D st->num_rate%st->den_rate;
+
+ =
+ /* Here's the place where we update the filter memory to take into acco=
unt
+ the change in filter length. It's probably the messiest part of the =
code
+ due to handling of lots of corner cases. */
+ if (!st->mem)
+ {
+ spx_uint32_t i;
+ st->mem =3D (spx_word16_t*)speex_alloc(st->nb_channels*(st->filt_len=
-1) * sizeof(spx_word16_t));
+ for (i=3D0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem[i] =3D 0;
+ st->mem_alloc_size =3D st->filt_len-1;
+ /*speex_warning("init filter");*/
+ } else if (!st->started)
+ {
+ spx_uint32_t i;
+ st->mem =3D (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*(s=
t->filt_len-1) * sizeof(spx_word16_t));
+ for (i=3D0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem[i] =3D 0;
+ st->mem_alloc_size =3D st->filt_len-1;
+ /*speex_warning("reinit filter");*/
+ } else if (st->filt_len > old_length)
+ {
+ spx_int32_t i;
+ /* Increase the filter length */
+ /*speex_warning("increase filter size");*/
+ int old_alloc_size =3D st->mem_alloc_size;
+ if (st->filt_len-1 > st->mem_alloc_size)
+ {
+ st->mem =3D (spx_word16_t*)speex_realloc(st->mem, st->nb_channels=
*(st->filt_len-1) * sizeof(spx_word16_t));
+ st->mem_alloc_size =3D st->filt_len-1;
+ }
+ for (i=3Dst->nb_channels-1;i>=3D0;i--)
+ {
+ spx_int32_t j;
+ spx_uint32_t olen =3D old_length;
+ /*if (st->magic_samples[i])*/
+ {
+ /* Try and remove the magic samples as if nothing had happened=
*/
+ =
+ /* FIXME: This is wrong but for now we need it to avoid going =
over the array bounds */
+ olen =3D old_length + 2*st->magic_samples[i];
+ for (j=3Dold_length-2+st->magic_samples[i];j>=3D0;j--)
+ st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] =3D st=
->mem[i*old_alloc_size+j];
+ for (j=3D0;j<st->magic_samples[i];j++)
+ st->mem[i*st->mem_alloc_size+j] =3D 0;
+ st->magic_samples[i] =3D 0;
+ }
+ if (st->filt_len > olen)
+ {
+ /* If the new filter length is still bigger than the "augmente=
d" length */
+ /* Copy data going backward */
+ for (j=3D0;j<olen-1;j++)
+ st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] =3D st->me=
m[i*st->mem_alloc_size+(olen-2-j)];
+ /* Then put zeros for lack of anything better */
+ for (;j<st->filt_len-1;j++)
+ st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] =3D 0;
+ /* Adjust last_sample */
+ st->last_sample[i] +=3D (st->filt_len - olen)/2;
+ } else {
+ /* Put back some of the magic! */
+ st->magic_samples[i] =3D (olen - st->filt_len)/2;
+ for (j=3D0;j<st->filt_len-1+st->magic_samples[i];j++)
+ st->mem[i*st->mem_alloc_size+j] =3D st->mem[i*st->mem_alloc=
_size+j+st->magic_samples[i]];
+ }
+ }
+ } else if (st->filt_len < old_length)
+ {
+ spx_uint32_t i;
+ /* Reduce filter length, this a bit tricky. We need to store some of=
the memory as "magic"
+ samples so they can be used directly as input the next time(s) */
+ for (i=3D0;i<st->nb_channels;i++)
+ {
+ spx_uint32_t j;
+ spx_uint32_t old_magic =3D st->magic_samples[i];
+ st->magic_samples[i] =3D (old_length - st->filt_len)/2;
+ /* We must copy some of the memory that's no longer used */
+ /* Copy data going backward */
+ for (j=3D0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++)
+ st->mem[i*st->mem_alloc_size+j] =3D st->mem[i*st->mem_alloc_si=
ze+j+st->magic_samples[i]];
+ st->magic_samples[i] +=3D old_magic;
+ }
+ }
+
+}
+
+SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_ui=
nt32_t in_rate, spx_uint32_t out_rate, int quality, int *err)
+{
+ return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rat=
e, out_rate, quality, err);
+}
+
+SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, s=
px_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_ui=
nt32_t out_rate, int quality, int *err)
+{
+ spx_uint32_t i;
+ SpeexResamplerState *st;
+ if (quality > 10 || quality < 0)
+ {
+ if (err)
+ *err =3D RESAMPLER_ERR_INVALID_ARG;
+ return NULL;
+ }
+ st =3D (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState));
+ st->initialised =3D 0;
+ st->started =3D 0;
+ st->in_rate =3D 0;
+ st->out_rate =3D 0;
+ st->num_rate =3D 0;
+ st->den_rate =3D 0;
+ st->quality =3D -1;
+ st->sinc_table_length =3D 0;
+ st->mem_alloc_size =3D 0;
+ st->filt_len =3D 0;
+ st->mem =3D 0;
+ st->resampler_ptr =3D 0;
+ =
+ st->cutoff =3D 1.f;
+ st->nb_channels =3D nb_channels;
+ st->in_stride =3D 1;
+ st->out_stride =3D 1;
+ =
+ /* Per channel data */
+ st->last_sample =3D (spx_int32_t*)speex_alloc(nb_channels*sizeof(int));
+ st->magic_samples =3D (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int=
));
+ st->samp_frac_num =3D (spx_uint32_t*)speex_alloc(nb_channels*sizeof(int=
));
+ for (i=3D0;i<nb_channels;i++)
+ {
+ st->last_sample[i] =3D 0;
+ st->magic_samples[i] =3D 0;
+ st->samp_frac_num[i] =3D 0;
+ }
+
+ speex_resampler_set_quality(st, quality);
+ speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_ra=
te);
+
+ =
+ update_filter(st);
+ =
+ st->initialised =3D 1;
+ if (err)
+ *err =3D RESAMPLER_ERR_SUCCESS;
+
+ return st;
+}
+
+void speex_resampler_destroy(SpeexResamplerState *st)
+{
+ speex_free(st->mem);
+ speex_free(st->sinc_table);
+ speex_free(st->last_sample);
+ speex_free(st->magic_samples);
+ speex_free(st->samp_frac_num);
+ speex_free(st);
+}
+
+
+
+static int speex_resampler_process_native(SpeexResamplerState *st, spx_uin=
t32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word=
16_t *out, spx_uint32_t *out_len)
+{
+ int j=3D0;
+ int N =3D st->filt_len;
+ int out_sample =3D 0;
+ spx_word16_t *mem;
+ spx_uint32_t tmp_out_len =3D 0;
+ mem =3D st->mem + channel_index * st->mem_alloc_size;
+ st->started =3D 1;
+ =
+ /* Handle the case where we have samples left from a reduction in filte=
r length */
+ if (st->magic_samples[channel_index])
+ {
+ int istride_save;
+ spx_uint32_t tmp_in_len;
+ spx_uint32_t tmp_magic;
+ =
+ istride_save =3D st->in_stride;
+ tmp_in_len =3D st->magic_samples[channel_index];
+ tmp_out_len =3D *out_len;
+ /* magic_samples needs to be set to zero to avoid infinite recursion=
*/
+ tmp_magic =3D st->magic_samples[channel_index];
+ st->magic_samples[channel_index] =3D 0;
+ st->in_stride =3D 1;
+ speex_resampler_process_native(st, channel_index, mem+N-1, &tmp_in_l=
en, out, &tmp_out_len);
+ st->in_stride =3D istride_save;
+ /*speex_warning_int("extra samples:", tmp_out_len);*/
+ /* If we couldn't process all "magic" input samples, save the rest f=
or next time */
+ if (tmp_in_len < tmp_magic)
+ {
+ spx_uint32_t i;
+ st->magic_samples[channel_index] =3D tmp_magic-tmp_in_len;
+ for (i=3D0;i<st->magic_samples[channel_index];i++)
+ mem[N-1+i]=3Dmem[N-1+i+tmp_in_len];
+ }
+ out +=3D tmp_out_len*st->out_stride;
+ *out_len -=3D tmp_out_len;
+ }
+ =
+ /* Call the right resampler through the function ptr */
+ out_sample =3D st->resampler_ptr(st, channel_index, in, in_len, out, ou=
t_len);
+ =
+ if (st->last_sample[channel_index] < (spx_int32_t)*in_len)
+ *in_len =3D st->last_sample[channel_index];
+ *out_len =3D out_sample+tmp_out_len;
+ st->last_sample[channel_index] -=3D *in_len;
+ =
+ for (j=3D0;j<N-1-(spx_int32_t)*in_len;j++)
+ mem[j] =3D mem[j+*in_len];
+ for (;j<N-1;j++)
+ mem[j] =3D in[st->in_stride*(j+*in_len-N+1)];
+ =
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+#define FIXED_STACK_ALLOC 1024
+
+#ifdef FIXED_POINT
+int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t ch=
annel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_=
t *out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+#ifdef VAR_ARRAYS
+ spx_word16_t x[*in_len];
+ spx_word16_t y[*out_len];
+ /*VARDECL(spx_word16_t *x);
+ VARDECL(spx_word16_t *y);
+ ALLOC(x, *in_len, spx_word16_t);
+ ALLOC(y, *out_len, spx_word16_t);*/
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ for (i=3D0;i<*in_len;i++)
+ x[i] =3D WORD2INT(in[i*st->in_stride]);
+ st->in_stride =3D st->out_stride =3D 1;
+ speex_resampler_process_native(st, channel_index, x, in_len, y, out_len=
);
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ for (i=3D0;i<*out_len;i++)
+ out[i*st->out_stride] =3D y[i];
+#else
+ spx_word16_t x[FIXED_STACK_ALLOC];
+ spx_word16_t y[FIXED_STACK_ALLOC];
+ spx_uint32_t ilen=3D*in_len, olen=3D*out_len;
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ while (ilen && olen)
+ {
+ spx_uint32_t ichunk, ochunk;
+ ichunk =3D ilen;
+ ochunk =3D olen;
+ if (ichunk>FIXED_STACK_ALLOC)
+ ichunk=3DFIXED_STACK_ALLOC;
+ if (ochunk>FIXED_STACK_ALLOC)
+ ochunk=3DFIXED_STACK_ALLOC;
+ for (i=3D0;i<ichunk;i++)
+ x[i] =3D WORD2INT(in[i*st->in_stride]);
+ st->in_stride =3D st->out_stride =3D 1;
+ speex_resampler_process_native(st, channel_index, x, &ichunk, y, &oc=
hunk);
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ for (i=3D0;i<ochunk;i++)
+ out[i*st->out_stride] =3D y[i];
+ out +=3D ochunk;
+ in +=3D ichunk;
+ ilen -=3D ichunk;
+ olen -=3D ochunk;
+ }
+ *in_len -=3D ilen;
+ *out_len -=3D olen; =
+#endif
+ return RESAMPLER_ERR_SUCCESS;
+}
+int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t chan=
nel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, s=
px_uint32_t *out_len)
+{
+ return speex_resampler_process_native(st, channel_index, in, in_len, ou=
t, out_len);
+}
+#else
+int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t ch=
annel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_=
t *out_len)
+{
+ return speex_resampler_process_native(st, channel_index, in, in_len, ou=
t, out_len);
+}
+int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t chan=
nel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, s=
px_uint32_t *out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+#ifdef VAR_ARRAYS
+ spx_word16_t x[*in_len];
+ spx_word16_t y[*out_len];
+ /*VARDECL(spx_word16_t *x);
+ VARDECL(spx_word16_t *y);
+ ALLOC(x, *in_len, spx_word16_t);
+ ALLOC(y, *out_len, spx_word16_t);*/
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ for (i=3D0;i<*in_len;i++)
+ x[i] =3D in[i*st->in_stride];
+ st->in_stride =3D st->out_stride =3D 1;
+ speex_resampler_process_native(st, channel_index, x, in_len, y, out_len=
);
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ for (i=3D0;i<*out_len;i++)
+ out[i*st->out_stride] =3D WORD2INT(y[i]);
+#else
+ spx_word16_t x[FIXED_STACK_ALLOC];
+ spx_word16_t y[FIXED_STACK_ALLOC];
+ spx_uint32_t ilen=3D*in_len, olen=3D*out_len;
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ while (ilen && olen)
+ {
+ spx_uint32_t ichunk, ochunk;
+ ichunk =3D ilen;
+ ochunk =3D olen;
+ if (ichunk>FIXED_STACK_ALLOC)
+ ichunk=3DFIXED_STACK_ALLOC;
+ if (ochunk>FIXED_STACK_ALLOC)
+ ochunk=3DFIXED_STACK_ALLOC;
+ for (i=3D0;i<ichunk;i++)
+ x[i] =3D in[i*st->in_stride];
+ st->in_stride =3D st->out_stride =3D 1;
+ speex_resampler_process_native(st, channel_index, x, &ichunk, y, &oc=
hunk);
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ for (i=3D0;i<ochunk;i++)
+ out[i*st->out_stride] =3D WORD2INT(y[i]);
+ out +=3D ochunk;
+ in +=3D ichunk;
+ ilen -=3D ichunk;
+ olen -=3D ochunk;
+ }
+ *in_len -=3D ilen;
+ *out_len -=3D olen; =
+#endif
+ return RESAMPLER_ERR_SUCCESS;
+}
+#endif
+
+int speex_resampler_process_interleaved_float(SpeexResamplerState *st, con=
st float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_len =3D *out_len;
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ st->in_stride =3D st->out_stride =3D st->nb_channels;
+ for (i=3D0;i<st->nb_channels;i++)
+ {
+ *out_len =3D bak_len;
+ speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len);
+ }
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+ =
+int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const=
spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out=
_len)
+{
+ spx_uint32_t i;
+ int istride_save, ostride_save;
+ spx_uint32_t bak_len =3D *out_len;
+ istride_save =3D st->in_stride;
+ ostride_save =3D st->out_stride;
+ st->in_stride =3D st->out_stride =3D st->nb_channels;
+ for (i=3D0;i<st->nb_channels;i++)
+ {
+ *out_len =3D bak_len;
+ speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len);
+ }
+ st->in_stride =3D istride_save;
+ st->out_stride =3D ostride_save;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate=
, spx_uint32_t out_rate)
+{
+ return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, ou=
t_rate);
+}
+
+void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_ra=
te, spx_uint32_t *out_rate)
+{
+ *in_rate =3D st->in_rate;
+ *out_rate =3D st->out_rate;
+}
+
+int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ra=
tio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rat=
e)
+{
+ spx_uint32_t fact;
+ spx_uint32_t old_den;
+ spx_uint32_t i;
+ if (st->in_rate =3D=3D in_rate && st->out_rate =3D=3D out_rate && st->n=
um_rate =3D=3D ratio_num && st->den_rate =3D=3D ratio_den)
+ return RESAMPLER_ERR_SUCCESS;
+ =
+ old_den =3D st->den_rate;
+ st->in_rate =3D in_rate;
+ st->out_rate =3D out_rate;
+ st->num_rate =3D ratio_num;
+ st->den_rate =3D ratio_den;
+ /* FIXME: This is terribly inefficient, but who cares (at least for now=
)? */
+ for (fact=3D2;fact<=3DIMIN(st->num_rate, st->den_rate);fact++)
+ {
+ while ((st->num_rate % fact =3D=3D 0) && (st->den_rate % fact =3D=3D=
0))
+ {
+ st->num_rate /=3D fact;
+ st->den_rate /=3D fact;
+ }
+ }
+ =
+ if (old_den > 0)
+ {
+ for (i=3D0;i<st->nb_channels;i++)
+ {
+ st->samp_frac_num[i]=3Dst->samp_frac_num[i]*st->den_rate/old_den;
+ /* Safety net */
+ if (st->samp_frac_num[i] >=3D st->den_rate)
+ st->samp_frac_num[i] =3D st->den_rate-1;
+ }
+ }
+ =
+ if (st->initialised)
+ update_filter(st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *rati=
o_num, spx_uint32_t *ratio_den)
+{
+ *ratio_num =3D st->num_rate;
+ *ratio_den =3D st->den_rate;
+}
+
+int speex_resampler_set_quality(SpeexResamplerState *st, int quality)
+{
+ if (quality > 10 || quality < 0)
+ return RESAMPLER_ERR_INVALID_ARG;
+ if (st->quality =3D=3D quality)
+ return RESAMPLER_ERR_SUCCESS;
+ st->quality =3D quality;
+ if (st->initialised)
+ update_filter(st);
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+void speex_resampler_get_quality(SpeexResamplerState *st, int *quality)
+{
+ *quality =3D st->quality;
+}
+
+void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_=
t stride)
+{
+ st->in_stride =3D stride;
+}
+
+void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_=
t *stride)
+{
+ *stride =3D st->in_stride;
+}
+
+void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32=
_t stride)
+{
+ st->out_stride =3D stride;
+}
+
+void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32=
_t *stride)
+{
+ *stride =3D st->out_stride;
+}
+
+int speex_resampler_skip_zeros(SpeexResamplerState *st)
+{
+ spx_uint32_t i;
+ for (i=3D0;i<st->nb_channels;i++)
+ st->last_sample[i] =3D st->filt_len/2;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+int speex_resampler_reset_mem(SpeexResamplerState *st)
+{
+ spx_uint32_t i;
+ for (i=3D0;i<st->nb_channels*(st->filt_len-1);i++)
+ st->mem[i] =3D 0;
+ return RESAMPLER_ERR_SUCCESS;
+}
+
+const char *speex_resampler_strerror(int err)
+{
+ switch (err)
+ {
+ case RESAMPLER_ERR_SUCCESS:
+ return "Success.";
+ case RESAMPLER_ERR_ALLOC_FAILED:
+ return "Memory allocation failed.";
+ case RESAMPLER_ERR_BAD_STATE:
+ return "Bad resampler state.";
+ case RESAMPLER_ERR_INVALID_ARG:
+ return "Invalid argument.";
+ case RESAMPLER_ERR_PTR_OVERLAP:
+ return "Input and output buffers overlap.";
+ default:
+ return "Unknown error. Bad error code or strange version mismatch=
.";
+ }
+}
Added: branches/lennart/src/pulsecore/speex/speex_resampler.h
URL: http://0pointer.de/cgi-bin/viewcvs.cgi/branches/lennart/src/pulsecore/=
speex/speex_resampler.h?rev=3D1707&root=3Dpulseaudio&view=3Dauto
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=
=3D=3D=3D
--- branches/lennart/src/pulsecore/speex/speex_resampler.h (added)
+++ branches/lennart/src/pulsecore/speex/speex_resampler.h Fri Aug 24 00:31=
:01 2007
@@ -1,0 +1,328 @@
+/* Copyright (C) 2007 Jean-Marc Valin
+ =
+ File: speex_resampler.h
+ Resampling code
+ =
+ The design goals of this code are:
+ - Very fast algorithm
+ - Low memory requirement
+ - Good *perceptual* quality (and not best SNR)
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are
+ met:
+
+ 1. Redistributions of source code must retain the above copyright notic=
e,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTI=
ES
+ OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
+ INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ POSSIBILITY OF SUCH DAMAGE.
+*/
+
+
+#ifndef SPEEX_RESAMPLER_H
+#define SPEEX_RESAMPLER_H
+
+#ifdef OUTSIDE_SPEEX
+
+/********* WARNING: MENTAL SANITY ENDS HERE *************/
+
+/* If the resampler is defined outside of Speex, we change the symbol name=
s so that =
+ there won't be any clash if linking with Speex later on. */
+
+/* #define RANDOM_PREFIX your software name here */
+#ifndef RANDOM_PREFIX
+#error "Please define RANDOM_PREFIX (above) to something specific to your =
project to prevent symbol name clashes"
+#endif
+
+#define CAT_PREFIX2(a,b) a ## b
+#define CAT_PREFIX(a,b) CAT_PREFIX2(a, b)
+ =
+#define speex_resampler_init CAT_PREFIX(RANDOM_PREFIX,_resampler_init)
+#define speex_resampler_init_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_init=
_frac)
+#define speex_resampler_destroy CAT_PREFIX(RANDOM_PREFIX,_resampler_destro=
y)
+#define speex_resampler_process_float CAT_PREFIX(RANDOM_PREFIX,_resampler_=
process_float)
+#define speex_resampler_process_int CAT_PREFIX(RANDOM_PREFIX,_resampler_pr=
ocess_int)
+#define speex_resampler_process_interleaved_float CAT_PREFIX(RANDOM_PREFIX=
,_resampler_process_interleaved_float)
+#define speex_resampler_process_interleaved_int CAT_PREFIX(RANDOM_PREFIX,_=
resampler_process_interleaved_int)
+#define speex_resampler_set_rate CAT_PREFIX(RANDOM_PREFIX,_resampler_set_r=
ate)
+#define speex_resampler_get_rate CAT_PREFIX(RANDOM_PREFIX,_resampler_get_r=
ate)
+#define speex_resampler_set_rate_frac CAT_PREFIX(RANDOM_PREFIX,_resampler_=
set_rate_frac)
+#define speex_resampler_get_ratio CAT_PREFIX(RANDOM_PREFIX,_resampler_get_=
ratio)
+#define speex_resampler_set_quality CAT_PREFIX(RANDOM_PREFIX,_resampler_se=
t_quality)
+#define speex_resampler_get_quality CAT_PREFIX(RANDOM_PREFIX,_resampler_ge=
t_quality)
+#define speex_resampler_set_input_stride CAT_PREFIX(RANDOM_PREFIX,_resampl=
er_set_input_stride)
+#define speex_resampler_get_input_stride CAT_PREFIX(RANDOM_PREFIX,_resampl=
er_get_input_stride)
+#define speex_resampler_set_output_stride CAT_PREFIX(RANDOM_PREFIX,_resamp=
ler_set_output_stride)
+#define speex_resampler_get_output_stride CAT_PREFIX(RANDOM_PREFIX,_resamp=
ler_get_output_stride)
+#define speex_resampler_skip_zeros CAT_PREFIX(RANDOM_PREFIX,_resampler_ski=
p_zeros)
+#define speex_resampler_reset_mem CAT_PREFIX(RANDOM_PREFIX,_resampler_rese=
t_mem)
+#define speex_resampler_strerror CAT_PREFIX(RANDOM_PREFIX,_resampler_strer=
ror)
+
+#define spx_int16_t short
+#define spx_int32_t int
+#define spx_uint16_t unsigned short
+#define spx_uint32_t unsigned int
+ =
+#else /* OUTSIDE_SPEEX */
+
+#include "speex/speex_types.h"
+
+#endif /* OUTSIDE_SPEEX */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define SPEEX_RESAMPLER_QUALITY_MAX 10
+#define SPEEX_RESAMPLER_QUALITY_MIN 0
+#define SPEEX_RESAMPLER_QUALITY_DEFAULT 4
+#define SPEEX_RESAMPLER_QUALITY_VOIP 3
+#define SPEEX_RESAMPLER_QUALITY_DESKTOP 5
+
+enum {
+ RESAMPLER_ERR_SUCCESS =3D 0,
+ RESAMPLER_ERR_ALLOC_FAILED =3D 1,
+ RESAMPLER_ERR_BAD_STATE =3D 2,
+ RESAMPLER_ERR_INVALID_ARG =3D 3,
+ RESAMPLER_ERR_PTR_OVERLAP =3D 4,
+ =
+ RESAMPLER_ERR_MAX_ERROR
+};
+
+struct SpeexResamplerState_;
+typedef struct SpeexResamplerState_ SpeexResamplerState;
+
+/** Create a new resampler with integer input and output rates.
+ * @param nb_channels Number of channels to be processed
+ * @param in_rate Input sampling rate (integer number of Hz).
+ * @param out_rate Output sampling rate (integer number of Hz).
+ * @param quality Resampling quality between 0 and 10, where 0 has poor qu=
ality
+ * and 10 has very high quality.
+ * @return Newly created resampler state
+ * @retval NULL Error: not enough memory
+ */
+SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, =
+ spx_uint32_t in_rate, =
+ spx_uint32_t out_rate, =
+ int quality,
+ int *err);
+
+/** Create a new resampler with fractional input/output rates. The samplin=
g =
+ * rate ratio is an arbitrary rational number with both the numerator and =
+ * denominator being 32-bit integers.
+ * @param nb_channels Number of channels to be processed
+ * @param ratio_num Numerator of the sampling rate ratio
+ * @param ratio_den Denominator of the sampling rate ratio
+ * @param in_rate Input sampling rate rounded to the nearest integer (in H=
z).
+ * @param out_rate Output sampling rate rounded to the nearest integer (in=
Hz).
+ * @param quality Resampling quality between 0 and 10, where 0 has poor qu=
ality
+ * and 10 has very high quality.
+ * @return Newly created resampler state
+ * @retval NULL Error: not enough memory
+ */
+SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, =
+ spx_uint32_t ratio_num, =
+ spx_uint32_t ratio_den, =
+ spx_uint32_t in_rate, =
+ spx_uint32_t out_rate, =
+ int quality,
+ int *err);
+
+/** Destroy a resampler state.
+ * @param st Resampler state
+ */
+void speex_resampler_destroy(SpeexResamplerState *st);
+
+/** Resample a float array. The input and output buffers must *not* overla=
p.
+ * @param st Resampler state
+ * @param channel_index Index of the channel to process for the multi-chan=
nel =
+ * base (0 otherwise)
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the =
+ * number of samples processed
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples=
written
+ */
+int speex_resampler_process_float(SpeexResamplerState *st, =
+ spx_uint32_t channel_index, =
+ const float *in, =
+ spx_uint32_t *in_len, =
+ float *out, =
+ spx_uint32_t *out_len);
+
+/** Resample an int array. The input and output buffers must *not* overlap.
+ * @param st Resampler state
+ * @param channel_index Index of the channel to process for the multi-chan=
nel =
+ * base (0 otherwise)
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the =
number
+ * of samples processed
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples=
written
+ */
+int speex_resampler_process_int(SpeexResamplerState *st, =
+ spx_uint32_t channel_index, =
+ const spx_int16_t *in, =
+ spx_uint32_t *in_len, =
+ spx_int16_t *out, =
+ spx_uint32_t *out_len);
+
+/** Resample an interleaved float array. The input and output buffers must=
*not* overlap.
+ * @param st Resampler state
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the =
number
+ * of samples processed. This is all per-channel.
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples=
written.
+ * This is all per-channel.
+ */
+int speex_resampler_process_interleaved_float(SpeexResamplerState *st, =
+ const float *in, =
+ spx_uint32_t *in_len, =
+ float *out, =
+ spx_uint32_t *out_len);
+
+/** Resample an interleaved int array. The input and output buffers must *=
not* overlap.
+ * @param st Resampler state
+ * @param in Input buffer
+ * @param in_len Number of input samples in the input buffer. Returns the =
number
+ * of samples processed. This is all per-channel.
+ * @param out Output buffer
+ * @param out_len Size of the output buffer. Returns the number of samples=
written.
+ * This is all per-channel.
+ */
+int speex_resampler_process_interleaved_int(SpeexResamplerState *st, =
+ const spx_int16_t *in, =
+ spx_uint32_t *in_len, =
+ spx_int16_t *out, =
+ spx_uint32_t *out_len);
+
+/** Set (change) the input/output sampling rates (integer value).
+ * @param st Resampler state
+ * @param in_rate Input sampling rate (integer number of Hz).
+ * @param out_rate Output sampling rate (integer number of Hz).
+ */
+int speex_resampler_set_rate(SpeexResamplerState *st, =
+ spx_uint32_t in_rate, =
+ spx_uint32_t out_rate);
+
+/** Get the current input/output sampling rates (integer value).
+ * @param st Resampler state
+ * @param in_rate Input sampling rate (integer number of Hz) copied.
+ * @param out_rate Output sampling rate (integer number of Hz) copied.
+ */
+void speex_resampler_get_rate(SpeexResamplerState *st, =
+ spx_uint32_t *in_rate, =
+ spx_uint32_t *out_rate);
+
+/** Set (change) the input/output sampling rates and resampling ratio =
+ * (fractional values in Hz supported).
+ * @param st Resampler state
+ * @param ratio_num Numerator of the sampling rate ratio
+ * @param ratio_den Denominator of the sampling rate ratio
+ * @param in_rate Input sampling rate rounded to the nearest integer (in H=
z).
+ * @param out_rate Output sampling rate rounded to the nearest integer (in=
Hz).
+ */
+int speex_resampler_set_rate_frac(SpeexResamplerState *st, =
+ spx_uint32_t ratio_num, =
+ spx_uint32_t ratio_den, =
+ spx_uint32_t in_rate, =
+ spx_uint32_t out_rate);
+
+/** Get the current resampling ratio. This will be reduced to the least
+ * common denominator.
+ * @param st Resampler state
+ * @param ratio_num Numerator of the sampling rate ratio copied
+ * @param ratio_den Denominator of the sampling rate ratio copied
+ */
+void speex_resampler_get_ratio(SpeexResamplerState *st, =
+ spx_uint32_t *ratio_num, =
+ spx_uint32_t *ratio_den);
+
+/** Set (change) the conversion quality.
+ * @param st Resampler state
+ * @param quality Resampling quality between 0 and 10, where 0 has poor =
+ * quality and 10 has very high quality.
+ */
+int speex_resampler_set_quality(SpeexResamplerState *st, =
+ int quality);
+
+/** Get the conversion quality.
+ * @param st Resampler state
+ * @param quality Resampling quality between 0 and 10, where 0 has poor =
+ * quality and 10 has very high quality.
+ */
+void speex_resampler_get_quality(SpeexResamplerState *st, =
+ int *quality);
+
+/** Set (change) the input stride.
+ * @param st Resampler state
+ * @param stride Input stride
+ */
+void speex_resampler_set_input_stride(SpeexResamplerState *st, =
+ spx_uint32_t stride);
+
+/** Get the input stride.
+ * @param st Resampler state
+ * @param stride Input stride copied
+ */
+void speex_resampler_get_input_stride(SpeexResamplerState *st, =
+ spx_uint32_t *stride);
+
+/** Set (change) the output stride.
+ * @param st Resampler state
+ * @param stride Output stride
+ */
+void speex_resampler_set_output_stride(SpeexResamplerState *st, =
+ spx_uint32_t stride);
+
+/** Get the output stride.
+ * @param st Resampler state copied
+ * @param stride Output stride
+ */
+void speex_resampler_get_output_stride(SpeexResamplerState *st, =
+ spx_uint32_t *stride);
+
+/** Make sure that the first samples to go out of the resamplers don't hav=
e =
+ * leading zeros. This is only useful before starting to use a newly creat=
ed =
+ * resampler. It is recommended to use that when resampling an audio file,=
as
+ * it will generate a file with the same length. For real-time processing,
+ * it is probably easier not to use this call (so that the output duration
+ * is the same for the first frame).
+ * @param st Resampler state
+ */
+int speex_resampler_skip_zeros(SpeexResamplerState *st);
+
+/** Reset a resampler so a new (unrelated) stream can be processed.
+ * @param st Resampler state
+ */
+int speex_resampler_reset_mem(SpeexResamplerState *st);
+
+/** Returns the English meaning for an error code
+ * @param err Error code
+ * @return English string
+ */
+const char *speex_resampler_strerror(int err);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
More information about the pulseaudio-commits
mailing list