[PATCH 1/5] xfree86: Remove ancient DRI build instructions

Adam Jackson ajax at redhat.com
Tue Dec 8 14:41:36 PST 2015


Signed-off-by: Adam Jackson <ajax at redhat.com>
---
 hw/xfree86/doc/Makefile.am    |   1 -
 hw/xfree86/doc/README.DRIcomp | 551 ------------------------------------------
 2 files changed, 552 deletions(-)
 delete mode 100644 hw/xfree86/doc/README.DRIcomp

diff --git a/hw/xfree86/doc/Makefile.am b/hw/xfree86/doc/Makefile.am
index 1c3620a..392bdfa 100644
--- a/hw/xfree86/doc/Makefile.am
+++ b/hw/xfree86/doc/Makefile.am
@@ -14,5 +14,4 @@ endif ENABLE_DEVEL_DOCS
 EXTRA_DIST =		\
 	Registry	\
 	exa-driver.txt	\
-	README.DRIcomp	\
 	README.modes
diff --git a/hw/xfree86/doc/README.DRIcomp b/hw/xfree86/doc/README.DRIcomp
deleted file mode 100644
index 7388650..0000000
--- a/hw/xfree86/doc/README.DRIcomp
+++ /dev/null
@@ -1,551 +0,0 @@
-                            DRI Compilation Guide
-
-          VA Linux Systems, Inc. Professional Services - Graphics.
-
-                                21 April 2001
-
-1.  Preamble
-
-1.1  Copyright
-
-Copyright 2000-2001 by VA Linux Systems, Inc.  All Rights Reserved.
-
-Permission is granted to make and distribute verbatim copies of this document
-provided the copyright notice and this permission notice are preserved on all
-copies.
-
-1.2  Trademarks
-
-OpenGL is a registered trademark and SGI is a trademark of Silicon Graphics,
-Inc.  Unix is a registered trademark of The Open Group.  The `X' device and X
-Window System are trademarks of The Open Group.  XFree86 is a trademark of
-The XFree86 Project.  Linux is a registered trademark of Linus Torvalds.
-Intel is a registered trademark of Intel Corporation.  3Dlabs, GLINT, and
-Oxygen are either registered trademarks or trademarks of 3Dlabs Inc. Ltd.
-3dfx, Voodoo3, Voodoo4, and Voodoo5 are registered trademarks of 3dfx Inter-
-active, Incorporated.  Matrox is a registered trademark of Matrox Electronic
-Systems Ltd.  ATI Rage and Radeon is a registered trademark of ATI Technolo-
-gies, Inc.  All other trademarks mentioned are the property of their respec-
-tive owners.
-
-2.  Introduction
-
-This document describes how to download, compile and install the DRI.  The
-DRI provides 3D graphics hardware acceleration for the XFree86 project.  This
-information is intended for experienced Linux developers.  Beginners are
-probably better off installing precompiled packages.
-
-Edits, corrections and updates to this document may be mailed to <brian at tung-
-stengraphics.com>.
-
-Last updated on 13 February 2002 by Brian Paul.
-
-3.  Prerequisites
-
-You'll need the following:
-
-   o An installation of XFree86 4.1 or later.  The DRI tree has been pruned
-     down to minimize its size.  But in order to build the DRI tree you need
-     to have recent X header files, etc. already installed.  If you don't
-     have XFree86 4.1 (or later) installed you can probably install it from
-     RPMs (or another package format).  Or, you can download XFree86 as
-     sources and compile/install it yourself.
-
-   o At least 200MB of free disk space.  If you compile for debugging (the -g
-     option) then you'll need about 600MB.
-
-   o GCC compiler and related tools.
-
-   o ssh (secure shell) if you're a DRI developer and don't want to use
-     anonymous CVS download.
-
-   o A 2.4.x Linux Kernel.  See below for details.
-
-   o FreeBSD support is not currently being maintained and may not work.
-
-The DRI 3D drivers generally work on systems with Intel or AMD CPUs.  How-
-ever, limited support for Alpha and PowerPC support is underway.
-
-For 3dfx Voodoo hardware, you'll also need the Glide3 runtime library
-(libglide3-v3.so for Voodoo3 or libglide3-v5.so for Voodoo4/5).  These can be
-downloaded from the DRI website.  You can compile them yourself, but it's
-often a painful process.
-
-For Matrox G200/G400, Intel i810/i830 or ATI Rage128/Radeon hardware, you'll
-also need AGP support in your Linux kernel, either built-in or as a loadable
-module.
-
-4.  Linux Kernel Preparation
-
-Only the Linux 2.4.x kernels are currently supported by the DRI hardware
-drivers.  2.5.x kernels may work, but aren't tested.
-
-Most of the DRI drivers require AGP support and using Intel Pentium III SSE
-optimizations also requires an up-to-date Linux kernel.  Configuring your
-kernel correctly is very important, as features such as SSE optimizations
-will be disabled if your kernel does not support them.  Thus, if you have a
-Pentium III processor, you must configure your kernel for the Pentium III
-processor family.
-
-Building a new Linux kernel can be difficult for beginners but there are
-resources on the Internet to help.  This document assumes experience with
-configuring, building and installing Linux kernels.
-
-Linux kernels can be downloaded from www.kernel.org
-
-Here are the basic steps for kernel setup.
-
-   o Download the needed kernel and put it in /usr/src.  Create a directory
-     for the source and unpack it.  For example:
-
-                    cd /usr/src
-                    rm -f linux
-                    mkdir linux-2.4.x
-                    ln -s linux-2.4.x linux
-                    bzcat linux-2.4.x.tar.bz2 | tar xf -
-
-     It is critical that /usr/src/linux point to your new kernel sources,
-     otherwise the kernel headers will not be used when building the DRI.
-     This will almost certainly cause compilation problems.
-
-   o Read /usr/src/linux/Documentation/Changes.  This file lists the minimum
-     requirements for all software packages required to build the kernel.
-     You must upgrade at least gcc, make, binutils and modutils to at least
-     the versions specified in this file.  The other packages may not be
-     needed.  If you are upgrading from Linux 2.2.x you must upgrade your
-     modutils package for Linux 2.4.x.
-
-   o Configure your kernel.  You might, for example, use make menuconfig and
-     do the following:
-
-        o Go to Code maturity level options
-
-        o Enable Prompt for development and/or incomplete code/drivers
-
-        o hit ESC to return to the top-level menu
-
-        o Go to Processor type and features
-
-        o Select your processor type from Processor Family
-
-        o hit ESC to return to the top-level menu
-
-        o Go to Character devices
-
-        o Disable Direct Rendering Manager (XFree86 DRI support) since we'll
-          use the DRI code from the XFree86/DRI tree and will compile it
-          there.
-
-        o Go to /dev/agpgart (AGP Support) (EXPERIMENTAL) (NEW)
-
-        o Hit SPACE twice to build AGP support into the kernel
-
-        o Enable all chipsets' support for AGP
-
-   o Configure the rest of the kernel as required for your system (i.e. Eth-
-     ernet, SCSI, etc)
-
-   o Exit, saving your kernel configuration.
-
-   o Edit your /etc/lilo.conf file.  Make sure you have an image entry as
-     follows (or similar):
-
-                      image=/boot/vmlinuz
-                            label=linux.2.4.x
-                            read-only
-                            root=/dev/hda1
-
-     The important part is that you have /boot/vmlinuz without a trailing
-     version number.  If this is the first entry in your /etc/lilo.conf AND
-     you haven't set a default, then this will be your default kernel.
-
-   o Compile the new kernel.
-
-                    cd /usr/src/linux-2.4.x
-                    make dep
-                    make bzImage
-                    make modules
-                    make modules_install
-                    make install
-
-     Note that last make command will automatically run lilo for you.
-
-   o Now reboot to use the new kernel.
-
-5.  CPU Architectures
-
-In general, nothing special has to be done to use the DRI on different CPU
-architectures.  There are, however, a few optimizations that are CPU-depen-
-dent.  Mesa will determine at runtime which CPU-dependent optimizations
-should be used and enable them where appropriate.
-
-5.1  Intel Pentium III Features
-
-The Pentium III SSE instructions are used in optimized vertex transformation
-functions in the Mesa-based DRI drivers.  On Linux, SSE requires a recent
-kernel (such as 2.4.0-test11 or later) both at compile time and runtime.
-
-5.2  AMD 3DNow! Features
-
-AMD's 3DNow! instructions are used in optimized vertex transformation func-
-tions in the Mesa-based DRI drivers.  3DNow! is supported in most versions of
-Linux.
-
-5.3  Alpha Features
-
-On newer Alpha processors a significant performance increase can be seen with
-the addition of the -mcpu= option to GCC.  This option is dependent on the
-architecture of the processor.  For example, -mcpu=ev6 will build specifi-
-cally for the EV6 based AXP's, giving both byte and word alignment access to
-the DRI/Mesa drivers.
-
-To enable this optimization edit your xc/config/host.def file and add the
-line:
-
-#define DefaultGcc2AxpOpt -O2 -mcpu=ev6
-
-Additional speed improvements to 3D rendering can be achieved by installing
-Compaq's Math Libraries (CPML) which can be obtained from http://www.sup-
-port.compaq.com/alpha-tools/software/index.html
-
-Once installed, you can add this line to your host.def to build with the CPML
-libraries:
-
-#define UseCompaqMathLibrary YES
-
-The host.def file is explained below.
-
-6.  Downloading the XFree86/DRI CVS Sources
-
-The DRI project is hosted by SourceForge.  The DRI source code, which is a
-subset of the XFree86 source tree, is kept in a CVS repository there.
-
-The DRI CVS sources may be accessed either anonymously or as a registered
-SourceForge user.  It's recommended that you become a registered SourceForge
-user so that you may submit non-anonymous bug reports and can participate in
-the mailing lists.
-
-6.1  Anonymous CVS download:
-
-  1.  Create a directory to store the CVS files:
-
-                       cd ~
-                       mkdir DRI-CVS
-
-      You could put your CVS directory in a different place but we'll use
-      ~/DRI-CVS/ here.
-
-  2.  Check out the CVS sources:
-
-                       cd ~/DRI-CVS
-                       cvs -d:pserver:anonymous at cvs.dri.sourceforge.net:/cvsroot/dri login
-                         (hit ENTER when prompted for a password)
-                       cvs -z3 -d:pserver:anonymous at cvs.dri.sourceforge.net:/cvsroot/dri co xc
-
-      The -z3 flag causes compression to be used in order to reduce the down-
-      load time.
-
-6.2  Registered CVS download:
-
-  1.  Create a directory to store the CVS files:
-
-                       cd ~
-                       mkdir DRI-CVS
-
-      You could put your CVS directory in a different place but we'll use
-      ~/DRI-CVS/ here.
-
-  2.  Set the CVS_RSH environment variable:
-
-                       setenv CVS_RSH ssh      // if using csh or tcsh
-                       export CVS_RSH=ssh      // if using sh or bash
-
-  3.  Check out the CVS sources:
-
-                       cd ~/DRI-CVS
-                       cvs -z3 -d:ext:YOURID at cvs.dri.sourceforge.net:/cvsroot/dri co xc
-
-      Replace YOURID with your CVS login name.  You'll be prompted to enter
-      your sourceforge password.
-
-      The -z3 flag causes compression to be used in order to reduce the down-
-      load time.
-
-6.3  Updating your CVS sources
-
-In the future you'll want to occasionally update your local copy of the DRI
-source code to get the latest changes.  This can be done with:
-
-                cd ~/DRI-CVS
-                cvs -z3 update -dA xc
-
-The -d flag causes any new subdirectories to be created and -A causes most
-recent trunk sources to be fetched, not branch sources.
-
-7.  Mesa
-
-Most of the DRI 3D drivers are based on Mesa (the free implementation of the
-OpenGL API).  The relevant files from Mesa are already included in the
-XFree86/DRI source tree.  There is no need to download or install the Mesa
-source files separately.
-
-Sometimes a newer version of Mesa will be available than the version included
-in XFree86/DRI.  Upgrading Mesa within XFree86/DRI is not always straightfor-
-ward.  It can be an error-prone undertaking, especially for beginners, and is
-not generally recommended.  The DRI developers will upgrade Mesa when appro-
-priate.
-
-8.  Compiling the XFree86/DRI tree
-
-8.1  Make a build tree
-
-Rather than placing object files and library files right in the source tree,
-they're instead put into a parallel build tree.  The build tree is made with
-the lndir command:
-
-                 cd ~/DRI-CVS
-                 ln -s xc XFree40
-                 mkdir build
-                 cd build
-                 lndir -silent -ignorelinks ../XFree40
-
-The build tree will be populated with symbolic links which point back into
-the CVS source tree.
-
-Advanced users may have several build trees for compiling and testing with
-different options.
-
-8.2  Edit the host.def file
-
-The ~/DRI-CVS/build/xc/config/cf/host.def file is used to configure the
-XFree86 build process.  You can change it to customize your build options or
-make adjustments for your particular system configuration
-
-The default host.def file will look something like this:
-
-                 #define DefaultCCOptions -Wall
-     (i386)      #define DefaultGcc2i386Opt -O2
-     (Alpha)     #define DefaultGcc2AxpOpt -O2 -mcpu=ev6 (or similar)
-                 #define LibraryCDebugFlags -O2
-                 #define BuildServersOnly YES
-                 #define XF86CardDrivers vga tdfx mga ati i810
-                 #define LinuxDistribution LinuxRedHat
-                 #define DefaultCCOptions -ansi GccWarningOptions -pipe
-                 #define BuildXF86DRI YES
-                 /* Optionally turn these on for debugging */
-                 /* #define GlxBuiltInTdfx YES */
-                 /* #define GlxBuiltInMga YES */
-                 /* #define GlxBuiltInR128 YES */
-                 /* #define GlxBuiltInRadeon YES */
-                 /* #define DoLoadableServer NO */
-                 #define SharedLibFont NO
-
-The ProjectRoot variable specifies where the XFree86 files will be installed.
-We recommend installing the DRI files over your existing XFree86 installation
-- it's generally safe to do and less error-prone.  This policy is different
-than what we used to recommend.
-
-If XFree86 4.x is not installed in /usr/X11R6/ you'll have to add the follow-
-ing to the host.def file:
-
-                 #define ProjectRoot pathToYourXFree86installation
-
-Note the XF86CardDrivers line to be sure your card's driver is listed.
-
-If you want to enable 3DNow! optimizations in Mesa and the DRI drivers, you
-should add the following:
-
-                 #define MesaUse3DNow YES
-
-You don't have to be using an AMD processor in order to enable this option.
-The DRI will look for 3DNow! support and runtime and only enable it if appli-
-cable.
-
-If you want to enable SSE optimizations in Mesa and the DRI drivers, you must
-upgrade to a Linux 2.4.x kernel.  Mesa will verify that SSE is supported by
-both your processor and your operating system, but to build Mesa inside the
-DRI you need to have the Linux 2.4.x kernel headers in /usr/src/linux.  If
-you enable SSE optimizations with an earlier version of the Linux kernel in
-/usr/src/linux, Mesa will not compile.  You have been warned.  If you do have
-a 2.4.x kernel, you should add the following:
-
-                 #define MesaUseSSE YES
-
-If you want to build the DRM kernel modules as part of the full build pro-
-cess, add the following:
-
-                 #define BuildXF86DRM YES
-
-Otherwise, you'll need to build them separately as described below.
-
-8.3  Compilation
-
-To compile the complete DRI tree:
-
-                 cd ~/DRI-CVS/build/xc/
-                 make World >& world.log
-
-Or if you want to watch the compilation progress:
-
-                 cd ~/DRI-CVS/build/xc/
-                 make World >& world.log &
-                 tail -f world.log
-
-With the default compilation flags it's normal to get a lot of warnings dur-
-ing compilation.
-
-Building will take some time so you may want to go check your email or visit
-slashdot.
-
-WARNING: do not use the -j option with make.  It's reported that it does not
-work with XFree86/DRI.
-
-8.4  Check for compilation errors
-
-Using your text editor, examine world.log for errors by searching for the
-pattern ***.
-
-After fixing the errors, run make World again.  Later, you might just compile
-parts of the source tree but it's important that the whole tree will build
-first.
-
-If you edited your host.def file to enable automatic building of the DRI ker-
-nel module(s), verify that they were built:
-
-               cd ~/DRI-CVS/build/xc/programs/Xserver/hw/xfree86/os-support/linux/drm/kernel
-               ls
-
-Otherwise, build them now by running
-
-               cd ~/DRI-CVS/build/xc/programs/Xserver/hw/xfree86/os-support/linux/drm/kernel
-               make -f Makefile.linux
-
-For the 3dfx Voodoo, you should see tdfx.o.  For the Matrox G200/G400, you
-should see mga.o.  For the ATI Rage 128, you should see r128.o.  For the ATI
-Radeon, you should see radeon.o.  For the Intel i810, you should see i810.o.
-
-If the DRI kernel module(s) failed to build you should verify that you're
-using the right version of the Linux kernel.  The most recent kernels are not
-always supported.
-
-If your build machine is running a different version of the kernel than your
-target machine (i.e. 2.2.x vs. 2.4.x), make will select the wrong kernel
-source tree. This can be fixed by explicitly setting the value of LINUXDIR.
-If the path to your kernel source is /usr/src/linux-2.4.x,
-
-               cd ~/DRI-CVS/build/xc/programs/Xserver/hw/xfree86/os-support/linux/drm/kernel
-               make -f Makefile.linux LINUXDIR=/usr/src/linux-2.4.x
-
-or alternatively, edit Makefile.linux to set LINUXDIR before the ifndef LIN-
-UXDIR line.
-
-8.5  DRI kernel module installation
-
-The DRI kernel modules will be in ~/DRI-CVS/build/xc/pro-
-grams/Xserver/hw/xfree86/os-support/linux/drm/kernel/.
-
-To load the appropriate DRM module in your running kernel you can either use
-ismod and restart your X server or copy the kernel module to /lib/mod-
-ules/2.4.x/kernel/drivers/char/drm/ then run depmod and restart your X
-server.
-
-Make sure you first unload any older DRI kernel modules that might be already
-loaded.
-
-Note that some DRM modules require that the agpgart module be loaded first.
-
-9.  Normal Installation and Configuration
-
-Most users will want to install the new X server and use it in place of their
-old X server.  This section explains how to do that.
-
-Developers, on the other hand, may just want to test the X server without
-actually installing it as their default server.  If you want to do that, skip
-to the next section.
-
-9.1  Installation
-
-Here are the installation commands:
-
-                su
-                cd ~/DRI-CVS/build/xc
-                make install
-
-9.2  Update the XF86Config File
-
-You may need to edit your XF86Config file to enable the DRI.  The config file
-is usually installed as /etc/X11/XF86Config-4.  See the DRI User Guide for
-details, but basically, you need to load the "glx" and "dri" modules and add
-a "DRI" section.
-
-On the DRI web site, in the resources section, you'll find example XF86Config
-files for a number of graphics cards.  These configuration files also setup
-DRI options so it's highly recommended that you look at these examples.
-
-The XFree86 4.x server can generate a basic configuration file itself.  Sim-
-ply do this:
-
-                  cd /usr/X11R6/bin
-                  ./XFree86 -configure
-
-A file named /root/XF86Config.new will be created.  It should allow you to
-try your X server but you'll almost certainly have to edit it.  For example,
-you should add HorizSync and VertRefresh options to the Monitor section and
-Modes options to the Screen section.  Also, the ModulePath option in the
-Files section should be set to /usr/X11R6/lib/modules.
-
-9.3  Start the New X Server
-
-The new X server should be ready to use now.  Start your X server in your
-usual manner.  Often times the startx command is used:
-
-                  startx
-
-10.  Testing the Server Without Installing It
-
-As mentioned at the start of section 9, developers may want to simply run the
-X server without installing it.  This can save some time and allow you to
-keep a number of X servers available for testing.
-
-10.1  Configuration
-
-As described in the preceding section, you'll need to create a configuration
-file for the new server.  Put the XF86Config file in your ~/DRI-
-CVS/build/xc/programs/Xserver directory.
-
-Be sure the ModulePath option in your XF86Config file is set correctly.
-
-10.2  A Startup Script
-
-A simple shell script can be used to start the X server.  Here's an example.
-
-             #!/bin/sh
-             export DISPLAY=:0
-             ./XFree86 -xf86config XF86Config & \
-             sleep 2
-             fvwm2 &
-             xset b off
-             xmodmap -e "clear mod4"
-             xsetroot -solid "#00306f"
-             xterm -geometry 80x40+0+0
-
-You might name this script start-dri.  Put it in your ~/DRI-CVS/build/xc/pro-
-grams/Xserver directory.
-
-To test the server run the script:
-
-                  cd ~/DRI-CVS/build/xc/programs/Xserver
-                  ./start-dri
-
-For debugging, you may also want to capture the log messages printed by the
-server in a file.  If you're using the C-shell:
-
-                  ./start-dri >& log
-
-11.  Where To Go From Here
-
-At this point your X server should be up and running with hardware-acceler-
-ated direct rendering.  Please read the DRI User Guide for information about
-trouble shooting and how to use the DRI-enabled X server for 3D applications.
-
-     Generated from XFree86: xc/programs/Xserver/hw/xfree86/doc/sgml/DRIcomp.sgml,v 1.19 dawes Exp $
-- 
2.5.0



More information about the xorg-devel mailing list