[PATCH v5 1/4] clk: renesas: rzv2h-cpg: Add support for DSI clocks
Geert Uytterhoeven
geert at linux-m68k.org
Fri May 23 14:45:10 UTC 2025
Hi Prabhakar, Fabrizio,
On Mon, 12 May 2025 at 20:43, Prabhakar <prabhakar.csengg at gmail.com> wrote:
> From: Lad Prabhakar <prabhakar.mahadev-lad.rj at bp.renesas.com>
>
> Add support for PLLDSI and PLLDSI divider clocks.
>
> Introduce the `renesas-rzv2h-dsi.h` header to centralize and share
> PLLDSI-related data structures, limits, and algorithms between the RZ/V2H
> CPG and DSI drivers.
>
> The DSI PLL is functionally similar to the CPG's PLLDSI, but has slightly
> different parameter limits and omits the programmable divider present in
> CPG. To ensure precise frequency calculations-especially for milliHz-level
> accuracy needed by the DSI driver-the shared algorithm allows both drivers
> to compute PLL parameters consistently using the same logic and input
> clock.
>
> Co-developed-by: Fabrizio Castro <fabrizio.castro.jz at renesas.com>
> Signed-off-by: Fabrizio Castro <fabrizio.castro.jz at renesas.com>
> Signed-off-by: Lad Prabhakar <prabhakar.mahadev-lad.rj at bp.renesas.com>
Thanks for your patch!
> --- a/drivers/clk/renesas/rzv2h-cpg.c
> +++ b/drivers/clk/renesas/rzv2h-cpg.c
> @@ -48,6 +53,7 @@
> #define CPG_PLL_STBY(x) ((x))
> #define CPG_PLL_STBY_RESETB BIT(0)
> #define CPG_PLL_STBY_RESETB_WEN BIT(16)
> +#define CPG_PLL_STBY_SSCGEN_WEN BIT(18)
CPG_PLL_STBY_SSC_EN_WEN?
> #define CPG_PLL_CLK1(x) ((x) + 0x004)
> #define CPG_PLL_CLK1_KDIV(x) ((s16)FIELD_GET(GENMASK(31, 16), (x)))
You are already using FIELD_GET() for extracting the K, M, P, and
S fields, but are still still open-coding shifts for writing in
rzv2h_cpg_pll_set_rate().
What about replacing CPG_PLL_CLK1_KDIV() by:
#define CPG_PLL_CLK1_DIV_K GENMASK(31,16)
Then the code can use:
(s16)FIELD_GET(CPG_PLL_CLK1_DIV_K, clk1)
for reading and:
FIELD_PREP(CPG_PLL_CLK1_DIV_K, (u16)k) | ...
for writing?
Same for the M, P, and S fields (but without the s16/u16 casts, as
they are unsigned, unlike K).
> #define CPG_PLL_CLK1_MDIV(x) FIELD_GET(GENMASK(15, 6), (x))
> @@ -198,6 +227,188 @@ static int rzv2h_cpg_pll_clk_enable(struct clk_hw *hw)
> return ret;
> }
>
> +static unsigned long rzv2h_cpg_plldsi_div_recalc_rate(struct clk_hw *hw,
> + unsigned long parent_rate)
> +{
> + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
> + struct rzv2h_cpg_priv *priv = dsi_div->priv;
> + struct ddiv ddiv = dsi_div->ddiv;
> + u32 div;
> +
> + div = readl(priv->base + ddiv.offset);
> + div >>= ddiv.shift;
> + div &= clk_div_mask(ddiv.width);
> + div = dsi_div->dtable[div].div;
> +
> + return DIV_ROUND_CLOSEST_ULL(parent_rate, div);
> +}
> +
> +static int rzv2h_cpg_plldsi_div_determine_rate(struct clk_hw *hw,
> + struct clk_rate_request *req)
> +{
> + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
> + struct rzv2h_cpg_priv *priv = dsi_div->priv;
> + struct rzv2h_plldsi_parameters *dsi_dividers = &priv->plldsi_div_parameters;
> + u64 rate_millihz;
> +
> + /*
> + * Adjust the requested clock rate (`req->rate`) to ensure it falls within
> + * the supported range of 5.44 MHz to 187.5 MHz.
> + */
> + req->rate = clamp(req->rate, 5440000UL, 187500000UL);
> +
> + rate_millihz = mul_u32_u32(req->rate, MILLI);
> + if (rate_millihz == dsi_dividers->error_millihz + dsi_dividers->freq_millihz)
> + goto exit_determine_rate;
> +
> + if (!rzv2h_dsi_get_pll_parameters_values(priv->dsi_limits,
> + dsi_dividers, rate_millihz)) {
> + dev_err(priv->dev,
> + "failed to determine rate for req->rate: %lu\n",
> + req->rate);
> + return -EINVAL;
> + }
> +
> +exit_determine_rate:
> + req->best_parent_rate = req->rate * dsi_dividers->csdiv;
Shouldn't this also update req->rate with the actual rate?
req->rate = DIV_ROUND_CLOSEST_ULL(dsi_dividers->freq_millihz, MILLI);
Would it help the DSI driver if this clock would provide a
.recalc_accuracy() callback that takes into account the difference
between req->rate and dsi_dividers->freq_millihz?
Or would that be considered abuse of the accuracy concept?
> +
> + return 0;
> +};
> +
> +static int rzv2h_cpg_plldsi_div_set_rate(struct clk_hw *hw,
> + unsigned long rate,
> + unsigned long parent_rate)
> +{
> + struct rzv2h_plldsi_div_clk *dsi_div = to_plldsi_div_clk(hw);
> + struct rzv2h_cpg_priv *priv = dsi_div->priv;
> + struct rzv2h_plldsi_parameters *dsi_dividers = &priv->plldsi_div_parameters;
> + struct ddiv ddiv = dsi_div->ddiv;
> + const struct clk_div_table *clkt;
> + bool div_found = false;
> + u32 val, shift, div;
> +
> + div = dsi_dividers->csdiv;
> + for (clkt = dsi_div->dtable; clkt->div; clkt++) {
> + if (clkt->div == div) {
> + div_found = true;
> + break;
> + }
> + }
> +
> + if (!div_found)
> + return -EINVAL;
> +
> + shift = ddiv.shift;
> + val = readl(priv->base + ddiv.offset) | DDIV_DIVCTL_WEN(shift);
> + val &= ~(clk_div_mask(ddiv.width) << shift);
> + val |= (u32)clkt->val << shift;
No need for the cast.
> + writel(val, priv->base + ddiv.offset);
> +
> + return 0;
> +};
> +
> +static const struct clk_ops rzv2h_cpg_plldsi_div_ops = {
> + .recalc_rate = rzv2h_cpg_plldsi_div_recalc_rate,
> + .determine_rate = rzv2h_cpg_plldsi_div_determine_rate,
> + .set_rate = rzv2h_cpg_plldsi_div_set_rate,
> +};
> +static long rzv2h_cpg_plldsi_round_rate(struct clk_hw *hw,
> + unsigned long rate,
> + unsigned long *parent_rate)
> +{
> + return clamp(rate, 25000000UL, 375000000UL);
This only brings the desired rate into the supported range, but does
not round it to the nearest rate that is actually supported.
> +}
> +
> +static int rzv2h_cpg_pll_set_rate(struct clk_hw *hw,
> + unsigned long rate,
> + unsigned long parent_rate)
> +{
> + struct pll_clk *pll_clk = to_pll(hw);
> + struct rzv2h_cpg_priv *priv = pll_clk->priv;
> + struct rzv2h_plldsi_parameters *dsi_dividers;
> + struct pll pll = pll_clk->pll;
> + u16 offset = pll.offset;
> + u32 val;
> + int ret;
> +
> + /* Put PLL into standby mode */
> + writel(CPG_PLL_STBY_RESETB_WEN, priv->base + CPG_PLL_STBY(offset));
> + ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset),
> + val, !(val & CPG_PLL_MON_LOCK),
> + 100, 2000);
> + if (ret) {
> + dev_err(priv->dev, "Failed to put PLLDSI into standby mode");
> + return ret;
> + }
> +
> + dsi_dividers = &priv->plldsi_div_parameters;
> + /* Output clock setting 1 */
> + writel((dsi_dividers->k << 16) | (dsi_dividers->m << 6) | (dsi_dividers->p),
This is where you want to use FIELD_PREP().
> + priv->base + CPG_PLL_CLK1(offset));
> +
> + /* Output clock setting 2 */
> + val = readl(priv->base + CPG_PLL_CLK2(offset));
> + writel((val & ~GENMASK(2, 0)) | dsi_dividers->s,
(val & ~CPG_PLL_CLK2_DIV_S) | FIELD_PREP(...)
> + priv->base + CPG_PLL_CLK2(offset));
> +
> + /* Put PLL to normal mode */
> + writel(CPG_PLL_STBY_RESETB_WEN | CPG_PLL_STBY_RESETB,
> + priv->base + CPG_PLL_STBY(offset));
> +
> + /* PLL normal mode transition, output clock stability check */
> + ret = readl_poll_timeout_atomic(priv->base + CPG_PLL_MON(offset),
> + val, (val & CPG_PLL_MON_LOCK),
> + 100, 2000);
> + if (ret) {
> + dev_err(priv->dev, "Failed to put PLLDSI into normal mode");
> + return ret;
> + }
> +
> + return 0;
> +};
> +
> static unsigned long rzv2h_cpg_pll_clk_recalc_rate(struct clk_hw *hw,
> unsigned long parent_rate)
> {
> --- a/drivers/clk/renesas/rzv2h-cpg.h
> +++ b/drivers/clk/renesas/rzv2h-cpg.h
> @@ -100,6 +100,7 @@ struct smuxed {
> #define CPG_CDDIV3 (0x40C)
> #define CPG_CDDIV4 (0x410)
> #define CPG_CSDIV0 (0x500)
> +#define CPG_CSDIV1 (0x504)
Unused until [PATCH v5 2/4], so please move it there.
>
> #define CDDIV0_DIVCTL1 DDIV_PACK(CPG_CDDIV0, 4, 3, 1)
> #define CDDIV0_DIVCTL2 DDIV_PACK(CPG_CDDIV0, 8, 3, 2)
> --- /dev/null
> +++ b/include/linux/clk/renesas-rzv2h-dsi.h
> @@ -0,0 +1,211 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +/*
> + * Renesas RZ/V2H(P) DSI CPG helper
> + *
> + * Copyright (C) 2025 Renesas Electronics Corp.
> + */
> +#ifndef __RENESAS_RZV2H_DSI_H__
> +#define __RENESAS_RZV2H_DSI_H__
> +
> +#include <linux/limits.h>
> +#include <linux/math.h>
> +#include <linux/math64.h>
> +#include <linux/units.h>
> +
> +#define OSC_CLK_IN_MEGA (24 * MEGA)
> +
> +struct rzv2h_pll_div_limits {
> + struct {
> + u32 min;
> + u32 max;
> + } fvco;
> +
> + struct {
> + u16 min;
> + u16 max;
> + } m;
> +
> + struct {
> + u8 min;
> + u8 max;
> + } p;
> +
> + struct {
> + u8 min;
> + u8 max;
> + } s;
> +
> + struct {
> + s16 min;
> + s16 max;
> + } k;
> +
> + struct {
> + u8 min;
> + u8 max;
> + } csdiv;
> +};
> +
> +struct rzv2h_plldsi_parameters {
> + u64 freq_millihz;
> + s64 error_millihz;
> + u16 m;
> + s16 k;
> + u8 csdiv;
> + u8 p;
> + u8 s;
> +};
> +
> +#define RZV2H_CPG_PLL_DSI_LIMITS(name) \
> + static const struct rzv2h_pll_div_limits (name) = { \
> + .fvco = { .min = 1600 * MEGA, .max = 3200 * MEGA }, \
> + .m = { .min = 64, .max = 533 }, \
> + .p = { .min = 1, .max = 4 }, \
> + .s = { .min = 0, .max = 6 }, \
> + .k = { .min = -32768, .max = 32767 }, \
> + .csdiv = { .min = 2, .max = 32 }, \
> + } \
> +
> +/**
> + * rzv2h_dsi_get_pll_parameters_values - Finds the best combination of PLL parameters
> + * and divider value for a given frequency.
> + *
> + * @limits: Pointer to the structure containing the limits for the PLL parameters and
> + * divider values
> + * @pars: Pointer to the structure where the best calculated PLL parameters and divider
> + * values will be stored
> + * @freq_millihz: Target output frequency in millihertz
> + *
> + * This function calculates the best set of PLL parameters (M, K, P, S) and divider
> + * value (CSDIV) to achieve the desired frequency.
> + * There is no direct formula to calculate the PLL parameters and the divider value,
> + * as it's an open system of equations, therefore this function uses an iterative
> + * approach to determine the best solution. The best solution is one that minimizes
> + * the error (desired frequency - actual frequency).
> + *
> + * Return: true if a valid set of divider values is found, false otherwise.
> + */
> +static __maybe_unused bool
> +rzv2h_dsi_get_pll_parameters_values(const struct rzv2h_pll_div_limits *limits,
> + struct rzv2h_plldsi_parameters *pars,
> + u64 freq_millihz)
> +{
> + struct rzv2h_plldsi_parameters p, best;
> +
> + /* Initialize best error to maximum possible value */
> + best.error_millihz = S64_MAX;
> +
> + for (p.csdiv = limits->csdiv.min; p.csdiv <= limits->csdiv.max; p.csdiv += 2) {
> + for (p.p = limits->p.min; p.p <= limits->p.max; p.p++) {
> + u32 fref = OSC_CLK_IN_MEGA / p.p;
> +
> + for (p.s = limits->s.min; p.s <= limits->s.max; p.s++) {
> + u16 two_pow_s = 1 << p.s;
> + u16 divider = two_pow_s * p.csdiv;
No need for two_pow_s. You can initialize divider = p.csdiv << s.min
at the start of the loop, and multiply by two after each iteration.
> +
> + for (p.m = limits->m.min; p.m <= limits->m.max; p.m++) {
> + u64 output_m, output_k_range;
> + s64 pll_k, output_k;
> + u64 fvco, output;
> +
> + /*
> + * The frequency generated by the combination of the
> + * PLL + divider is calculated as follows:
> + *
> + * Freq = Ffout / csdiv
> + *
> + * With:
> + * Ffout = Ffvco / 2^(pll_s)
> + * Ffvco = (pll_m + (pll_k / 65536)) * Ffref
> + * Ffref = 24MHz / pll_p
> + *
> + * Freq can also be rewritten as:
> + * Freq = Ffvco / (2^(pll_s) * csdiv))
> + * = Ffvco / divider
> + * = (pll_m * Ffref) / divider + ((pll_k / 65536) * Ffref) / divider
> + * = output_m + output_k
> + *
> + * Every parameter has been determined at this point, but pll_k.
> + * Considering that:
> + * -32768 <= pll_k <= 32767
> + * Then:
> + * -0.5 <= (pll_k / 65536) < 0.5
> + * Therefore:
> + * -Ffref / (2 * divider) <= output_k < Ffref / (2 * divider)
> + */
> +
> + /* Compute output M component (in mHz) */
> + output_m = DIV_ROUND_CLOSEST_ULL(p.m * fref * 1000ULL,
"p.m * fref" may overflow => mul_u32_u32(p.m, fref) * MILLI;
> + divider);
> + /* Compute range for output K (in mHz) */
> + output_k_range = DIV_ROUND_CLOSEST_ULL(fref * 1000ULL,
mul_u32_u32(fref, MILLI)
> + divider * 2);
> + /*
> + * No point in continuing if we can't achieve the
> + * desired frequency
> + */
> + if (freq_millihz < (output_m - output_k_range) ||
> + freq_millihz >= (output_m + output_k_range))
> + continue;
> +
> + /*
> + * Compute the K component
> + *
> + * Since:
> + * Freq = output_m + output_k
> + * Then:
> + * output_k = Freq - output_m
> + * = ((pll_k / 65536) * Ffref) / divider
> + * Therefore:
> + * pll_k = (output_k * 65536 * divider) / Ffref
> + */
> + output_k = freq_millihz - output_m;
> + pll_k = div64_s64(output_k * 65536ULL * divider, fref);
div_s64(), as fref is 32-bit.
> + pll_k = DIV_S64_ROUND_CLOSEST(pll_k, 1000);
MILLI
> +
> + /* Validate K value within allowed limits */
> + if (pll_k < limits->k.min || pll_k > limits->k.max)
> + continue;
> +
> + p.k = pll_k;
> +
> + /* Compute (Ffvco * 65536) */
> + fvco = ((p.m * 65536ULL) + p.k) * fref;
mul_u32(p.m * 65536 + p.k, fref)
I guess the compiler is sufficiently smart to turn that into a shift.
The alternative would be to use a cast (I try to avoid them) and a shift:
mul_u32((u64)p.m << 16 + p.k, fref)
> + if ((fvco < (limits->fvco.min * 65536ULL)) ||
> + (fvco > (limits->fvco.max * 65536ULL)))
mul_u32_u32(..., 65536) for both
> + continue;
> +
> + /* PLL_M component of (output * 65536 * PLL_P) */
> + output = p.m * 65536ULL * OSC_CLK_IN_MEGA;
mul_u32(p.m * 65536, OSC_CLK_IN_MEGA)
> + /* PLL_K component of (output * 65536 * PLL_P) */
> + output += p.k * OSC_CLK_IN_MEGA;
> + /* Make it in mHz */
> + output *= 1000ULL;
No need for the ULL => MILLI
> + output /= 65536ULL * p.p * divider;
mul_u32()
No rounding for the division?
> +
> + p.error_millihz = freq_millihz - output;
> + p.freq_millihz = output;
> +
> + /* If an exact match is found, return immediately */
> + if (p.error_millihz == 0) {
> + *pars = p;
> + return true;
> + }
> +
> + /* Update best match if error is smaller */
> + if (abs(best.error_millihz) > abs(p.error_millihz))
> + best = p;
> + }
> + }
> + }
> + }
> +
> + /* If no valid parameters were found, return false */
> + if (best.error_millihz == S64_MAX)
> + return false;
> +
> + *pars = best;
> + return true;
> +}
> +
> +#endif /* __RENESAS_RZV2H_DSI_H__ */
Gr{oetje,eeting}s,
Geert
--
Geert Uytterhoeven -- There's lots of Linux beyond ia32 -- geert at linux-m68k.org
In personal conversations with technical people, I call myself a hacker. But
when I'm talking to journalists I just say "programmer" or something like that.
-- Linus Torvalds
More information about the dri-devel
mailing list