[Intel-gfx] [PATCH 3/3] drm/doc/rfc: VM_BIND uapi definition

Niranjana Vishwanathapura niranjana.vishwanathapura at intel.com
Mon Jun 13 17:56:58 UTC 2022


On Fri, Jun 10, 2022 at 09:35:14AM -0700, Niranjana Vishwanathapura wrote:
>On Fri, Jun 10, 2022 at 01:56:58AM -0700, Matthew Brost wrote:
>>On Fri, Jun 10, 2022 at 01:53:40AM -0700, Matthew Brost wrote:
>>>On Fri, Jun 10, 2022 at 12:07:11AM -0700, Niranjana Vishwanathapura wrote:
>>>> VM_BIND and related uapi definitions
>>>>
>>>> Signed-off-by: Niranjana Vishwanathapura <niranjana.vishwanathapura at intel.com>
>>>> ---
>>>>  Documentation/gpu/rfc/i915_vm_bind.h | 490 +++++++++++++++++++++++++++
>>>>  1 file changed, 490 insertions(+)
>>>>  create mode 100644 Documentation/gpu/rfc/i915_vm_bind.h
>>>>
>>>> diff --git a/Documentation/gpu/rfc/i915_vm_bind.h b/Documentation/gpu/rfc/i915_vm_bind.h
>>>> new file mode 100644
>>>> index 000000000000..9fc854969cfb
>>>> --- /dev/null
>>>> +++ b/Documentation/gpu/rfc/i915_vm_bind.h
>>>> @@ -0,0 +1,490 @@
>>>> +/* SPDX-License-Identifier: MIT */
>>>> +/*
>>>> + * Copyright © 2022 Intel Corporation
>>>> + */
>>>> +
>>>> +/**
>>>> + * DOC: I915_PARAM_HAS_VM_BIND
>>>> + *
>>>> + * VM_BIND feature availability.
>>>> + * See typedef drm_i915_getparam_t param.
>>>> + * bit[0]: If set, VM_BIND is supported, otherwise not.
>>>> + * bits[8-15]: VM_BIND implementation version.
>>>> + * version 0 will not have VM_BIND/UNBIND timeline fence array support.
>>>> + */
>>>> +#define I915_PARAM_HAS_VM_BIND		57
>>>> +
>>>> +/**
>>>> + * DOC: I915_VM_CREATE_FLAGS_USE_VM_BIND
>>>> + *
>>>> + * Flag to opt-in for VM_BIND mode of binding during VM creation.
>>>> + * See struct drm_i915_gem_vm_control flags.
>>>> + *
>>>> + * The older execbuf2 ioctl will not support VM_BIND mode of operation.
>>>> + * For VM_BIND mode, we have new execbuf3 ioctl which will not accept any
>>>> + * execlist (See struct drm_i915_gem_execbuffer3 for more details).
>>>> + *
>>>> + */
>>>> +#define I915_VM_CREATE_FLAGS_USE_VM_BIND	(1 << 0)
>>>> +
>>>> +/**
>>>> + * DOC: I915_CONTEXT_CREATE_FLAGS_LONG_RUNNING
>>>> + *
>>>> + * Flag to declare context as long running.
>>>> + * See struct drm_i915_gem_context_create_ext flags.
>>>> + *
>>>> + * Usage of dma-fence expects that they complete in reasonable amount of time.
>>>> + * Compute on the other hand can be long running. Hence it is not appropriate
>>>> + * for compute contexts to export request completion dma-fence to user.
>>>> + * The dma-fence usage will be limited to in-kernel consumption only.
>>>> + * Compute contexts need to use user/memory fence.
>>>> + *
>>>> + * So, long running contexts do not support output fences. Hence,
>>>> + * I915_EXEC_FENCE_SIGNAL (See &drm_i915_gem_exec_fence.flags) is expected
>>>> + * to be not used. DRM_I915_GEM_WAIT ioctl call is also not supported for
>>>> + * objects mapped to long running contexts.
>>>> + */
>>>> +#define I915_CONTEXT_CREATE_FLAGS_LONG_RUNNING   (1u << 2)
>>>> +
>>>> +/* VM_BIND related ioctls */
>>>> +#define DRM_I915_GEM_VM_BIND		0x3d
>>>> +#define DRM_I915_GEM_VM_UNBIND		0x3e
>>>> +#define DRM_I915_GEM_EXECBUFFER3	0x3f
>>>> +#define DRM_I915_GEM_WAIT_USER_FENCE	0x40
>>>> +
>>>> +#define DRM_IOCTL_I915_GEM_VM_BIND		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_BIND, struct drm_i915_gem_vm_bind)
>>>> +#define DRM_IOCTL_I915_GEM_VM_UNBIND		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_UNBIND, struct drm_i915_gem_vm_bind)
>>>> +#define DRM_IOCTL_I915_GEM_EXECBUFFER3		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER3, struct drm_i915_gem_execbuffer3)
>>>> +#define DRM_IOCTL_I915_GEM_WAIT_USER_FENCE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT_USER_FENCE, struct drm_i915_gem_wait_user_fence)
>>>> +
>>>> +/**
>>>> + * struct drm_i915_gem_vm_bind - VA to object mapping to bind.
>>>> + *
>>>> + * This structure is passed to VM_BIND ioctl and specifies the mapping of GPU
>>>> + * virtual address (VA) range to the section of an object that should be bound
>>>> + * in the device page table of the specified address space (VM).
>>>> + * The VA range specified must be unique (ie., not currently bound) and can
>>>> + * be mapped to whole object or a section of the object (partial binding).
>>>> + * Multiple VA mappings can be created to the same section of the object
>>>> + * (aliasing).
>>>> + *
>>>> + * The @queue_idx specifies the queue to use for binding. Same queue can be
>>>> + * used for both VM_BIND and VM_UNBIND calls. All submitted bind and unbind
>>>> + * operations in a queue are performed in the order of submission.
>>>> + *
>>>> + * The @start, @offset and @length should be 4K page aligned. However the DG2
>>>> + * and XEHPSDV has 64K page size for device local-memory and has compact page
>>>> + * table. On those platforms, for binding device local-memory objects, the
>>>> + * @start should be 2M aligned, @offset and @length should be 64K aligned.
>>>> + * Also, on those platforms, it is not allowed to bind an device local-memory
>>>> + * object and a system memory object in a single 2M section of VA range.
>>>> + */
>>>> +struct drm_i915_gem_vm_bind {
>>>> +	/** @vm_id: VM (address space) id to bind */
>>>> +	__u32 vm_id;
>>>> +
>>>> +	/** @queue_idx: Index of queue for binding */
>>>> +	__u32 queue_idx;
>>>> +
>>>> +	/** @rsvd: Reserved, MBZ */
>>>> +	__u32 rsvd;
>>>> +
>>>> +	/** @handle: Object handle */
>>>> +	__u32 handle;
>>>> +
>>>> +	/** @start: Virtual Address start to bind */
>>>> +	__u64 start;
>>>> +
>>>> +	/** @offset: Offset in object to bind */
>>>> +	__u64 offset;
>>>> +
>>>> +	/** @length: Length of mapping to bind */
>>>> +	__u64 length;
>>>
>>>This probably isn't needed. We are never going to unbind a subset of a
>>>VMA are we? That being said it can't hurt as a sanity check (e.g.
>>>internal vma->length == user unbind length).
>>>
>>
>>Ugh, I c/p this into the wrong place. This should be in the unbind struct.
>
>Having the 'length' field for unbind helps if in future we want to allow
>unbinding of multiple mappings (vmas) in a single ioctl call. ie., all
>mappings that falls in the 'start' - 'start+length-1' range can be
>unmapped. We don't support it today as it is somewhat tied to operations
>like vma split/merge etc which we are not supporting with initial vm_bind
>support.
>So yah, currently, it helps in sanity check and ensure user is correctly
>unbinding a mapping.
>
>>
>>>> +
>>>> +	/**
>>>> +	 * @flags: Supported flags are:
>>>> +	 *
>>>> +	 * I915_GEM_VM_BIND_READONLY:
>>>> +	 * Mapping is read-only.
>>>> +	 *
>>>> +	 * I915_GEM_VM_BIND_CAPTURE:
>>>> +	 * Capture this mapping in the dump upon GPU error.
>>>> +	 */
>>>> +	__u64 flags;
>>>> +#define I915_GEM_VM_BIND_READONLY    (1 << 0)
>>>> +#define I915_GEM_VM_BIND_CAPTURE     (1 << 1)
>>>> +
>>>> +	/**
>>>> +	 * @extensions: 0-terminated chain of extensions for this operation.
>>>> +	 *
>>>> +	 * I915_VM_BIND_EXT_TIMELINE_FENCES:
>>>> +	 * Specifies an array of input or output timeline fences for this
>>>> +	 * binding operation. See struct drm_i915_vm_bind_ext_timeline_fences.
>>>> +	 *
>>>> +	 * I915_VM_BIND_EXT_USER_FENCES:
>>>> +	 * Specifies an array of input or output user fences for this
>>>> +	 * binding operation. See struct drm_i915_vm_bind_ext_user_fence.
>>>> +	 * This is required for compute contexts.
>>>> +	 */
>>>> +	__u64 extensions;
>>>> +#define I915_VM_BIND_EXT_TIMELINE_FENCES	0
>>>> +#define I915_VM_BIND_EXT_USER_FENCES		1
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_gem_vm_unbind - VA to object mapping to unbind.
>>>> + *
>>>> + * This structure is passed to VM_UNBIND ioctl and specifies the GPU virtual
>>>> + * address (VA) range that should be unbound from the device page table of the
>>>> + * specified address space (VM). The specified VA range must match one of the
>>>> + * mappings created with the VM_BIND ioctl. TLB is flushed upon unbind
>>>> + * completion.
>>>> + *
>>>> + * The @queue_idx specifies the queue to use for unbinding.
>>>> + * See struct drm_i915_gem_vm_unbind for more information on @queue_idx.
>>>> + *
>>>> + * The @start and @length musy specify a unique mapping bound with VM_BIND
>>>> + * ioctl.
>>>> + */
>>>> +struct drm_i915_gem_vm_unbind {
>>>> +	/** @vm_id: VM (address space) id to bind */
>>>> +	__u32 vm_id;
>>>> +
>>>> +	/** @queue_idx: Index of queue for unbinding */
>>>> +	__u32 queue_idx;
>>>> +
>>>> +	/** @start: Virtual Address start to unbind */
>>>> +	__u64 start;
>>>> +
>>>> +	/** @length: Length of mapping to unbind */
>>>> +	__u64 length;
>>>> +
>>>> +	/** @flags: Reserved for future usage, currently MBZ */
>>>> +	__u64 flags;
>>>> +
>>>> +	/**
>>>> +	 * @extensions: 0-terminated chain of extensions for this operation.
>>>> +	 *
>>>> +	 * I915_VM_UNBIND_EXT_TIMELINE_FENCES:
>>>> +	 * Specifies an array of input or output timeline fences for this
>>>> +	 * unbind operation.
>>>> +	 * It has same format as struct drm_i915_vm_bind_ext_timeline_fences.
>>>> +	 *
>>>> +	 * I915_VM_UNBIND_EXT_USER_FENCES:
>>>> +	 * Specifies an array of input or output user fences for this
>>>> +	 * unbind operation. This is required for compute contexts.
>>>> +	 * It has same format as struct drm_i915_vm_bind_ext_user_fence.
>>>> +	 */
>>>> +	__u64 extensions;
>>>> +#define I915_VM_UNBIND_EXT_TIMELINE_FENCES	0
>>>> +#define I915_VM_UNBIND_EXT_USER_FENCES		1
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_vm_bind_fence - An input or output fence for the vm_bind
>>>> + * or the vm_unbind work.
>>>> + *
>>>> + * The vm_bind or vm_unbind aync worker will wait for input fence to signal
>>>> + * before starting the binding or unbinding.
>>>> + *
>>>> + * The vm_bind or vm_unbind async worker will signal the returned output fence
>>>> + * after the completion of binding or unbinding.
>>>> + */
>>>> +struct drm_i915_vm_bind_fence {
>>>> +	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
>>>> +	__u32 handle;
>>>> +
>>>> +	/**
>>>> +	 * @flags: Supported flags are:
>>>> +	 *
>>>> +	 * I915_VM_BIND_FENCE_WAIT:
>>>> +	 * Wait for the input fence before binding/unbinding
>>>> +	 *
>>>> +	 * I915_VM_BIND_FENCE_SIGNAL:
>>>> +	 * Return bind/unbind completion fence as output
>>>> +	 */
>>>> +	__u32 flags;
>>>> +#define I915_VM_BIND_FENCE_WAIT            (1<<0)
>>>> +#define I915_VM_BIND_FENCE_SIGNAL          (1<<1)
>>>> +#define __I915_VM_BIND_FENCE_UNKNOWN_FLAGS (-(I915_VM_BIND_FENCE_SIGNAL << 1))
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_vm_bind_ext_timeline_fences - Timeline fences for vm_bind
>>>> + * and vm_unbind.
>>>> + *
>>>> + * This structure describes an array of timeline drm_syncobj and associated
>>>> + * points for timeline variants of drm_syncobj. These timeline 'drm_syncobj's
>>>> + * can be input or output fences (See struct drm_i915_vm_bind_fence).
>>>> + */
>>>> +struct drm_i915_vm_bind_ext_timeline_fences {
>>>> +	/** @base: Extension link. See struct i915_user_extension. */
>>>> +	struct i915_user_extension base;
>>>> +
>>>> +	/**
>>>> +	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
>>>> +	 * arrays.
>>>> +	 */
>>>> +	__u64 fence_count;
>>>> +
>>>> +	/**
>>>> +	 * @handles_ptr: Pointer to an array of struct drm_i915_vm_bind_fence
>>>> +	 * of length @fence_count.
>>>> +	 */
>>>> +	__u64 handles_ptr;
>>>> +
>>>> +	/**
>>>> +	 * @values_ptr: Pointer to an array of u64 values of length
>>>> +	 * @fence_count.
>>>> +	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
>>>> +	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
>>>> +	 * binary one.
>>>> +	 */
>>>> +	__u64 values_ptr;
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_vm_bind_user_fence - An input or output user fence for the
>>>> + * vm_bind or the vm_unbind work.
>>>> + *
>>>> + * The vm_bind or vm_unbind aync worker will wait for the input fence (value at
>>>> + * @addr to become equal to @val) before starting the binding or unbinding.
>>>> + *
>>>> + * The vm_bind or vm_unbind async worker will signal the output fence after
>>>> + * the completion of binding or unbinding by writing @val to memory location at
>>>> + * @addr
>>>> + */
>>>> +struct drm_i915_vm_bind_user_fence {
>>>> +	/** @addr: User/Memory fence qword aligned process virtual address */
>>>> +	__u64 addr;
>>>> +
>>>> +	/** @val: User/Memory fence value to be written after bind completion */
>>>> +	__u64 val;
>>>> +
>>>> +	/**
>>>> +	 * @flags: Supported flags are:
>>>> +	 *
>>>> +	 * I915_VM_BIND_USER_FENCE_WAIT:
>>>> +	 * Wait for the input fence before binding/unbinding
>>>> +	 *
>>>> +	 * I915_VM_BIND_USER_FENCE_SIGNAL:
>>>> +	 * Return bind/unbind completion fence as output
>>>> +	 */
>>>> +	__u32 flags;
>>>> +#define I915_VM_BIND_USER_FENCE_WAIT            (1<<0)
>>>> +#define I915_VM_BIND_USER_FENCE_SIGNAL          (1<<1)
>>>> +#define __I915_VM_BIND_USER_FENCE_UNKNOWN_FLAGS \
>>>> +	(-(I915_VM_BIND_USER_FENCE_SIGNAL << 1))
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_vm_bind_ext_user_fence - User/memory fences for vm_bind
>>>> + * and vm_unbind.
>>>> + *
>>>> + * These user fences can be input or output fences
>>>> + * (See struct drm_i915_vm_bind_user_fence).
>>>> + */
>>>> +struct drm_i915_vm_bind_ext_user_fence {
>>>> +	/** @base: Extension link. See struct i915_user_extension. */
>>>> +	struct i915_user_extension base;
>>>> +
>>>> +	/** @fence_count: Number of elements in the @user_fence_ptr array. */
>>>> +	__u64 fence_count;
>>>> +
>>>> +	/**
>>>> +	 * @user_fence_ptr: Pointer to an array of
>>>> +	 * struct drm_i915_vm_bind_user_fence of length @fence_count.
>>>> +	 */
>>>> +	__u64 user_fence_ptr;
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_gem_execbuffer3 - Structure for DRM_I915_GEM_EXECBUFFER3
>>>> + * ioctl.
>>>> + *
>>>> + * DRM_I915_GEM_EXECBUFFER3 ioctl only works in VM_BIND mode and VM_BIND mode
>>>> + * only works with this ioctl for submission.
>>>> + * See I915_VM_CREATE_FLAGS_USE_VM_BIND.
>>>> + */
>>>> +struct drm_i915_gem_execbuffer3 {
>>>> +	/**
>>>> +	 * @ctx_id: Context id
>>>> +	 *
>>>> +	 * Only contexts with user engine map are allowed.
>>>> +	 */
>>>> +	__u32 ctx_id;
>>>> +
>>>> +	/**
>>>> +	 * @engine_idx: Engine index
>>>> +	 *
>>>> +	 * An index in the user engine map of the context specified by @ctx_id.
>>>> +	 */
>>>> +	__u32 engine_idx;
>>>> +
>>>> +	/** @rsvd1: Reserved, MBZ */
>>>> +	__u32 rsvd1;
>>>> +
>>>> +	/**
>>>> +	 * @batch_count: Number of batches in @batch_address array.
>>>> +	 *
>>>> +	 * 0 is invalid. For parallel submission, it should be equal to the
>>>> +	 * number of (parallel) engines involved in that submission.
>>>> +	 */
>>>> +	__u32 batch_count;
>>>> +
>>>> +	/**
>>>> +	 * @batch_address: Array of batch gpu virtual addresses.
>>>> +	 *
>>>> +	 * If @batch_count is 1, then it is the gpu virtual address of the
>>>> +	 * batch buffer. If @batch_count > 1, then it is a pointer to an array
>>>> +	 * of batch buffer gpu virtual addresses.
>>>> +	 */
>>>> +	__u64 batch_address;
>>>> +
>>>> +	/**
>>>> +	 * @flags: Supported flags are:
>>>> +	 *
>>>> +	 * I915_EXEC3_SECURE:
>>>> +	 * Request a privileged ("secure") batch buffer/s.
>>>> +	 * It is only available for DRM_ROOT_ONLY | DRM_MASTER processes.
>>>> +	 */
>>>> +	__u64 flags;
>>>> +#define I915_EXEC3_SECURE	(1<<0)
>>>> +
>>>> +	/** @rsvd2: Reserved, MBZ */
>>>> +	__u64 rsvd2;
>>>> +
>>>> +	/**
>>>> +	 * @extensions: Zero-terminated chain of extensions.
>>>> +	 *
>>>> +	 * DRM_I915_GEM_EXECBUFFER3_EXT_TIMELINE_FENCES:
>>>> +	 * It has same format as DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES.
>>>> +	 * See struct drm_i915_gem_execbuffer_ext_timeline_fences.
>>>> +	 *
>>>> +	 * DRM_I915_GEM_EXECBUFFER3_EXT_USER_FENCE:
>>>> +	 * First level batch completion signaling extension.
>>>> +	 * See struct drm_i915_gem_execbuffer3_ext_user_fence.
>>>> +	 */
>>>> +	__u64 extensions;
>>>> +#define DRM_I915_GEM_EXECBUFFER3_EXT_TIMELINE_FENCES	0
>>>> +#define DRM_I915_GEM_EXECBUFFER3_EXT_USER_FENCE		1
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_gem_execbuffer3_ext_user_fence - First level batch completion
>>>> + * signaling extension.
>>>> + *
>>>> + * This extension allows user to attach a user fence (@addr, @value pair) to
>>>> + * execbuf3, to be signaled by the command streamer after the completion of first
>>>> + * level batch, by writing the @value at specified @addr and triggering an
>>>> + * interrupt.
>>>> + * User can either poll for this user fence to signal or can also wait on it
>>>> + * with i915_gem_wait_user_fence ioctl.
>>>> + * This is very much usefaul for long running contexts where waiting on dma-fence
>>>> + * by user (like i915_gem_wait ioctl) is not supported.
>>>> + */
>>>> +struct drm_i915_gem_execbuffer3_ext_user_fence {
>>>> +	/** @base: Extension link. See struct i915_user_extension. */
>>>> +	struct i915_user_extension base;
>>>> +
>>>> +	/**
>>>> +	 * @addr: User/Memory fence qword aligned GPU virtual address.
>>>> +	 *
>>>> +	 * Address has to be a valid GPU virtual address at the time of
>>>> +	 * first level batch completion.
>>>> +	 */
>>>> +	__u64 addr;
>>>> +
>>>> +	/**
>>>> +	 * @value: User/Memory fence Value to be written to above address
>>>> +	 * after first level batch completes.
>>>> +	 */
>>>> +	__u64 value;
>>>> +
>>>> +	/** @rsvd: Reserved, MBZ */
>>>> +	__u64 rsvd;
>>>> +};
>>>> +
>>>
>>>IMO all of these fence structs should be a generic sync interface shared
>>>between both vm bind and exec3 rather than unique extenisons.
>>>
>>>Both vm bind and exec3 should have something like this:
>>>
>>>__64 syncs;	/* userptr to an array of generic syncs */
>>>__64 n_syncs;
>>>
>>>Having an array of syncs lets the kernel do one user copy for all the
>>>syncs rather than reading them in a a chain.
>>>
>>>A generic sync object encapsulates all possible syncs (in / out -
>>>syncobj, syncobj timeline, ufence, future sync concepts).
>>>
>>>e.g.
>>>
>>>struct {
>>>	__u32 user_ext;
>>>	__u32 flag;	/* in / out, type, whatever else info we need */
>>>	union {
>>>		__u32 handle; 	/* to syncobj */
>>>		__u64 addr; 	/* ufence address */
>>>	};
>>>	__64 seqno;	/* syncobj timeline, ufence write value */
>>>	...reserve enough bits for future...
>>>}
>>>
>>>This unifies binds and execs by using the same sync interface
>>>instilling the concept that binds and execs are the same op (queue'd
>>>operation /w in/out fences).
>>>
>
>Hmm...I am not sure whether we really need to merge all fence types
>together in a single structure.
>
>Yes, timeline fence array struct is same between vm_bind and execbuf.
>But user fence array is not. For compute use case, VM_BIND/UNBIND can
>have user fence array. But execbuf will only have one user fence as
>out fence. Execbuf can have timeline fence array as 'in' fences for
>compute use case.
>
>Besides, for VM_BIND/UNBIND, user will use either the timeline fence
>array (mesa) or the user fence array (compute) and will never mix
>them (ie., having some fences as timeline fences and some as user
>fences is not allowed). Hence, no multiple copy_from_user concern.
>So, not sure if having a generic fence is a good idea. It will be
>also less confusing for the user if we define them separately.
>But internally i915 can maintain them in a generic sturcture if needed.
>

Also, I don't think we will have a case where an array of fences
passed by user will have a mix of timeline and user fences.
So, we don't need a 'type' in each element of the array. The
extension (timeline or user fence) will be the type.

Niranjana

>Niranjana
>
>>>Matt
>>>
>>>> +/**
>>>> + * struct drm_i915_gem_create_ext_vm_private - Extension to make the object
>>>> + * private to the specified VM.
>>>> + *
>>>> + * See struct drm_i915_gem_create_ext.
>>>> + */
>>>> +struct drm_i915_gem_create_ext_vm_private {
>>>> +#define I915_GEM_CREATE_EXT_VM_PRIVATE		2
>>>> +	/** @base: Extension link. See struct i915_user_extension. */
>>>> +	struct i915_user_extension base;
>>>> +
>>>> +	/** @vm_id: Id of the VM to which the object is private */
>>>> +	__u32 vm_id;
>>>> +};
>>>> +
>>>> +/**
>>>> + * struct drm_i915_gem_wait_user_fence - Wait on user/memory fence.
>>>> + *
>>>> + * User/Memory fence can be woken up either by:
>>>> + *
>>>> + * 1. GPU context indicated by @ctx_id, or,
>>>> + * 2. Kerrnel driver async worker upon I915_UFENCE_WAIT_SOFT.
>>>> + *    @ctx_id is ignored when this flag is set.
>>>> + *
>>>> + * Wakeup condition is,
>>>> + * ``((*addr & mask) op (value & mask))``
>>>> + *
>>>> + * See :ref:`Documentation/driver-api/dma-buf.rst <indefinite_dma_fences>`
>>>> + */
>>>> +struct drm_i915_gem_wait_user_fence {
>>>> +	/** @extensions: Zero-terminated chain of extensions. */
>>>> +	__u64 extensions;
>>>> +
>>>> +	/** @addr: User/Memory fence address */
>>>> +	__u64 addr;
>>>> +
>>>> +	/** @ctx_id: Id of the Context which will signal the fence. */
>>>> +	__u32 ctx_id;
>>>> +
>>>> +	/** @op: Wakeup condition operator */
>>>> +	__u16 op;
>>>> +#define I915_UFENCE_WAIT_EQ      0
>>>> +#define I915_UFENCE_WAIT_NEQ     1
>>>> +#define I915_UFENCE_WAIT_GT      2
>>>> +#define I915_UFENCE_WAIT_GTE     3
>>>> +#define I915_UFENCE_WAIT_LT      4
>>>> +#define I915_UFENCE_WAIT_LTE     5
>>>> +#define I915_UFENCE_WAIT_BEFORE  6
>>>> +#define I915_UFENCE_WAIT_AFTER   7
>>>> +
>>>> +	/**
>>>> +	 * @flags: Supported flags are:
>>>> +	 *
>>>> +	 * I915_UFENCE_WAIT_SOFT:
>>>> +	 *
>>>> +	 * To be woken up by i915 driver async worker (not by GPU).
>>>> +	 *
>>>> +	 * I915_UFENCE_WAIT_ABSTIME:
>>>> +	 *
>>>> +	 * Wait timeout specified as absolute time.
>>>> +	 */
>>>> +	__u16 flags;
>>>> +#define I915_UFENCE_WAIT_SOFT    0x1
>>>> +#define I915_UFENCE_WAIT_ABSTIME 0x2
>>>> +
>>>> +	/** @value: Wakeup value */
>>>> +	__u64 value;
>>>> +
>>>> +	/** @mask: Wakeup mask */
>>>> +	__u64 mask;
>>>> +#define I915_UFENCE_WAIT_U8     0xffu
>>>> +#define I915_UFENCE_WAIT_U16    0xffffu
>>>> +#define I915_UFENCE_WAIT_U32    0xfffffffful
>>>> +#define I915_UFENCE_WAIT_U64    0xffffffffffffffffull
>>>> +
>>>> +	/**
>>>> +	 * @timeout: Wait timeout in nanoseconds.
>>>> +	 *
>>>> +	 * If I915_UFENCE_WAIT_ABSTIME flag is set, then time timeout is the
>>>> +	 * absolute time in nsec.
>>>> +	 */
>>>> +	__s64 timeout;
>>>> +};
>>>> --
>>>> 2.21.0.rc0.32.g243a4c7e27
>>>>


More information about the Intel-gfx mailing list