[Mesa-dev] [PATCH 154/133] nir: Rename lower_variables to lower_vars_to_ssa
Connor Abbott
cwabbott0 at gmail.com
Wed Jan 14 13:36:29 PST 2015
Reviewed-by: Connor Abbott <cwabbott0 at gmail.com>
On Wed, Jan 14, 2015 at 3:43 PM, Jason Ekstrand <jason at jlekstrand.net> wrote:
> The original name wasn't particularly descriptive. This one indicates that
> it actually gives you SSA values as opposed to the old pass which lowered
> variables to registers.
> ---
> src/glsl/Makefile.sources | 2 +-
> src/glsl/nir/nir.h | 2 +-
> src/glsl/nir/nir_lower_variables.c | 1223 ------------------------------
> src/glsl/nir/nir_lower_vars_to_ssa.c | 1223 ++++++++++++++++++++++++++++++
> src/mesa/drivers/dri/i965/brw_fs_nir.cpp | 2 +-
> 5 files changed, 1226 insertions(+), 1226 deletions(-)
> delete mode 100644 src/glsl/nir/nir_lower_variables.c
> create mode 100644 src/glsl/nir/nir_lower_vars_to_ssa.c
>
> diff --git a/src/glsl/Makefile.sources b/src/glsl/Makefile.sources
> index a61f234..4c9aa77 100644
> --- a/src/glsl/Makefile.sources
> +++ b/src/glsl/Makefile.sources
> @@ -31,7 +31,7 @@ NIR_FILES = \
> $(GLSL_SRCDIR)/nir/nir_lower_samplers.cpp \
> $(GLSL_SRCDIR)/nir/nir_lower_system_values.c \
> $(GLSL_SRCDIR)/nir/nir_lower_to_source_mods.c \
> - $(GLSL_SRCDIR)/nir/nir_lower_variables.c \
> + $(GLSL_SRCDIR)/nir/nir_lower_vars_to_ssa.c \
> $(GLSL_SRCDIR)/nir/nir_lower_vec_to_movs.c \
> $(GLSL_SRCDIR)/nir/nir_metadata.c \
> $(GLSL_SRCDIR)/nir/nir_opcodes.c \
> diff --git a/src/glsl/nir/nir.h b/src/glsl/nir/nir.h
> index 710c0dd..1addd79 100644
> --- a/src/glsl/nir/nir.h
> +++ b/src/glsl/nir/nir.h
> @@ -1467,7 +1467,7 @@ void nir_lower_locals_to_regs(nir_shader *shader);
>
> void nir_lower_io(nir_shader *shader);
>
> -void nir_lower_variables(nir_shader *shader);
> +void nir_lower_vars_to_ssa(nir_shader *shader);
>
> void nir_lower_variables_scalar(nir_shader *shader, bool lower_globals,
> bool lower_io, bool add_names,
> diff --git a/src/glsl/nir/nir_lower_variables.c b/src/glsl/nir/nir_lower_variables.c
> deleted file mode 100644
> index 435384b..0000000
> --- a/src/glsl/nir/nir_lower_variables.c
> +++ /dev/null
> @@ -1,1223 +0,0 @@
> -/*
> - * Copyright © 2014 Intel Corporation
> - *
> - * Permission is hereby granted, free of charge, to any person obtaining a
> - * copy of this software and associated documentation files (the "Software"),
> - * to deal in the Software without restriction, including without limitation
> - * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> - * and/or sell copies of the Software, and to permit persons to whom the
> - * Software is furnished to do so, subject to the following conditions:
> - *
> - * The above copyright notice and this permission notice (including the next
> - * paragraph) shall be included in all copies or substantial portions of the
> - * Software.
> - *
> - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
> - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> - * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
> - * IN THE SOFTWARE.
> - *
> - * Authors:
> - * Jason Ekstrand (jason at jlekstrand.net)
> - *
> - */
> -
> -#include "nir.h"
> -
> -struct deref_node {
> - struct deref_node *parent;
> - const struct glsl_type *type;
> -
> - bool lower_to_ssa;
> -
> - struct set *loads;
> - struct set *stores;
> - struct set *copies;
> -
> - nir_ssa_def **def_stack;
> - nir_ssa_def **def_stack_tail;
> -
> - struct deref_node *wildcard;
> - struct deref_node *indirect;
> - struct deref_node *children[0];
> -};
> -
> -struct lower_variables_state {
> - void *mem_ctx;
> - void *dead_ctx;
> - nir_function_impl *impl;
> -
> - /* A hash table mapping variables to deref_node data */
> - struct hash_table *deref_var_nodes;
> -
> - /* A hash table mapping fully-qualified direct dereferences, i.e.
> - * dereferences with no indirect or wildcard array dereferences, to
> - * deref_node data.
> - *
> - * At the moment, we only lower loads, stores, and copies that can be
> - * trivially lowered to loads and stores, i.e. copies with no indirects
> - * and no wildcards. If a part of a variable that is being loaded from
> - * and/or stored into is also involved in a copy operation with
> - * wildcards, then we lower that copy operation to loads and stores, but
> - * otherwise we leave copies with wildcards alone. Since the only derefs
> - * used in these loads, stores, and trivial copies are ones with no
> - * wildcards and no indirects, these are precisely the derefs that we
> - * can actually consider lowering.
> - */
> - struct hash_table *direct_deref_nodes;
> -
> - /* A hash table mapping phi nodes to deref_state data */
> - struct hash_table *phi_table;
> -};
> -
> -/* The following two functions implement a hash and equality check for
> - * variable dreferences. When the hash or equality function encounters an
> - * array, all indirects are treated as equal and are never equal to a
> - * direct dereference or a wildcard.
> - *
> - * Some of the magic numbers here were taken from _mesa_hash_data and one
> - * was just a big prime I found on the internet.
> - */
> -static uint32_t
> -hash_deref(const void *void_deref)
> -{
> - uint32_t hash = _mesa_FNV32_1a_offset_bias;
> -
> - const nir_deref_var *deref_var = void_deref;
> - hash = _mesa_FNV32_1a_accumulate(hash, deref_var->var);
> -
> - for (const nir_deref *deref = deref_var->deref.child;
> - deref; deref = deref->child) {
> - switch (deref->deref_type) {
> - case nir_deref_type_array: {
> - nir_deref_array *deref_array = nir_deref_as_array(deref);
> -
> - hash = _mesa_FNV32_1a_accumulate(hash, deref_array->deref_array_type);
> -
> - if (deref_array->deref_array_type == nir_deref_array_type_direct)
> - hash = _mesa_FNV32_1a_accumulate(hash, deref_array->base_offset);
> - break;
> - }
> - case nir_deref_type_struct: {
> - nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
> - hash = _mesa_FNV32_1a_accumulate(hash, deref_struct->index);
> - break;
> - }
> - default:
> - assert("Invalid deref chain");
> - }
> - }
> -
> - return hash;
> -}
> -
> -static bool
> -derefs_equal(const void *void_a, const void *void_b)
> -{
> - const nir_deref_var *a_var = void_a;
> - const nir_deref_var *b_var = void_b;
> -
> - if (a_var->var != b_var->var)
> - return false;
> -
> - for (const nir_deref *a = a_var->deref.child, *b = b_var->deref.child;
> - a != NULL; a = a->child, b = b->child) {
> - if (a->deref_type != b->deref_type)
> - return false;
> -
> - switch (a->deref_type) {
> - case nir_deref_type_array: {
> - nir_deref_array *a_arr = nir_deref_as_array(a);
> - nir_deref_array *b_arr = nir_deref_as_array(b);
> -
> - if (a_arr->deref_array_type != b_arr->deref_array_type)
> - return false;
> -
> - if (a_arr->deref_array_type == nir_deref_array_type_direct &&
> - a_arr->base_offset != b_arr->base_offset)
> - return false;
> - break;
> - }
> - case nir_deref_type_struct:
> - if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
> - return false;
> - break;
> - default:
> - assert("Invalid deref chain");
> - return false;
> - }
> -
> - assert((a->child == NULL) == (b->child == NULL));
> - if((a->child == NULL) != (b->child == NULL))
> - return false;
> - }
> -
> - return true;
> -}
> -
> -static int
> -type_get_length(const struct glsl_type *type)
> -{
> - switch (glsl_get_base_type(type)) {
> - case GLSL_TYPE_STRUCT:
> - case GLSL_TYPE_ARRAY:
> - return glsl_get_length(type);
> - case GLSL_TYPE_FLOAT:
> - case GLSL_TYPE_INT:
> - case GLSL_TYPE_UINT:
> - case GLSL_TYPE_BOOL:
> - if (glsl_type_is_matrix(type))
> - return glsl_get_matrix_columns(type);
> - else
> - return glsl_get_vector_elements(type);
> - default:
> - unreachable("Invalid deref base type");
> - }
> -}
> -
> -static struct deref_node *
> -deref_node_create(struct deref_node *parent,
> - const struct glsl_type *type, void *mem_ctx)
> -{
> - size_t size = sizeof(struct deref_node) +
> - type_get_length(type) * sizeof(struct deref_node *);
> -
> - struct deref_node *node = rzalloc_size(mem_ctx, size);
> - node->type = type;
> - node->parent = parent;
> -
> - return node;
> -}
> -
> -/* Gets the deref_node for the given deref chain and creates it if it
> - * doesn't yet exist. If the deref is fully-qualified and direct and
> - * add_to_direct_deref_nodes is true, it will be added to the hash table of
> - * of fully-qualified direct derefs.
> - */
> -static struct deref_node *
> -get_deref_node(nir_deref_var *deref, bool add_to_direct_deref_nodes,
> - struct lower_variables_state *state)
> -{
> - bool is_direct = true;
> -
> - struct deref_node *node;
> -
> - uint32_t var_hash = _mesa_hash_pointer(deref->var);
> - struct hash_entry *var_entry =
> - _mesa_hash_table_search(state->deref_var_nodes, var_hash, deref->var);
> -
> - if (var_entry) {
> - node = var_entry->data;
> - } else {
> - node = deref_node_create(NULL, deref->deref.type, state->dead_ctx);
> - _mesa_hash_table_insert(state->deref_var_nodes,
> - var_hash, deref->var, node);
> - }
> -
> - for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
> - switch (tail->deref_type) {
> - case nir_deref_type_struct: {
> - nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
> -
> - assert(deref_struct->index < type_get_length(node->type));
> -
> - if (node->children[deref_struct->index] == NULL)
> - node->children[deref_struct->index] =
> - deref_node_create(node, tail->type, state->dead_ctx);
> -
> - node = node->children[deref_struct->index];
> - break;
> - }
> -
> - case nir_deref_type_array: {
> - nir_deref_array *arr = nir_deref_as_array(tail);
> -
> - switch (arr->deref_array_type) {
> - case nir_deref_array_type_direct:
> - /* This is possible if a loop unrolls and generates an
> - * out-of-bounds offset. We need to handle this at least
> - * somewhat gracefully.
> - */
> - if (arr->base_offset >= type_get_length(node->type))
> - return NULL;
> -
> - if (node->children[arr->base_offset] == NULL)
> - node->children[arr->base_offset] =
> - deref_node_create(node, tail->type, state->dead_ctx);
> -
> - node = node->children[arr->base_offset];
> - break;
> -
> - case nir_deref_array_type_indirect:
> - if (node->indirect == NULL)
> - node->indirect = deref_node_create(node, tail->type,
> - state->dead_ctx);
> -
> - node = node->indirect;
> - is_direct = false;
> - break;
> -
> - case nir_deref_array_type_wildcard:
> - if (node->wildcard == NULL)
> - node->wildcard = deref_node_create(node, tail->type,
> - state->dead_ctx);
> -
> - node = node->wildcard;
> - is_direct = false;
> - break;
> -
> - default:
> - unreachable("Invalid array deref type");
> - }
> - break;
> - }
> - default:
> - unreachable("Invalid deref type");
> - }
> - }
> -
> - assert(node);
> -
> - if (is_direct && add_to_direct_deref_nodes)
> - _mesa_hash_table_insert(state->direct_deref_nodes,
> - hash_deref(deref), deref, node);
> -
> - return node;
> -}
> -
> -/* \sa foreach_deref_node_match */
> -static bool
> -foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
> - bool (* cb)(struct deref_node *node,
> - struct lower_variables_state *state),
> - struct lower_variables_state *state)
> -{
> - if (deref->child == NULL) {
> - return cb(node, state);
> - } else {
> - switch (deref->child->deref_type) {
> - case nir_deref_type_array: {
> - nir_deref_array *arr = nir_deref_as_array(deref->child);
> - assert(arr->deref_array_type == nir_deref_array_type_direct);
> - if (node->children[arr->base_offset] &&
> - !foreach_deref_node_worker(node->children[arr->base_offset],
> - deref->child, cb, state))
> - return false;
> -
> - if (node->wildcard &&
> - !foreach_deref_node_worker(node->wildcard,
> - deref->child, cb, state))
> - return false;
> -
> - return true;
> - }
> -
> - case nir_deref_type_struct: {
> - nir_deref_struct *str = nir_deref_as_struct(deref->child);
> - return foreach_deref_node_worker(node->children[str->index],
> - deref->child, cb, state);
> - }
> -
> - default:
> - unreachable("Invalid deref child type");
> - }
> - }
> -}
> -
> -/* Walks over every "matching" deref_node and calls the callback. A node
> - * is considered to "match" if either refers to that deref or matches up t
> - * a wildcard. In other words, the following would match a[6].foo[3].bar:
> - *
> - * a[6].foo[3].bar
> - * a[*].foo[3].bar
> - * a[6].foo[*].bar
> - * a[*].foo[*].bar
> - *
> - * The given deref must be a full-length and fully qualified (no wildcards
> - * or indirects) deref chain.
> - */
> -static bool
> -foreach_deref_node_match(nir_deref_var *deref,
> - bool (* cb)(struct deref_node *node,
> - struct lower_variables_state *state),
> - struct lower_variables_state *state)
> -{
> - nir_deref_var var_deref = *deref;
> - var_deref.deref.child = NULL;
> - struct deref_node *node = get_deref_node(&var_deref, false, state);
> -
> - if (node == NULL)
> - return false;
> -
> - return foreach_deref_node_worker(node, &deref->deref, cb, state);
> -}
> -
> -/* \sa deref_may_be_aliased */
> -static bool
> -deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
> - struct lower_variables_state *state)
> -{
> - if (deref->child == NULL) {
> - return false;
> - } else {
> - switch (deref->child->deref_type) {
> - case nir_deref_type_array: {
> - nir_deref_array *arr = nir_deref_as_array(deref->child);
> - if (arr->deref_array_type == nir_deref_array_type_indirect)
> - return true;
> -
> - assert(arr->deref_array_type == nir_deref_array_type_direct);
> -
> - if (node->children[arr->base_offset] &&
> - deref_may_be_aliased_node(node->children[arr->base_offset],
> - deref->child, state))
> - return true;
> -
> - if (node->wildcard &&
> - deref_may_be_aliased_node(node->wildcard, deref->child, state))
> - return true;
> -
> - return false;
> - }
> -
> - case nir_deref_type_struct: {
> - nir_deref_struct *str = nir_deref_as_struct(deref->child);
> - if (node->children[str->index]) {
> - return deref_may_be_aliased_node(node->children[str->index],
> - deref->child, state);
> - } else {
> - return false;
> - }
> - }
> -
> - default:
> - unreachable("Invalid nir_deref child type");
> - }
> - }
> -}
> -
> -/* Returns true if there are no indirects that can ever touch this deref.
> - *
> - * For example, if the given deref is a[6].foo, then any uses of a[i].foo
> - * would cause this to return false, but a[i].bar would not affect it
> - * because it's a different structure member. A var_copy involving of
> - * a[*].bar also doesn't affect it because that can be lowered to entirely
> - * direct load/stores.
> - *
> - * We only support asking this question about fully-qualified derefs.
> - * Obviously, it's pointless to ask this about indirects, but we also
> - * rule-out wildcards. Handling Wildcard dereferences would involve
> - * checking each array index to make sure that there aren't any indirect
> - * references.
> - */
> -static bool
> -deref_may_be_aliased(nir_deref_var *deref,
> - struct lower_variables_state *state)
> -{
> - nir_deref_var var_deref = *deref;
> - var_deref.deref.child = NULL;
> - struct deref_node *node = get_deref_node(&var_deref, false, state);
> -
> - /* An invalid dereference can't be aliased. */
> - if (node == NULL)
> - return false;
> -
> - return deref_may_be_aliased_node(node, &deref->deref, state);
> -}
> -
> -static void
> -register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
> - struct lower_variables_state *state)
> -{
> - struct deref_node *node = get_deref_node(load_instr->variables[0],
> - create_node, state);
> - if (node == NULL)
> - return;
> -
> - if (node->loads == NULL)
> - node->loads = _mesa_set_create(state->dead_ctx,
> - _mesa_key_pointer_equal);
> -
> - _mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
> -}
> -
> -static void
> -register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
> - struct lower_variables_state *state)
> -{
> - struct deref_node *node = get_deref_node(store_instr->variables[0],
> - create_node, state);
> - if (node == NULL)
> - return;
> -
> - if (node->stores == NULL)
> - node->stores = _mesa_set_create(state->dead_ctx,
> - _mesa_key_pointer_equal);
> -
> - _mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
> -}
> -
> -static void
> -register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
> - struct lower_variables_state *state)
> -{
> - for (unsigned idx = 0; idx < 2; idx++) {
> - struct deref_node *node = get_deref_node(copy_instr->variables[idx],
> - create_node, state);
> - if (node == NULL)
> - continue;
> -
> - if (node->copies == NULL)
> - node->copies = _mesa_set_create(state->dead_ctx,
> - _mesa_key_pointer_equal);
> -
> - _mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
> - }
> -}
> -
> -/* Registers all variable uses in the given block. */
> -static bool
> -register_variable_uses_block(nir_block *block, void *void_state)
> -{
> - struct lower_variables_state *state = void_state;
> -
> - nir_foreach_instr_safe(block, instr) {
> - if (instr->type != nir_instr_type_intrinsic)
> - continue;
> -
> - nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> -
> - switch (intrin->intrinsic) {
> - case nir_intrinsic_load_var:
> - register_load_instr(intrin, true, state);
> - break;
> -
> - case nir_intrinsic_store_var:
> - register_store_instr(intrin, true, state);
> - break;
> -
> - case nir_intrinsic_copy_var:
> - register_copy_instr(intrin, true, state);
> - break;
> -
> - default:
> - continue;
> - }
> - }
> -
> - return true;
> -}
> -
> -/* Walks down the deref chain and returns the next deref in the chain whose
> - * child is a wildcard. In other words, given the chain a[1].foo[*].bar,
> - * this function will return the deref to foo. Calling it a second time
> - * with the [*].bar, it will return NULL.
> - */
> -static nir_deref *
> -deref_next_wildcard_parent(nir_deref *deref)
> -{
> - for (nir_deref *tail = deref; tail->child; tail = tail->child) {
> - if (tail->child->deref_type != nir_deref_type_array)
> - continue;
> -
> - nir_deref_array *arr = nir_deref_as_array(tail->child);
> -
> - if (arr->deref_array_type == nir_deref_array_type_wildcard)
> - return tail;
> - }
> -
> - return NULL;
> -}
> -
> -/* Returns the last deref in the chain.
> - */
> -static nir_deref *
> -get_deref_tail(nir_deref *deref)
> -{
> - while (deref->child)
> - deref = deref->child;
> -
> - return deref;
> -}
> -
> -/* This function recursively walks the given deref chain and replaces the
> - * given copy instruction with an equivalent sequence load/store
> - * operations.
> - *
> - * @copy_instr The copy instruction to replace; new instructions will be
> - * inserted before this one
> - *
> - * @dest_head The head of the destination variable deref chain
> - *
> - * @src_head The head of the source variable deref chain
> - *
> - * @dest_tail The current tail of the destination variable deref chain;
> - * this is used for recursion and external callers of this
> - * function should call it with tail == head
> - *
> - * @src_tail The current tail of the source variable deref chain;
> - * this is used for recursion and external callers of this
> - * function should call it with tail == head
> - *
> - * @state The current variable lowering state
> - */
> -static void
> -emit_copy_load_store(nir_intrinsic_instr *copy_instr,
> - nir_deref_var *dest_head, nir_deref_var *src_head,
> - nir_deref *dest_tail, nir_deref *src_tail,
> - struct lower_variables_state *state)
> -{
> - /* Find the next pair of wildcards */
> - nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
> - nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);
> -
> - if (src_arr_parent || dest_arr_parent) {
> - /* Wildcards had better come in matched pairs */
> - assert(dest_arr_parent && dest_arr_parent);
> -
> - nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
> - nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);
> -
> - unsigned length = type_get_length(src_arr_parent->type);
> - /* The wildcards should represent the same number of elements */
> - assert(length == type_get_length(dest_arr_parent->type));
> - assert(length > 0);
> -
> - /* Walk over all of the elements that this wildcard refers to and
> - * call emit_copy_load_store on each one of them */
> - src_arr->deref_array_type = nir_deref_array_type_direct;
> - dest_arr->deref_array_type = nir_deref_array_type_direct;
> - for (unsigned i = 0; i < length; i++) {
> - src_arr->base_offset = i;
> - dest_arr->base_offset = i;
> - emit_copy_load_store(copy_instr, dest_head, src_head,
> - &dest_arr->deref, &src_arr->deref, state);
> - }
> - src_arr->deref_array_type = nir_deref_array_type_wildcard;
> - dest_arr->deref_array_type = nir_deref_array_type_wildcard;
> - } else {
> - /* In this case, we have no wildcards anymore, so all we have to do
> - * is just emit the load and store operations. */
> - src_tail = get_deref_tail(src_tail);
> - dest_tail = get_deref_tail(dest_tail);
> -
> - assert(src_tail->type == dest_tail->type);
> -
> - unsigned num_components = glsl_get_vector_elements(src_tail->type);
> -
> - nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
> - nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);
> -
> - nir_intrinsic_instr *load =
> - nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
> - load->num_components = num_components;
> - load->variables[0] = nir_deref_as_var(src_deref);
> - load->dest.is_ssa = true;
> - nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);
> -
> - nir_instr_insert_before(©_instr->instr, &load->instr);
> - register_load_instr(load, false, state);
> -
> - nir_intrinsic_instr *store =
> - nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
> - store->num_components = num_components;
> - store->variables[0] = nir_deref_as_var(dest_deref);
> - store->src[0].is_ssa = true;
> - store->src[0].ssa = &load->dest.ssa;
> -
> - nir_instr_insert_before(©_instr->instr, &store->instr);
> - register_store_instr(store, false, state);
> - }
> -}
> -
> -/* Walks over all of the copy instructions to or from the given deref_node
> - * and lowers them to load/store intrinsics.
> - */
> -static bool
> -lower_copies_to_load_store(struct deref_node *node,
> - struct lower_variables_state *state)
> -{
> - if (!node->copies)
> - return true;
> -
> - struct set_entry *copy_entry;
> - set_foreach(node->copies, copy_entry) {
> - nir_intrinsic_instr *copy = (void *)copy_entry->key;
> -
> - emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
> - ©->variables[0]->deref,
> - ©->variables[1]->deref,
> - state);
> -
> - for (unsigned i = 0; i < 2; ++i) {
> - struct deref_node *arg_node = get_deref_node(copy->variables[i],
> - false, state);
> - if (arg_node == NULL)
> - continue;
> -
> - struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
> - copy_entry->hash,
> - copy);
> - assert(arg_entry);
> - _mesa_set_remove(node->copies, arg_entry);
> - }
> -
> - nir_instr_remove(©->instr);
> - }
> -
> - return true;
> -}
> -
> -/* Returns a load_const instruction that represents the constant
> - * initializer for the given deref chain. The caller is responsible for
> - * ensuring that there actually is a constant initializer.
> - */
> -static nir_load_const_instr *
> -get_const_initializer_load(const nir_deref_var *deref,
> - struct lower_variables_state *state)
> -{
> - nir_constant *constant = deref->var->constant_initializer;
> - const nir_deref *tail = &deref->deref;
> - unsigned matrix_offset = 0;
> - while (tail->child) {
> - switch (tail->child->deref_type) {
> - case nir_deref_type_array: {
> - nir_deref_array *arr = nir_deref_as_array(tail->child);
> - assert(arr->deref_array_type == nir_deref_array_type_direct);
> - if (glsl_type_is_matrix(tail->type)) {
> - assert(arr->deref.child == NULL);
> - matrix_offset = arr->base_offset;
> - } else {
> - constant = constant->elements[arr->base_offset];
> - }
> - break;
> - }
> -
> - case nir_deref_type_struct: {
> - constant = constant->elements[nir_deref_as_struct(tail->child)->index];
> - break;
> - }
> -
> - default:
> - unreachable("Invalid deref child type");
> - }
> -
> - tail = tail->child;
> - }
> -
> - nir_load_const_instr *load =
> - nir_load_const_instr_create(state->mem_ctx,
> - glsl_get_vector_elements(tail->type));
> -
> - matrix_offset *= load->def.num_components;
> - for (unsigned i = 0; i < load->def.num_components; i++) {
> - switch (glsl_get_base_type(tail->type)) {
> - case GLSL_TYPE_FLOAT:
> - case GLSL_TYPE_INT:
> - case GLSL_TYPE_UINT:
> - load->value.u[i] = constant->value.u[matrix_offset + i];
> - break;
> - case GLSL_TYPE_BOOL:
> - load->value.u[i] = constant->value.u[matrix_offset + i] ?
> - NIR_TRUE : NIR_FALSE;
> - break;
> - default:
> - unreachable("Invalid immediate type");
> - }
> - }
> -
> - return load;
> -}
> -
> -/** Pushes an SSA def onto the def stack for the given node
> - *
> - * Each node is potentially associated with a stack of SSA definitions.
> - * This stack is used for determining what SSA definition reaches a given
> - * point in the program for variable renaming. The stack is always kept in
> - * dominance-order with at most one SSA def per block. If the SSA
> - * definition on the top of the stack is in the same block as the one being
> - * pushed, the top element is replaced.
> - */
> -static void
> -def_stack_push(struct deref_node *node, nir_ssa_def *def,
> - struct lower_variables_state *state)
> -{
> - if (node->def_stack == NULL) {
> - node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
> - state->impl->num_blocks);
> - node->def_stack_tail = node->def_stack - 1;
> - }
> -
> - if (node->def_stack_tail >= node->def_stack) {
> - nir_ssa_def *top_def = *node->def_stack_tail;
> -
> - if (def->parent_instr->block == top_def->parent_instr->block) {
> - /* They're in the same block, just replace the top */
> - *node->def_stack_tail = def;
> - return;
> - }
> - }
> -
> - *(++node->def_stack_tail) = def;
> -}
> -
> -/* Pop the top of the def stack if it's in the given block */
> -static void
> -def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
> -{
> - /* If we're popping, then we have presumably pushed at some time in the
> - * past so this should exist.
> - */
> - assert(node->def_stack != NULL);
> -
> - /* The stack is already empty. Do nothing. */
> - if (node->def_stack_tail < node->def_stack)
> - return;
> -
> - nir_ssa_def *def = *node->def_stack_tail;
> - if (def->parent_instr->block == block)
> - node->def_stack_tail--;
> -}
> -
> -/** Retrieves the SSA definition on the top of the stack for the given
> - * node, if one exists. If the stack is empty, then we return the constant
> - * initializer (if it exists) or an SSA undef.
> - */
> -static nir_ssa_def *
> -get_ssa_def_for_block(struct deref_node *node, nir_block *block,
> - struct lower_variables_state *state)
> -{
> - /* If we have something on the stack, go ahead and return it. We're
> - * assuming that the top of the stack dominates the given block.
> - */
> - if (node->def_stack && node->def_stack_tail >= node->def_stack)
> - return *node->def_stack_tail;
> -
> - /* If we got here then we don't have a definition that dominates the
> - * given block. This means that we need to add an undef and use that.
> - */
> - nir_ssa_undef_instr *undef =
> - nir_ssa_undef_instr_create(state->mem_ctx,
> - glsl_get_vector_elements(node->type));
> - nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
> - def_stack_push(node, &undef->def, state);
> - return &undef->def;
> -}
> -
> -/* Given a block and one of its predecessors, this function fills in the
> - * souces of the phi nodes to take SSA defs from the given predecessor.
> - * This function must be called exactly once per block/predecessor pair.
> - */
> -static void
> -add_phi_sources(nir_block *block, nir_block *pred,
> - struct lower_variables_state *state)
> -{
> - nir_foreach_instr(block, instr) {
> - if (instr->type != nir_instr_type_phi)
> - break;
> -
> - nir_phi_instr *phi = nir_instr_as_phi(instr);
> -
> - struct hash_entry *entry =
> - _mesa_hash_table_search(state->phi_table,
> - _mesa_hash_pointer(phi), phi);
> - if (!entry)
> - continue;
> -
> - struct deref_node *node = entry->data;
> -
> - nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
> - src->pred = pred;
> - src->src.is_ssa = true;
> - src->src.ssa = get_ssa_def_for_block(node, pred, state);
> -
> - _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);
> -
> - exec_list_push_tail(&phi->srcs, &src->node);
> - }
> -}
> -
> -/* Performs variable renaming by doing a DFS of the dominance tree
> - *
> - * This algorithm is very similar to the one outlined in "Efficiently
> - * Computing Static Single Assignment Form and the Control Dependence
> - * Graph" by Cytron et. al. The primary difference is that we only put one
> - * SSA def on the stack per block.
> - */
> -static bool
> -rename_variables_block(nir_block *block, struct lower_variables_state *state)
> -{
> - nir_foreach_instr_safe(block, instr) {
> - if (instr->type == nir_instr_type_phi) {
> - nir_phi_instr *phi = nir_instr_as_phi(instr);
> -
> - struct hash_entry *entry =
> - _mesa_hash_table_search(state->phi_table,
> - _mesa_hash_pointer(phi), phi);
> -
> - /* This can happen if we already have phi nodes in the program
> - * that were not created in this pass.
> - */
> - if (!entry)
> - continue;
> -
> - struct deref_node *node = entry->data;
> -
> - def_stack_push(node, &phi->dest.ssa, state);
> - } else if (instr->type == nir_instr_type_intrinsic) {
> - nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> -
> - switch (intrin->intrinsic) {
> - case nir_intrinsic_load_var: {
> - struct deref_node *node = get_deref_node(intrin->variables[0],
> - false, state);
> -
> - if (node == NULL) {
> - /* If we hit this path then we are referencing an invalid
> - * value. Most likely, we unrolled something and are
> - * reading past the end of some array. In any case, this
> - * should result in an undefined value.
> - */
> - nir_ssa_undef_instr *undef =
> - nir_ssa_undef_instr_create(state->mem_ctx,
> - intrin->num_components);
> -
> - nir_instr_insert_before(&intrin->instr, &undef->instr);
> - nir_instr_remove(&intrin->instr);
> -
> - nir_src new_src = {
> - .is_ssa = true,
> - .ssa = &undef->def,
> - };
> -
> - nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
> - state->mem_ctx);
> - continue;
> - }
> -
> - if (!node->lower_to_ssa)
> - continue;
> -
> - nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
> - nir_op_imov);
> - mov->src[0].src.is_ssa = true;
> - mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
> - for (unsigned i = intrin->num_components; i < 4; i++)
> - mov->src[0].swizzle[i] = 0;
> -
> - assert(intrin->dest.is_ssa);
> -
> - mov->dest.write_mask = (1 << intrin->num_components) - 1;
> - mov->dest.dest.is_ssa = true;
> - nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
> - intrin->num_components, NULL);
> -
> - nir_instr_insert_before(&intrin->instr, &mov->instr);
> - nir_instr_remove(&intrin->instr);
> -
> - nir_src new_src = {
> - .is_ssa = true,
> - .ssa = &mov->dest.dest.ssa,
> - };
> -
> - nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
> - state->mem_ctx);
> - break;
> - }
> -
> - case nir_intrinsic_store_var: {
> - struct deref_node *node = get_deref_node(intrin->variables[0],
> - false, state);
> -
> - if (node == NULL) {
> - /* Probably an out-of-bounds array store. That should be a
> - * no-op. */
> - nir_instr_remove(&intrin->instr);
> - continue;
> - }
> -
> - if (!node->lower_to_ssa)
> - continue;
> -
> - assert(intrin->num_components ==
> - glsl_get_vector_elements(node->type));
> -
> - assert(intrin->src[0].is_ssa);
> -
> - nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
> - nir_op_imov);
> - mov->src[0].src.is_ssa = true;
> - mov->src[0].src.ssa = intrin->src[0].ssa;
> - for (unsigned i = intrin->num_components; i < 4; i++)
> - mov->src[0].swizzle[i] = 0;
> -
> - mov->dest.write_mask = (1 << intrin->num_components) - 1;
> - mov->dest.dest.is_ssa = true;
> - nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
> - intrin->num_components, NULL);
> -
> - nir_instr_insert_before(&intrin->instr, &mov->instr);
> -
> - def_stack_push(node, &mov->dest.dest.ssa, state);
> -
> - /* We'll wait to remove the instruction until the next pass
> - * where we pop the node we just pushed back off the stack.
> - */
> - break;
> - }
> -
> - default:
> - break;
> - }
> - }
> - }
> -
> - if (block->successors[0])
> - add_phi_sources(block->successors[0], block, state);
> - if (block->successors[1])
> - add_phi_sources(block->successors[1], block, state);
> -
> - for (unsigned i = 0; i < block->num_dom_children; ++i)
> - rename_variables_block(block->dom_children[i], state);
> -
> - /* Now we iterate over the instructions and pop off any SSA defs that we
> - * pushed in the first loop.
> - */
> - nir_foreach_instr_safe(block, instr) {
> - if (instr->type == nir_instr_type_phi) {
> - nir_phi_instr *phi = nir_instr_as_phi(instr);
> -
> - struct hash_entry *entry =
> - _mesa_hash_table_search(state->phi_table,
> - _mesa_hash_pointer(phi), phi);
> -
> - /* This can happen if we already have phi nodes in the program
> - * that were not created in this pass.
> - */
> - if (!entry)
> - continue;
> -
> - struct deref_node *node = entry->data;
> -
> - def_stack_pop_if_in_block(node, block);
> - } else if (instr->type == nir_instr_type_intrinsic) {
> - nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> -
> - if (intrin->intrinsic != nir_intrinsic_store_var)
> - continue;
> -
> - struct deref_node *node = get_deref_node(intrin->variables[0],
> - false, state);
> - if (!node)
> - continue;
> -
> - if (!node->lower_to_ssa)
> - continue;
> -
> - def_stack_pop_if_in_block(node, block);
> - nir_instr_remove(&intrin->instr);
> - }
> - }
> -
> - return true;
> -}
> -
> -/* Inserts phi nodes for all variables marked lower_to_ssa
> - *
> - * This is the same algorithm as presented in "Efficiently Computing Static
> - * Single Assignment Form and the Control Dependence Graph" by Cytron et.
> - * al.
> - */
> -static void
> -insert_phi_nodes(struct lower_variables_state *state)
> -{
> - unsigned work[state->impl->num_blocks];
> - unsigned has_already[state->impl->num_blocks];
> -
> - /*
> - * Since the work flags already prevent us from inserting a node that has
> - * ever been inserted into W, we don't need to use a set to represent W.
> - * Also, since no block can ever be inserted into W more than once, we know
> - * that the maximum size of W is the number of basic blocks in the
> - * function. So all we need to handle W is an array and a pointer to the
> - * next element to be inserted and the next element to be removed.
> - */
> - nir_block *W[state->impl->num_blocks];
> -
> - memset(work, 0, sizeof work);
> - memset(has_already, 0, sizeof has_already);
> -
> - unsigned w_start, w_end;
> - unsigned iter_count = 0;
> -
> - struct hash_entry *deref_entry;
> - hash_table_foreach(state->direct_deref_nodes, deref_entry) {
> - struct deref_node *node = deref_entry->data;
> -
> - if (node->stores == NULL)
> - continue;
> -
> - if (!node->lower_to_ssa)
> - continue;
> -
> - w_start = w_end = 0;
> - iter_count++;
> -
> - struct set_entry *store_entry;
> - set_foreach(node->stores, store_entry) {
> - nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
> - if (work[store->instr.block->index] < iter_count)
> - W[w_end++] = store->instr.block;
> - work[store->instr.block->index] = iter_count;
> - }
> -
> - while (w_start != w_end) {
> - nir_block *cur = W[w_start++];
> - struct set_entry *dom_entry;
> - set_foreach(cur->dom_frontier, dom_entry) {
> - nir_block *next = (nir_block *) dom_entry->key;
> -
> - /*
> - * If there's more than one return statement, then the end block
> - * can be a join point for some definitions. However, there are
> - * no instructions in the end block, so nothing would use those
> - * phi nodes. Of course, we couldn't place those phi nodes
> - * anyways due to the restriction of having no instructions in the
> - * end block...
> - */
> - if (next == state->impl->end_block)
> - continue;
> -
> - if (has_already[next->index] < iter_count) {
> - nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
> - phi->dest.is_ssa = true;
> - nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
> - glsl_get_vector_elements(node->type), NULL);
> - nir_instr_insert_before_block(next, &phi->instr);
> -
> - _mesa_hash_table_insert(state->phi_table,
> - _mesa_hash_pointer(phi), phi, node);
> -
> - has_already[next->index] = iter_count;
> - if (work[next->index] < iter_count) {
> - work[next->index] = iter_count;
> - W[w_end++] = next;
> - }
> - }
> - }
> - }
> - }
> -}
> -
> -
> -/** Implements a pass to lower variable uses to SSA values
> - *
> - * This path walks the list of instructions and tries to lower as many
> - * local variable load/store operations to SSA defs and uses as it can.
> - * The process involves four passes:
> - *
> - * 1) Iterate over all of the instructions and mark where each local
> - * variable deref is used in a load, store, or copy. While we're at
> - * it, we keep track of all of the fully-qualified (no wildcards) and
> - * fully-direct references we see and store them in the
> - * direct_deref_nodes hash table.
> - *
> - * 2) Walk over the the list of fully-qualified direct derefs generated in
> - * the previous pass. For each deref, we determine if it can ever be
> - * aliased, i.e. if there is an indirect reference anywhere that may
> - * refer to it. If it cannot be aliased, we mark it for lowering to an
> - * SSA value. At this point, we lower any var_copy instructions that
> - * use the given deref to load/store operations and, if the deref has a
> - * constant initializer, we go ahead and add a load_const value at the
> - * beginning of the function with the initialized value.
> - *
> - * 3) Walk over the list of derefs we plan to lower to SSA values and
> - * insert phi nodes as needed.
> - *
> - * 4) Perform "variable renaming" by replacing the load/store instructions
> - * with SSA definitions and SSA uses.
> - */
> -static bool
> -nir_lower_variables_impl(nir_function_impl *impl)
> -{
> - struct lower_variables_state state;
> -
> - state.mem_ctx = ralloc_parent(impl);
> - state.dead_ctx = ralloc_context(state.mem_ctx);
> - state.impl = impl;
> -
> - state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
> - _mesa_key_pointer_equal);
> - state.direct_deref_nodes = _mesa_hash_table_create(state.dead_ctx,
> - derefs_equal);
> - state.phi_table = _mesa_hash_table_create(state.dead_ctx,
> - _mesa_key_pointer_equal);
> -
> - nir_foreach_block(impl, register_variable_uses_block, &state);
> -
> - struct set *outputs = _mesa_set_create(state.dead_ctx,
> - _mesa_key_pointer_equal);
> -
> - bool progress = false;
> -
> - nir_metadata_require(impl, nir_metadata_block_index);
> -
> - struct hash_entry *entry;
> - hash_table_foreach(state.direct_deref_nodes, entry) {
> - nir_deref_var *deref = (void *)entry->key;
> - struct deref_node *node = entry->data;
> -
> - if (deref->var->data.mode != nir_var_local) {
> - _mesa_hash_table_remove(state.direct_deref_nodes, entry);
> - continue;
> - }
> -
> - if (deref_may_be_aliased(deref, &state)) {
> - _mesa_hash_table_remove(state.direct_deref_nodes, entry);
> - continue;
> - }
> -
> - node->lower_to_ssa = true;
> - progress = true;
> -
> - if (deref->var->constant_initializer) {
> - nir_load_const_instr *load = get_const_initializer_load(deref, &state);
> - nir_ssa_def_init(&load->instr, &load->def,
> - glsl_get_vector_elements(node->type), NULL);
> - nir_instr_insert_before_cf_list(&impl->body, &load->instr);
> - def_stack_push(node, &load->def, &state);
> - }
> -
> - if (deref->var->data.mode == nir_var_shader_out)
> - _mesa_set_add(outputs, _mesa_hash_pointer(node), node);
> -
> - foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
> - }
> -
> - if (!progress)
> - return false;
> -
> - nir_metadata_require(impl, nir_metadata_dominance);
> -
> - insert_phi_nodes(&state);
> - rename_variables_block(impl->start_block, &state);
> -
> - nir_metadata_preserve(impl, nir_metadata_block_index |
> - nir_metadata_dominance);
> -
> - ralloc_free(state.dead_ctx);
> -
> - return progress;
> -}
> -
> -void
> -nir_lower_variables(nir_shader *shader)
> -{
> - nir_foreach_overload(shader, overload) {
> - if (overload->impl)
> - nir_lower_variables_impl(overload->impl);
> - }
> -}
> diff --git a/src/glsl/nir/nir_lower_vars_to_ssa.c b/src/glsl/nir/nir_lower_vars_to_ssa.c
> new file mode 100644
> index 0000000..0f2391a
> --- /dev/null
> +++ b/src/glsl/nir/nir_lower_vars_to_ssa.c
> @@ -0,0 +1,1223 @@
> +/*
> + * Copyright © 2014 Intel Corporation
> + *
> + * Permission is hereby granted, free of charge, to any person obtaining a
> + * copy of this software and associated documentation files (the "Software"),
> + * to deal in the Software without restriction, including without limitation
> + * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> + * and/or sell copies of the Software, and to permit persons to whom the
> + * Software is furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice (including the next
> + * paragraph) shall be included in all copies or substantial portions of the
> + * Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
> + * IN THE SOFTWARE.
> + *
> + * Authors:
> + * Jason Ekstrand (jason at jlekstrand.net)
> + *
> + */
> +
> +#include "nir.h"
> +
> +struct deref_node {
> + struct deref_node *parent;
> + const struct glsl_type *type;
> +
> + bool lower_to_ssa;
> +
> + struct set *loads;
> + struct set *stores;
> + struct set *copies;
> +
> + nir_ssa_def **def_stack;
> + nir_ssa_def **def_stack_tail;
> +
> + struct deref_node *wildcard;
> + struct deref_node *indirect;
> + struct deref_node *children[0];
> +};
> +
> +struct lower_variables_state {
> + void *mem_ctx;
> + void *dead_ctx;
> + nir_function_impl *impl;
> +
> + /* A hash table mapping variables to deref_node data */
> + struct hash_table *deref_var_nodes;
> +
> + /* A hash table mapping fully-qualified direct dereferences, i.e.
> + * dereferences with no indirect or wildcard array dereferences, to
> + * deref_node data.
> + *
> + * At the moment, we only lower loads, stores, and copies that can be
> + * trivially lowered to loads and stores, i.e. copies with no indirects
> + * and no wildcards. If a part of a variable that is being loaded from
> + * and/or stored into is also involved in a copy operation with
> + * wildcards, then we lower that copy operation to loads and stores, but
> + * otherwise we leave copies with wildcards alone. Since the only derefs
> + * used in these loads, stores, and trivial copies are ones with no
> + * wildcards and no indirects, these are precisely the derefs that we
> + * can actually consider lowering.
> + */
> + struct hash_table *direct_deref_nodes;
> +
> + /* A hash table mapping phi nodes to deref_state data */
> + struct hash_table *phi_table;
> +};
> +
> +/* The following two functions implement a hash and equality check for
> + * variable dreferences. When the hash or equality function encounters an
> + * array, all indirects are treated as equal and are never equal to a
> + * direct dereference or a wildcard.
> + *
> + * Some of the magic numbers here were taken from _mesa_hash_data and one
> + * was just a big prime I found on the internet.
> + */
> +static uint32_t
> +hash_deref(const void *void_deref)
> +{
> + uint32_t hash = _mesa_FNV32_1a_offset_bias;
> +
> + const nir_deref_var *deref_var = void_deref;
> + hash = _mesa_FNV32_1a_accumulate(hash, deref_var->var);
> +
> + for (const nir_deref *deref = deref_var->deref.child;
> + deref; deref = deref->child) {
> + switch (deref->deref_type) {
> + case nir_deref_type_array: {
> + nir_deref_array *deref_array = nir_deref_as_array(deref);
> +
> + hash = _mesa_FNV32_1a_accumulate(hash, deref_array->deref_array_type);
> +
> + if (deref_array->deref_array_type == nir_deref_array_type_direct)
> + hash = _mesa_FNV32_1a_accumulate(hash, deref_array->base_offset);
> + break;
> + }
> + case nir_deref_type_struct: {
> + nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
> + hash = _mesa_FNV32_1a_accumulate(hash, deref_struct->index);
> + break;
> + }
> + default:
> + assert("Invalid deref chain");
> + }
> + }
> +
> + return hash;
> +}
> +
> +static bool
> +derefs_equal(const void *void_a, const void *void_b)
> +{
> + const nir_deref_var *a_var = void_a;
> + const nir_deref_var *b_var = void_b;
> +
> + if (a_var->var != b_var->var)
> + return false;
> +
> + for (const nir_deref *a = a_var->deref.child, *b = b_var->deref.child;
> + a != NULL; a = a->child, b = b->child) {
> + if (a->deref_type != b->deref_type)
> + return false;
> +
> + switch (a->deref_type) {
> + case nir_deref_type_array: {
> + nir_deref_array *a_arr = nir_deref_as_array(a);
> + nir_deref_array *b_arr = nir_deref_as_array(b);
> +
> + if (a_arr->deref_array_type != b_arr->deref_array_type)
> + return false;
> +
> + if (a_arr->deref_array_type == nir_deref_array_type_direct &&
> + a_arr->base_offset != b_arr->base_offset)
> + return false;
> + break;
> + }
> + case nir_deref_type_struct:
> + if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
> + return false;
> + break;
> + default:
> + assert("Invalid deref chain");
> + return false;
> + }
> +
> + assert((a->child == NULL) == (b->child == NULL));
> + if((a->child == NULL) != (b->child == NULL))
> + return false;
> + }
> +
> + return true;
> +}
> +
> +static int
> +type_get_length(const struct glsl_type *type)
> +{
> + switch (glsl_get_base_type(type)) {
> + case GLSL_TYPE_STRUCT:
> + case GLSL_TYPE_ARRAY:
> + return glsl_get_length(type);
> + case GLSL_TYPE_FLOAT:
> + case GLSL_TYPE_INT:
> + case GLSL_TYPE_UINT:
> + case GLSL_TYPE_BOOL:
> + if (glsl_type_is_matrix(type))
> + return glsl_get_matrix_columns(type);
> + else
> + return glsl_get_vector_elements(type);
> + default:
> + unreachable("Invalid deref base type");
> + }
> +}
> +
> +static struct deref_node *
> +deref_node_create(struct deref_node *parent,
> + const struct glsl_type *type, void *mem_ctx)
> +{
> + size_t size = sizeof(struct deref_node) +
> + type_get_length(type) * sizeof(struct deref_node *);
> +
> + struct deref_node *node = rzalloc_size(mem_ctx, size);
> + node->type = type;
> + node->parent = parent;
> +
> + return node;
> +}
> +
> +/* Gets the deref_node for the given deref chain and creates it if it
> + * doesn't yet exist. If the deref is fully-qualified and direct and
> + * add_to_direct_deref_nodes is true, it will be added to the hash table of
> + * of fully-qualified direct derefs.
> + */
> +static struct deref_node *
> +get_deref_node(nir_deref_var *deref, bool add_to_direct_deref_nodes,
> + struct lower_variables_state *state)
> +{
> + bool is_direct = true;
> +
> + struct deref_node *node;
> +
> + uint32_t var_hash = _mesa_hash_pointer(deref->var);
> + struct hash_entry *var_entry =
> + _mesa_hash_table_search(state->deref_var_nodes, var_hash, deref->var);
> +
> + if (var_entry) {
> + node = var_entry->data;
> + } else {
> + node = deref_node_create(NULL, deref->deref.type, state->dead_ctx);
> + _mesa_hash_table_insert(state->deref_var_nodes,
> + var_hash, deref->var, node);
> + }
> +
> + for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
> + switch (tail->deref_type) {
> + case nir_deref_type_struct: {
> + nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
> +
> + assert(deref_struct->index < type_get_length(node->type));
> +
> + if (node->children[deref_struct->index] == NULL)
> + node->children[deref_struct->index] =
> + deref_node_create(node, tail->type, state->dead_ctx);
> +
> + node = node->children[deref_struct->index];
> + break;
> + }
> +
> + case nir_deref_type_array: {
> + nir_deref_array *arr = nir_deref_as_array(tail);
> +
> + switch (arr->deref_array_type) {
> + case nir_deref_array_type_direct:
> + /* This is possible if a loop unrolls and generates an
> + * out-of-bounds offset. We need to handle this at least
> + * somewhat gracefully.
> + */
> + if (arr->base_offset >= type_get_length(node->type))
> + return NULL;
> +
> + if (node->children[arr->base_offset] == NULL)
> + node->children[arr->base_offset] =
> + deref_node_create(node, tail->type, state->dead_ctx);
> +
> + node = node->children[arr->base_offset];
> + break;
> +
> + case nir_deref_array_type_indirect:
> + if (node->indirect == NULL)
> + node->indirect = deref_node_create(node, tail->type,
> + state->dead_ctx);
> +
> + node = node->indirect;
> + is_direct = false;
> + break;
> +
> + case nir_deref_array_type_wildcard:
> + if (node->wildcard == NULL)
> + node->wildcard = deref_node_create(node, tail->type,
> + state->dead_ctx);
> +
> + node = node->wildcard;
> + is_direct = false;
> + break;
> +
> + default:
> + unreachable("Invalid array deref type");
> + }
> + break;
> + }
> + default:
> + unreachable("Invalid deref type");
> + }
> + }
> +
> + assert(node);
> +
> + if (is_direct && add_to_direct_deref_nodes)
> + _mesa_hash_table_insert(state->direct_deref_nodes,
> + hash_deref(deref), deref, node);
> +
> + return node;
> +}
> +
> +/* \sa foreach_deref_node_match */
> +static bool
> +foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
> + bool (* cb)(struct deref_node *node,
> + struct lower_variables_state *state),
> + struct lower_variables_state *state)
> +{
> + if (deref->child == NULL) {
> + return cb(node, state);
> + } else {
> + switch (deref->child->deref_type) {
> + case nir_deref_type_array: {
> + nir_deref_array *arr = nir_deref_as_array(deref->child);
> + assert(arr->deref_array_type == nir_deref_array_type_direct);
> + if (node->children[arr->base_offset] &&
> + !foreach_deref_node_worker(node->children[arr->base_offset],
> + deref->child, cb, state))
> + return false;
> +
> + if (node->wildcard &&
> + !foreach_deref_node_worker(node->wildcard,
> + deref->child, cb, state))
> + return false;
> +
> + return true;
> + }
> +
> + case nir_deref_type_struct: {
> + nir_deref_struct *str = nir_deref_as_struct(deref->child);
> + return foreach_deref_node_worker(node->children[str->index],
> + deref->child, cb, state);
> + }
> +
> + default:
> + unreachable("Invalid deref child type");
> + }
> + }
> +}
> +
> +/* Walks over every "matching" deref_node and calls the callback. A node
> + * is considered to "match" if either refers to that deref or matches up t
> + * a wildcard. In other words, the following would match a[6].foo[3].bar:
> + *
> + * a[6].foo[3].bar
> + * a[*].foo[3].bar
> + * a[6].foo[*].bar
> + * a[*].foo[*].bar
> + *
> + * The given deref must be a full-length and fully qualified (no wildcards
> + * or indirects) deref chain.
> + */
> +static bool
> +foreach_deref_node_match(nir_deref_var *deref,
> + bool (* cb)(struct deref_node *node,
> + struct lower_variables_state *state),
> + struct lower_variables_state *state)
> +{
> + nir_deref_var var_deref = *deref;
> + var_deref.deref.child = NULL;
> + struct deref_node *node = get_deref_node(&var_deref, false, state);
> +
> + if (node == NULL)
> + return false;
> +
> + return foreach_deref_node_worker(node, &deref->deref, cb, state);
> +}
> +
> +/* \sa deref_may_be_aliased */
> +static bool
> +deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
> + struct lower_variables_state *state)
> +{
> + if (deref->child == NULL) {
> + return false;
> + } else {
> + switch (deref->child->deref_type) {
> + case nir_deref_type_array: {
> + nir_deref_array *arr = nir_deref_as_array(deref->child);
> + if (arr->deref_array_type == nir_deref_array_type_indirect)
> + return true;
> +
> + assert(arr->deref_array_type == nir_deref_array_type_direct);
> +
> + if (node->children[arr->base_offset] &&
> + deref_may_be_aliased_node(node->children[arr->base_offset],
> + deref->child, state))
> + return true;
> +
> + if (node->wildcard &&
> + deref_may_be_aliased_node(node->wildcard, deref->child, state))
> + return true;
> +
> + return false;
> + }
> +
> + case nir_deref_type_struct: {
> + nir_deref_struct *str = nir_deref_as_struct(deref->child);
> + if (node->children[str->index]) {
> + return deref_may_be_aliased_node(node->children[str->index],
> + deref->child, state);
> + } else {
> + return false;
> + }
> + }
> +
> + default:
> + unreachable("Invalid nir_deref child type");
> + }
> + }
> +}
> +
> +/* Returns true if there are no indirects that can ever touch this deref.
> + *
> + * For example, if the given deref is a[6].foo, then any uses of a[i].foo
> + * would cause this to return false, but a[i].bar would not affect it
> + * because it's a different structure member. A var_copy involving of
> + * a[*].bar also doesn't affect it because that can be lowered to entirely
> + * direct load/stores.
> + *
> + * We only support asking this question about fully-qualified derefs.
> + * Obviously, it's pointless to ask this about indirects, but we also
> + * rule-out wildcards. Handling Wildcard dereferences would involve
> + * checking each array index to make sure that there aren't any indirect
> + * references.
> + */
> +static bool
> +deref_may_be_aliased(nir_deref_var *deref,
> + struct lower_variables_state *state)
> +{
> + nir_deref_var var_deref = *deref;
> + var_deref.deref.child = NULL;
> + struct deref_node *node = get_deref_node(&var_deref, false, state);
> +
> + /* An invalid dereference can't be aliased. */
> + if (node == NULL)
> + return false;
> +
> + return deref_may_be_aliased_node(node, &deref->deref, state);
> +}
> +
> +static void
> +register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
> + struct lower_variables_state *state)
> +{
> + struct deref_node *node = get_deref_node(load_instr->variables[0],
> + create_node, state);
> + if (node == NULL)
> + return;
> +
> + if (node->loads == NULL)
> + node->loads = _mesa_set_create(state->dead_ctx,
> + _mesa_key_pointer_equal);
> +
> + _mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
> +}
> +
> +static void
> +register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
> + struct lower_variables_state *state)
> +{
> + struct deref_node *node = get_deref_node(store_instr->variables[0],
> + create_node, state);
> + if (node == NULL)
> + return;
> +
> + if (node->stores == NULL)
> + node->stores = _mesa_set_create(state->dead_ctx,
> + _mesa_key_pointer_equal);
> +
> + _mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
> +}
> +
> +static void
> +register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
> + struct lower_variables_state *state)
> +{
> + for (unsigned idx = 0; idx < 2; idx++) {
> + struct deref_node *node = get_deref_node(copy_instr->variables[idx],
> + create_node, state);
> + if (node == NULL)
> + continue;
> +
> + if (node->copies == NULL)
> + node->copies = _mesa_set_create(state->dead_ctx,
> + _mesa_key_pointer_equal);
> +
> + _mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
> + }
> +}
> +
> +/* Registers all variable uses in the given block. */
> +static bool
> +register_variable_uses_block(nir_block *block, void *void_state)
> +{
> + struct lower_variables_state *state = void_state;
> +
> + nir_foreach_instr_safe(block, instr) {
> + if (instr->type != nir_instr_type_intrinsic)
> + continue;
> +
> + nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> +
> + switch (intrin->intrinsic) {
> + case nir_intrinsic_load_var:
> + register_load_instr(intrin, true, state);
> + break;
> +
> + case nir_intrinsic_store_var:
> + register_store_instr(intrin, true, state);
> + break;
> +
> + case nir_intrinsic_copy_var:
> + register_copy_instr(intrin, true, state);
> + break;
> +
> + default:
> + continue;
> + }
> + }
> +
> + return true;
> +}
> +
> +/* Walks down the deref chain and returns the next deref in the chain whose
> + * child is a wildcard. In other words, given the chain a[1].foo[*].bar,
> + * this function will return the deref to foo. Calling it a second time
> + * with the [*].bar, it will return NULL.
> + */
> +static nir_deref *
> +deref_next_wildcard_parent(nir_deref *deref)
> +{
> + for (nir_deref *tail = deref; tail->child; tail = tail->child) {
> + if (tail->child->deref_type != nir_deref_type_array)
> + continue;
> +
> + nir_deref_array *arr = nir_deref_as_array(tail->child);
> +
> + if (arr->deref_array_type == nir_deref_array_type_wildcard)
> + return tail;
> + }
> +
> + return NULL;
> +}
> +
> +/* Returns the last deref in the chain.
> + */
> +static nir_deref *
> +get_deref_tail(nir_deref *deref)
> +{
> + while (deref->child)
> + deref = deref->child;
> +
> + return deref;
> +}
> +
> +/* This function recursively walks the given deref chain and replaces the
> + * given copy instruction with an equivalent sequence load/store
> + * operations.
> + *
> + * @copy_instr The copy instruction to replace; new instructions will be
> + * inserted before this one
> + *
> + * @dest_head The head of the destination variable deref chain
> + *
> + * @src_head The head of the source variable deref chain
> + *
> + * @dest_tail The current tail of the destination variable deref chain;
> + * this is used for recursion and external callers of this
> + * function should call it with tail == head
> + *
> + * @src_tail The current tail of the source variable deref chain;
> + * this is used for recursion and external callers of this
> + * function should call it with tail == head
> + *
> + * @state The current variable lowering state
> + */
> +static void
> +emit_copy_load_store(nir_intrinsic_instr *copy_instr,
> + nir_deref_var *dest_head, nir_deref_var *src_head,
> + nir_deref *dest_tail, nir_deref *src_tail,
> + struct lower_variables_state *state)
> +{
> + /* Find the next pair of wildcards */
> + nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
> + nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);
> +
> + if (src_arr_parent || dest_arr_parent) {
> + /* Wildcards had better come in matched pairs */
> + assert(dest_arr_parent && dest_arr_parent);
> +
> + nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
> + nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);
> +
> + unsigned length = type_get_length(src_arr_parent->type);
> + /* The wildcards should represent the same number of elements */
> + assert(length == type_get_length(dest_arr_parent->type));
> + assert(length > 0);
> +
> + /* Walk over all of the elements that this wildcard refers to and
> + * call emit_copy_load_store on each one of them */
> + src_arr->deref_array_type = nir_deref_array_type_direct;
> + dest_arr->deref_array_type = nir_deref_array_type_direct;
> + for (unsigned i = 0; i < length; i++) {
> + src_arr->base_offset = i;
> + dest_arr->base_offset = i;
> + emit_copy_load_store(copy_instr, dest_head, src_head,
> + &dest_arr->deref, &src_arr->deref, state);
> + }
> + src_arr->deref_array_type = nir_deref_array_type_wildcard;
> + dest_arr->deref_array_type = nir_deref_array_type_wildcard;
> + } else {
> + /* In this case, we have no wildcards anymore, so all we have to do
> + * is just emit the load and store operations. */
> + src_tail = get_deref_tail(src_tail);
> + dest_tail = get_deref_tail(dest_tail);
> +
> + assert(src_tail->type == dest_tail->type);
> +
> + unsigned num_components = glsl_get_vector_elements(src_tail->type);
> +
> + nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
> + nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);
> +
> + nir_intrinsic_instr *load =
> + nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
> + load->num_components = num_components;
> + load->variables[0] = nir_deref_as_var(src_deref);
> + load->dest.is_ssa = true;
> + nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);
> +
> + nir_instr_insert_before(©_instr->instr, &load->instr);
> + register_load_instr(load, false, state);
> +
> + nir_intrinsic_instr *store =
> + nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
> + store->num_components = num_components;
> + store->variables[0] = nir_deref_as_var(dest_deref);
> + store->src[0].is_ssa = true;
> + store->src[0].ssa = &load->dest.ssa;
> +
> + nir_instr_insert_before(©_instr->instr, &store->instr);
> + register_store_instr(store, false, state);
> + }
> +}
> +
> +/* Walks over all of the copy instructions to or from the given deref_node
> + * and lowers them to load/store intrinsics.
> + */
> +static bool
> +lower_copies_to_load_store(struct deref_node *node,
> + struct lower_variables_state *state)
> +{
> + if (!node->copies)
> + return true;
> +
> + struct set_entry *copy_entry;
> + set_foreach(node->copies, copy_entry) {
> + nir_intrinsic_instr *copy = (void *)copy_entry->key;
> +
> + emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
> + ©->variables[0]->deref,
> + ©->variables[1]->deref,
> + state);
> +
> + for (unsigned i = 0; i < 2; ++i) {
> + struct deref_node *arg_node = get_deref_node(copy->variables[i],
> + false, state);
> + if (arg_node == NULL)
> + continue;
> +
> + struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
> + copy_entry->hash,
> + copy);
> + assert(arg_entry);
> + _mesa_set_remove(node->copies, arg_entry);
> + }
> +
> + nir_instr_remove(©->instr);
> + }
> +
> + return true;
> +}
> +
> +/* Returns a load_const instruction that represents the constant
> + * initializer for the given deref chain. The caller is responsible for
> + * ensuring that there actually is a constant initializer.
> + */
> +static nir_load_const_instr *
> +get_const_initializer_load(const nir_deref_var *deref,
> + struct lower_variables_state *state)
> +{
> + nir_constant *constant = deref->var->constant_initializer;
> + const nir_deref *tail = &deref->deref;
> + unsigned matrix_offset = 0;
> + while (tail->child) {
> + switch (tail->child->deref_type) {
> + case nir_deref_type_array: {
> + nir_deref_array *arr = nir_deref_as_array(tail->child);
> + assert(arr->deref_array_type == nir_deref_array_type_direct);
> + if (glsl_type_is_matrix(tail->type)) {
> + assert(arr->deref.child == NULL);
> + matrix_offset = arr->base_offset;
> + } else {
> + constant = constant->elements[arr->base_offset];
> + }
> + break;
> + }
> +
> + case nir_deref_type_struct: {
> + constant = constant->elements[nir_deref_as_struct(tail->child)->index];
> + break;
> + }
> +
> + default:
> + unreachable("Invalid deref child type");
> + }
> +
> + tail = tail->child;
> + }
> +
> + nir_load_const_instr *load =
> + nir_load_const_instr_create(state->mem_ctx,
> + glsl_get_vector_elements(tail->type));
> +
> + matrix_offset *= load->def.num_components;
> + for (unsigned i = 0; i < load->def.num_components; i++) {
> + switch (glsl_get_base_type(tail->type)) {
> + case GLSL_TYPE_FLOAT:
> + case GLSL_TYPE_INT:
> + case GLSL_TYPE_UINT:
> + load->value.u[i] = constant->value.u[matrix_offset + i];
> + break;
> + case GLSL_TYPE_BOOL:
> + load->value.u[i] = constant->value.u[matrix_offset + i] ?
> + NIR_TRUE : NIR_FALSE;
> + break;
> + default:
> + unreachable("Invalid immediate type");
> + }
> + }
> +
> + return load;
> +}
> +
> +/** Pushes an SSA def onto the def stack for the given node
> + *
> + * Each node is potentially associated with a stack of SSA definitions.
> + * This stack is used for determining what SSA definition reaches a given
> + * point in the program for variable renaming. The stack is always kept in
> + * dominance-order with at most one SSA def per block. If the SSA
> + * definition on the top of the stack is in the same block as the one being
> + * pushed, the top element is replaced.
> + */
> +static void
> +def_stack_push(struct deref_node *node, nir_ssa_def *def,
> + struct lower_variables_state *state)
> +{
> + if (node->def_stack == NULL) {
> + node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
> + state->impl->num_blocks);
> + node->def_stack_tail = node->def_stack - 1;
> + }
> +
> + if (node->def_stack_tail >= node->def_stack) {
> + nir_ssa_def *top_def = *node->def_stack_tail;
> +
> + if (def->parent_instr->block == top_def->parent_instr->block) {
> + /* They're in the same block, just replace the top */
> + *node->def_stack_tail = def;
> + return;
> + }
> + }
> +
> + *(++node->def_stack_tail) = def;
> +}
> +
> +/* Pop the top of the def stack if it's in the given block */
> +static void
> +def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
> +{
> + /* If we're popping, then we have presumably pushed at some time in the
> + * past so this should exist.
> + */
> + assert(node->def_stack != NULL);
> +
> + /* The stack is already empty. Do nothing. */
> + if (node->def_stack_tail < node->def_stack)
> + return;
> +
> + nir_ssa_def *def = *node->def_stack_tail;
> + if (def->parent_instr->block == block)
> + node->def_stack_tail--;
> +}
> +
> +/** Retrieves the SSA definition on the top of the stack for the given
> + * node, if one exists. If the stack is empty, then we return the constant
> + * initializer (if it exists) or an SSA undef.
> + */
> +static nir_ssa_def *
> +get_ssa_def_for_block(struct deref_node *node, nir_block *block,
> + struct lower_variables_state *state)
> +{
> + /* If we have something on the stack, go ahead and return it. We're
> + * assuming that the top of the stack dominates the given block.
> + */
> + if (node->def_stack && node->def_stack_tail >= node->def_stack)
> + return *node->def_stack_tail;
> +
> + /* If we got here then we don't have a definition that dominates the
> + * given block. This means that we need to add an undef and use that.
> + */
> + nir_ssa_undef_instr *undef =
> + nir_ssa_undef_instr_create(state->mem_ctx,
> + glsl_get_vector_elements(node->type));
> + nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
> + def_stack_push(node, &undef->def, state);
> + return &undef->def;
> +}
> +
> +/* Given a block and one of its predecessors, this function fills in the
> + * souces of the phi nodes to take SSA defs from the given predecessor.
> + * This function must be called exactly once per block/predecessor pair.
> + */
> +static void
> +add_phi_sources(nir_block *block, nir_block *pred,
> + struct lower_variables_state *state)
> +{
> + nir_foreach_instr(block, instr) {
> + if (instr->type != nir_instr_type_phi)
> + break;
> +
> + nir_phi_instr *phi = nir_instr_as_phi(instr);
> +
> + struct hash_entry *entry =
> + _mesa_hash_table_search(state->phi_table,
> + _mesa_hash_pointer(phi), phi);
> + if (!entry)
> + continue;
> +
> + struct deref_node *node = entry->data;
> +
> + nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
> + src->pred = pred;
> + src->src.is_ssa = true;
> + src->src.ssa = get_ssa_def_for_block(node, pred, state);
> +
> + _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);
> +
> + exec_list_push_tail(&phi->srcs, &src->node);
> + }
> +}
> +
> +/* Performs variable renaming by doing a DFS of the dominance tree
> + *
> + * This algorithm is very similar to the one outlined in "Efficiently
> + * Computing Static Single Assignment Form and the Control Dependence
> + * Graph" by Cytron et. al. The primary difference is that we only put one
> + * SSA def on the stack per block.
> + */
> +static bool
> +rename_variables_block(nir_block *block, struct lower_variables_state *state)
> +{
> + nir_foreach_instr_safe(block, instr) {
> + if (instr->type == nir_instr_type_phi) {
> + nir_phi_instr *phi = nir_instr_as_phi(instr);
> +
> + struct hash_entry *entry =
> + _mesa_hash_table_search(state->phi_table,
> + _mesa_hash_pointer(phi), phi);
> +
> + /* This can happen if we already have phi nodes in the program
> + * that were not created in this pass.
> + */
> + if (!entry)
> + continue;
> +
> + struct deref_node *node = entry->data;
> +
> + def_stack_push(node, &phi->dest.ssa, state);
> + } else if (instr->type == nir_instr_type_intrinsic) {
> + nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> +
> + switch (intrin->intrinsic) {
> + case nir_intrinsic_load_var: {
> + struct deref_node *node = get_deref_node(intrin->variables[0],
> + false, state);
> +
> + if (node == NULL) {
> + /* If we hit this path then we are referencing an invalid
> + * value. Most likely, we unrolled something and are
> + * reading past the end of some array. In any case, this
> + * should result in an undefined value.
> + */
> + nir_ssa_undef_instr *undef =
> + nir_ssa_undef_instr_create(state->mem_ctx,
> + intrin->num_components);
> +
> + nir_instr_insert_before(&intrin->instr, &undef->instr);
> + nir_instr_remove(&intrin->instr);
> +
> + nir_src new_src = {
> + .is_ssa = true,
> + .ssa = &undef->def,
> + };
> +
> + nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
> + state->mem_ctx);
> + continue;
> + }
> +
> + if (!node->lower_to_ssa)
> + continue;
> +
> + nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
> + nir_op_imov);
> + mov->src[0].src.is_ssa = true;
> + mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
> + for (unsigned i = intrin->num_components; i < 4; i++)
> + mov->src[0].swizzle[i] = 0;
> +
> + assert(intrin->dest.is_ssa);
> +
> + mov->dest.write_mask = (1 << intrin->num_components) - 1;
> + mov->dest.dest.is_ssa = true;
> + nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
> + intrin->num_components, NULL);
> +
> + nir_instr_insert_before(&intrin->instr, &mov->instr);
> + nir_instr_remove(&intrin->instr);
> +
> + nir_src new_src = {
> + .is_ssa = true,
> + .ssa = &mov->dest.dest.ssa,
> + };
> +
> + nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
> + state->mem_ctx);
> + break;
> + }
> +
> + case nir_intrinsic_store_var: {
> + struct deref_node *node = get_deref_node(intrin->variables[0],
> + false, state);
> +
> + if (node == NULL) {
> + /* Probably an out-of-bounds array store. That should be a
> + * no-op. */
> + nir_instr_remove(&intrin->instr);
> + continue;
> + }
> +
> + if (!node->lower_to_ssa)
> + continue;
> +
> + assert(intrin->num_components ==
> + glsl_get_vector_elements(node->type));
> +
> + assert(intrin->src[0].is_ssa);
> +
> + nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
> + nir_op_imov);
> + mov->src[0].src.is_ssa = true;
> + mov->src[0].src.ssa = intrin->src[0].ssa;
> + for (unsigned i = intrin->num_components; i < 4; i++)
> + mov->src[0].swizzle[i] = 0;
> +
> + mov->dest.write_mask = (1 << intrin->num_components) - 1;
> + mov->dest.dest.is_ssa = true;
> + nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
> + intrin->num_components, NULL);
> +
> + nir_instr_insert_before(&intrin->instr, &mov->instr);
> +
> + def_stack_push(node, &mov->dest.dest.ssa, state);
> +
> + /* We'll wait to remove the instruction until the next pass
> + * where we pop the node we just pushed back off the stack.
> + */
> + break;
> + }
> +
> + default:
> + break;
> + }
> + }
> + }
> +
> + if (block->successors[0])
> + add_phi_sources(block->successors[0], block, state);
> + if (block->successors[1])
> + add_phi_sources(block->successors[1], block, state);
> +
> + for (unsigned i = 0; i < block->num_dom_children; ++i)
> + rename_variables_block(block->dom_children[i], state);
> +
> + /* Now we iterate over the instructions and pop off any SSA defs that we
> + * pushed in the first loop.
> + */
> + nir_foreach_instr_safe(block, instr) {
> + if (instr->type == nir_instr_type_phi) {
> + nir_phi_instr *phi = nir_instr_as_phi(instr);
> +
> + struct hash_entry *entry =
> + _mesa_hash_table_search(state->phi_table,
> + _mesa_hash_pointer(phi), phi);
> +
> + /* This can happen if we already have phi nodes in the program
> + * that were not created in this pass.
> + */
> + if (!entry)
> + continue;
> +
> + struct deref_node *node = entry->data;
> +
> + def_stack_pop_if_in_block(node, block);
> + } else if (instr->type == nir_instr_type_intrinsic) {
> + nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
> +
> + if (intrin->intrinsic != nir_intrinsic_store_var)
> + continue;
> +
> + struct deref_node *node = get_deref_node(intrin->variables[0],
> + false, state);
> + if (!node)
> + continue;
> +
> + if (!node->lower_to_ssa)
> + continue;
> +
> + def_stack_pop_if_in_block(node, block);
> + nir_instr_remove(&intrin->instr);
> + }
> + }
> +
> + return true;
> +}
> +
> +/* Inserts phi nodes for all variables marked lower_to_ssa
> + *
> + * This is the same algorithm as presented in "Efficiently Computing Static
> + * Single Assignment Form and the Control Dependence Graph" by Cytron et.
> + * al.
> + */
> +static void
> +insert_phi_nodes(struct lower_variables_state *state)
> +{
> + unsigned work[state->impl->num_blocks];
> + unsigned has_already[state->impl->num_blocks];
> +
> + /*
> + * Since the work flags already prevent us from inserting a node that has
> + * ever been inserted into W, we don't need to use a set to represent W.
> + * Also, since no block can ever be inserted into W more than once, we know
> + * that the maximum size of W is the number of basic blocks in the
> + * function. So all we need to handle W is an array and a pointer to the
> + * next element to be inserted and the next element to be removed.
> + */
> + nir_block *W[state->impl->num_blocks];
> +
> + memset(work, 0, sizeof work);
> + memset(has_already, 0, sizeof has_already);
> +
> + unsigned w_start, w_end;
> + unsigned iter_count = 0;
> +
> + struct hash_entry *deref_entry;
> + hash_table_foreach(state->direct_deref_nodes, deref_entry) {
> + struct deref_node *node = deref_entry->data;
> +
> + if (node->stores == NULL)
> + continue;
> +
> + if (!node->lower_to_ssa)
> + continue;
> +
> + w_start = w_end = 0;
> + iter_count++;
> +
> + struct set_entry *store_entry;
> + set_foreach(node->stores, store_entry) {
> + nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
> + if (work[store->instr.block->index] < iter_count)
> + W[w_end++] = store->instr.block;
> + work[store->instr.block->index] = iter_count;
> + }
> +
> + while (w_start != w_end) {
> + nir_block *cur = W[w_start++];
> + struct set_entry *dom_entry;
> + set_foreach(cur->dom_frontier, dom_entry) {
> + nir_block *next = (nir_block *) dom_entry->key;
> +
> + /*
> + * If there's more than one return statement, then the end block
> + * can be a join point for some definitions. However, there are
> + * no instructions in the end block, so nothing would use those
> + * phi nodes. Of course, we couldn't place those phi nodes
> + * anyways due to the restriction of having no instructions in the
> + * end block...
> + */
> + if (next == state->impl->end_block)
> + continue;
> +
> + if (has_already[next->index] < iter_count) {
> + nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
> + phi->dest.is_ssa = true;
> + nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
> + glsl_get_vector_elements(node->type), NULL);
> + nir_instr_insert_before_block(next, &phi->instr);
> +
> + _mesa_hash_table_insert(state->phi_table,
> + _mesa_hash_pointer(phi), phi, node);
> +
> + has_already[next->index] = iter_count;
> + if (work[next->index] < iter_count) {
> + work[next->index] = iter_count;
> + W[w_end++] = next;
> + }
> + }
> + }
> + }
> + }
> +}
> +
> +
> +/** Implements a pass to lower variable uses to SSA values
> + *
> + * This path walks the list of instructions and tries to lower as many
> + * local variable load/store operations to SSA defs and uses as it can.
> + * The process involves four passes:
> + *
> + * 1) Iterate over all of the instructions and mark where each local
> + * variable deref is used in a load, store, or copy. While we're at
> + * it, we keep track of all of the fully-qualified (no wildcards) and
> + * fully-direct references we see and store them in the
> + * direct_deref_nodes hash table.
> + *
> + * 2) Walk over the the list of fully-qualified direct derefs generated in
> + * the previous pass. For each deref, we determine if it can ever be
> + * aliased, i.e. if there is an indirect reference anywhere that may
> + * refer to it. If it cannot be aliased, we mark it for lowering to an
> + * SSA value. At this point, we lower any var_copy instructions that
> + * use the given deref to load/store operations and, if the deref has a
> + * constant initializer, we go ahead and add a load_const value at the
> + * beginning of the function with the initialized value.
> + *
> + * 3) Walk over the list of derefs we plan to lower to SSA values and
> + * insert phi nodes as needed.
> + *
> + * 4) Perform "variable renaming" by replacing the load/store instructions
> + * with SSA definitions and SSA uses.
> + */
> +static bool
> +nir_lower_vars_to_ssa_impl(nir_function_impl *impl)
> +{
> + struct lower_variables_state state;
> +
> + state.mem_ctx = ralloc_parent(impl);
> + state.dead_ctx = ralloc_context(state.mem_ctx);
> + state.impl = impl;
> +
> + state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
> + _mesa_key_pointer_equal);
> + state.direct_deref_nodes = _mesa_hash_table_create(state.dead_ctx,
> + derefs_equal);
> + state.phi_table = _mesa_hash_table_create(state.dead_ctx,
> + _mesa_key_pointer_equal);
> +
> + nir_foreach_block(impl, register_variable_uses_block, &state);
> +
> + struct set *outputs = _mesa_set_create(state.dead_ctx,
> + _mesa_key_pointer_equal);
> +
> + bool progress = false;
> +
> + nir_metadata_require(impl, nir_metadata_block_index);
> +
> + struct hash_entry *entry;
> + hash_table_foreach(state.direct_deref_nodes, entry) {
> + nir_deref_var *deref = (void *)entry->key;
> + struct deref_node *node = entry->data;
> +
> + if (deref->var->data.mode != nir_var_local) {
> + _mesa_hash_table_remove(state.direct_deref_nodes, entry);
> + continue;
> + }
> +
> + if (deref_may_be_aliased(deref, &state)) {
> + _mesa_hash_table_remove(state.direct_deref_nodes, entry);
> + continue;
> + }
> +
> + node->lower_to_ssa = true;
> + progress = true;
> +
> + if (deref->var->constant_initializer) {
> + nir_load_const_instr *load = get_const_initializer_load(deref, &state);
> + nir_ssa_def_init(&load->instr, &load->def,
> + glsl_get_vector_elements(node->type), NULL);
> + nir_instr_insert_before_cf_list(&impl->body, &load->instr);
> + def_stack_push(node, &load->def, &state);
> + }
> +
> + if (deref->var->data.mode == nir_var_shader_out)
> + _mesa_set_add(outputs, _mesa_hash_pointer(node), node);
> +
> + foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
> + }
> +
> + if (!progress)
> + return false;
> +
> + nir_metadata_require(impl, nir_metadata_dominance);
> +
> + insert_phi_nodes(&state);
> + rename_variables_block(impl->start_block, &state);
> +
> + nir_metadata_preserve(impl, nir_metadata_block_index |
> + nir_metadata_dominance);
> +
> + ralloc_free(state.dead_ctx);
> +
> + return progress;
> +}
> +
> +void
> +nir_lower_vars_to_ssa(nir_shader *shader)
> +{
> + nir_foreach_overload(shader, overload) {
> + if (overload->impl)
> + nir_lower_vars_to_ssa_impl(overload->impl);
> + }
> +}
> diff --git a/src/mesa/drivers/dri/i965/brw_fs_nir.cpp b/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
> index a520a58..cb6c3c6 100644
> --- a/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
> +++ b/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
> @@ -43,7 +43,7 @@ fs_visitor::emit_nir_code()
> bool progress;
> do {
> progress = false;
> - nir_lower_variables(nir);
> + nir_lower_vars_to_ssa(nir);
> nir_validate_shader(nir);
> progress |= nir_copy_prop(nir);
> nir_validate_shader(nir);
> --
> 2.2.1
>
> _______________________________________________
> mesa-dev mailing list
> mesa-dev at lists.freedesktop.org
> http://lists.freedesktop.org/mailman/listinfo/mesa-dev
More information about the mesa-dev
mailing list