[Mesa-dev] [PATCH 154/133] nir: Rename lower_variables to lower_vars_to_ssa

Jason Ekstrand jason at jlekstrand.net
Wed Jan 14 12:43:56 PST 2015


The original name wasn't particularly descriptive.  This one indicates that
it actually gives you SSA values as opposed to the old pass which lowered
variables to registers.
---
 src/glsl/Makefile.sources                |    2 +-
 src/glsl/nir/nir.h                       |    2 +-
 src/glsl/nir/nir_lower_variables.c       | 1223 ------------------------------
 src/glsl/nir/nir_lower_vars_to_ssa.c     | 1223 ++++++++++++++++++++++++++++++
 src/mesa/drivers/dri/i965/brw_fs_nir.cpp |    2 +-
 5 files changed, 1226 insertions(+), 1226 deletions(-)
 delete mode 100644 src/glsl/nir/nir_lower_variables.c
 create mode 100644 src/glsl/nir/nir_lower_vars_to_ssa.c

diff --git a/src/glsl/Makefile.sources b/src/glsl/Makefile.sources
index a61f234..4c9aa77 100644
--- a/src/glsl/Makefile.sources
+++ b/src/glsl/Makefile.sources
@@ -31,7 +31,7 @@ NIR_FILES = \
 	$(GLSL_SRCDIR)/nir/nir_lower_samplers.cpp \
 	$(GLSL_SRCDIR)/nir/nir_lower_system_values.c \
 	$(GLSL_SRCDIR)/nir/nir_lower_to_source_mods.c \
-	$(GLSL_SRCDIR)/nir/nir_lower_variables.c \
+	$(GLSL_SRCDIR)/nir/nir_lower_vars_to_ssa.c \
 	$(GLSL_SRCDIR)/nir/nir_lower_vec_to_movs.c \
 	$(GLSL_SRCDIR)/nir/nir_metadata.c \
 	$(GLSL_SRCDIR)/nir/nir_opcodes.c \
diff --git a/src/glsl/nir/nir.h b/src/glsl/nir/nir.h
index 710c0dd..1addd79 100644
--- a/src/glsl/nir/nir.h
+++ b/src/glsl/nir/nir.h
@@ -1467,7 +1467,7 @@ void nir_lower_locals_to_regs(nir_shader *shader);
 
 void nir_lower_io(nir_shader *shader);
 
-void nir_lower_variables(nir_shader *shader);
+void nir_lower_vars_to_ssa(nir_shader *shader);
 
 void nir_lower_variables_scalar(nir_shader *shader, bool lower_globals,
                                 bool lower_io, bool add_names,
diff --git a/src/glsl/nir/nir_lower_variables.c b/src/glsl/nir/nir_lower_variables.c
deleted file mode 100644
index 435384b..0000000
--- a/src/glsl/nir/nir_lower_variables.c
+++ /dev/null
@@ -1,1223 +0,0 @@
-/*
- * Copyright © 2014 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- *
- * Authors:
- *    Jason Ekstrand (jason at jlekstrand.net)
- *
- */
-
-#include "nir.h"
-
-struct deref_node {
-   struct deref_node *parent;
-   const struct glsl_type *type;
-
-   bool lower_to_ssa;
-
-   struct set *loads;
-   struct set *stores;
-   struct set *copies;
-
-   nir_ssa_def **def_stack;
-   nir_ssa_def **def_stack_tail;
-
-   struct deref_node *wildcard;
-   struct deref_node *indirect;
-   struct deref_node *children[0];
-};
-
-struct lower_variables_state {
-   void *mem_ctx;
-   void *dead_ctx;
-   nir_function_impl *impl;
-
-   /* A hash table mapping variables to deref_node data */
-   struct hash_table *deref_var_nodes;
-
-   /* A hash table mapping fully-qualified direct dereferences, i.e.
-    * dereferences with no indirect or wildcard array dereferences, to
-    * deref_node data.
-    *
-    * At the moment, we only lower loads, stores, and copies that can be
-    * trivially lowered to loads and stores, i.e. copies with no indirects
-    * and no wildcards.  If a part of a variable that is being loaded from
-    * and/or stored into is also involved in a copy operation with
-    * wildcards, then we lower that copy operation to loads and stores, but
-    * otherwise we leave copies with wildcards alone. Since the only derefs
-    * used in these loads, stores, and trivial copies are ones with no
-    * wildcards and no indirects, these are precisely the derefs that we
-    * can actually consider lowering.
-    */
-   struct hash_table *direct_deref_nodes;
-
-   /* A hash table mapping phi nodes to deref_state data */
-   struct hash_table *phi_table;
-};
-
-/* The following two functions implement a hash and equality check for
- * variable dreferences.  When the hash or equality function encounters an
- * array, all indirects are treated as equal and are never equal to a
- * direct dereference or a wildcard.
- *
- * Some of the magic numbers here were taken from _mesa_hash_data and one
- * was just a big prime I found on the internet.
- */
-static uint32_t
-hash_deref(const void *void_deref)
-{
-   uint32_t hash = _mesa_FNV32_1a_offset_bias;
-
-   const nir_deref_var *deref_var = void_deref;
-   hash = _mesa_FNV32_1a_accumulate(hash, deref_var->var);
-
-   for (const nir_deref *deref = deref_var->deref.child;
-        deref; deref = deref->child) {
-      switch (deref->deref_type) {
-      case nir_deref_type_array: {
-         nir_deref_array *deref_array = nir_deref_as_array(deref);
-
-         hash = _mesa_FNV32_1a_accumulate(hash, deref_array->deref_array_type);
-
-         if (deref_array->deref_array_type == nir_deref_array_type_direct)
-            hash = _mesa_FNV32_1a_accumulate(hash, deref_array->base_offset);
-         break;
-      }
-      case nir_deref_type_struct: {
-         nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
-         hash = _mesa_FNV32_1a_accumulate(hash, deref_struct->index);
-         break;
-      }
-      default:
-         assert("Invalid deref chain");
-      }
-   }
-
-   return hash;
-}
-
-static bool
-derefs_equal(const void *void_a, const void *void_b)
-{
-   const nir_deref_var *a_var = void_a;
-   const nir_deref_var *b_var = void_b;
-
-   if (a_var->var != b_var->var)
-      return false;
-
-   for (const nir_deref *a = a_var->deref.child, *b = b_var->deref.child;
-        a != NULL; a = a->child, b = b->child) {
-      if (a->deref_type != b->deref_type)
-         return false;
-
-      switch (a->deref_type) {
-      case nir_deref_type_array: {
-         nir_deref_array *a_arr = nir_deref_as_array(a);
-         nir_deref_array *b_arr = nir_deref_as_array(b);
-
-         if (a_arr->deref_array_type != b_arr->deref_array_type)
-            return false;
-
-         if (a_arr->deref_array_type == nir_deref_array_type_direct &&
-             a_arr->base_offset != b_arr->base_offset)
-            return false;
-         break;
-      }
-      case nir_deref_type_struct:
-         if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
-            return false;
-         break;
-      default:
-         assert("Invalid deref chain");
-         return false;
-      }
-
-      assert((a->child == NULL) == (b->child == NULL));
-      if((a->child == NULL) != (b->child == NULL))
-         return false;
-   }
-
-   return true;
-}
-
-static int
-type_get_length(const struct glsl_type *type)
-{
-   switch (glsl_get_base_type(type)) {
-   case GLSL_TYPE_STRUCT:
-   case GLSL_TYPE_ARRAY:
-      return glsl_get_length(type);
-   case GLSL_TYPE_FLOAT:
-   case GLSL_TYPE_INT:
-   case GLSL_TYPE_UINT:
-   case GLSL_TYPE_BOOL:
-      if (glsl_type_is_matrix(type))
-         return glsl_get_matrix_columns(type);
-      else
-         return glsl_get_vector_elements(type);
-   default:
-      unreachable("Invalid deref base type");
-   }
-}
-
-static struct deref_node *
-deref_node_create(struct deref_node *parent,
-                  const struct glsl_type *type, void *mem_ctx)
-{
-   size_t size = sizeof(struct deref_node) +
-                 type_get_length(type) * sizeof(struct deref_node *);
-
-   struct deref_node *node = rzalloc_size(mem_ctx, size);
-   node->type = type;
-   node->parent = parent;
-
-   return node;
-}
-
-/* Gets the deref_node for the given deref chain and creates it if it
- * doesn't yet exist.  If the deref is fully-qualified and direct and
- * add_to_direct_deref_nodes is true, it will be added to the hash table of
- * of fully-qualified direct derefs.
- */
-static struct deref_node *
-get_deref_node(nir_deref_var *deref, bool add_to_direct_deref_nodes,
-               struct lower_variables_state *state)
-{
-   bool is_direct = true;
-
-   struct deref_node *node;
-
-   uint32_t var_hash = _mesa_hash_pointer(deref->var);
-   struct hash_entry *var_entry =
-      _mesa_hash_table_search(state->deref_var_nodes, var_hash, deref->var);
-
-   if (var_entry) {
-      node = var_entry->data;
-   } else {
-      node = deref_node_create(NULL, deref->deref.type, state->dead_ctx);
-      _mesa_hash_table_insert(state->deref_var_nodes,
-                              var_hash, deref->var, node);
-   }
-
-   for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
-      switch (tail->deref_type) {
-      case nir_deref_type_struct: {
-         nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
-
-         assert(deref_struct->index < type_get_length(node->type));
-
-         if (node->children[deref_struct->index] == NULL)
-            node->children[deref_struct->index] =
-               deref_node_create(node, tail->type, state->dead_ctx);
-
-         node = node->children[deref_struct->index];
-         break;
-      }
-
-      case nir_deref_type_array: {
-         nir_deref_array *arr = nir_deref_as_array(tail);
-
-         switch (arr->deref_array_type) {
-         case nir_deref_array_type_direct:
-            /* This is possible if a loop unrolls and generates an
-             * out-of-bounds offset.  We need to handle this at least
-             * somewhat gracefully.
-             */
-            if (arr->base_offset >= type_get_length(node->type))
-               return NULL;
-
-            if (node->children[arr->base_offset] == NULL)
-               node->children[arr->base_offset] =
-                  deref_node_create(node, tail->type, state->dead_ctx);
-
-            node = node->children[arr->base_offset];
-            break;
-
-         case nir_deref_array_type_indirect:
-            if (node->indirect == NULL)
-               node->indirect = deref_node_create(node, tail->type,
-                                                  state->dead_ctx);
-
-            node = node->indirect;
-            is_direct = false;
-            break;
-
-         case nir_deref_array_type_wildcard:
-            if (node->wildcard == NULL)
-               node->wildcard = deref_node_create(node, tail->type,
-                                                  state->dead_ctx);
-
-            node = node->wildcard;
-            is_direct = false;
-            break;
-
-         default:
-            unreachable("Invalid array deref type");
-         }
-         break;
-      }
-      default:
-         unreachable("Invalid deref type");
-      }
-   }
-
-   assert(node);
-
-   if (is_direct && add_to_direct_deref_nodes)
-      _mesa_hash_table_insert(state->direct_deref_nodes,
-                              hash_deref(deref), deref, node);
-
-   return node;
-}
-
-/* \sa foreach_deref_node_match */
-static bool
-foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
-                          bool (* cb)(struct deref_node *node,
-                                      struct lower_variables_state *state),
-                          struct lower_variables_state *state)
-{
-   if (deref->child == NULL) {
-      return cb(node, state);
-   } else {
-      switch (deref->child->deref_type) {
-      case nir_deref_type_array: {
-         nir_deref_array *arr = nir_deref_as_array(deref->child);
-         assert(arr->deref_array_type == nir_deref_array_type_direct);
-         if (node->children[arr->base_offset] &&
-             !foreach_deref_node_worker(node->children[arr->base_offset],
-                                        deref->child, cb, state))
-            return false;
-
-         if (node->wildcard &&
-             !foreach_deref_node_worker(node->wildcard,
-                                        deref->child, cb, state))
-            return false;
-
-         return true;
-      }
-
-      case nir_deref_type_struct: {
-         nir_deref_struct *str = nir_deref_as_struct(deref->child);
-         return foreach_deref_node_worker(node->children[str->index],
-                                          deref->child, cb, state);
-      }
-
-      default:
-         unreachable("Invalid deref child type");
-      }
-   }
-}
-
-/* Walks over every "matching" deref_node and calls the callback.  A node
- * is considered to "match" if either refers to that deref or matches up t
- * a wildcard.  In other words, the following would match a[6].foo[3].bar:
- *
- * a[6].foo[3].bar
- * a[*].foo[3].bar
- * a[6].foo[*].bar
- * a[*].foo[*].bar
- *
- * The given deref must be a full-length and fully qualified (no wildcards
- * or indirects) deref chain.
- */
-static bool
-foreach_deref_node_match(nir_deref_var *deref,
-                         bool (* cb)(struct deref_node *node,
-                                     struct lower_variables_state *state),
-                         struct lower_variables_state *state)
-{
-   nir_deref_var var_deref = *deref;
-   var_deref.deref.child = NULL;
-   struct deref_node *node = get_deref_node(&var_deref, false, state);
-
-   if (node == NULL)
-      return false;
-
-   return foreach_deref_node_worker(node, &deref->deref, cb, state);
-}
-
-/* \sa deref_may_be_aliased */
-static bool
-deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
-                          struct lower_variables_state *state)
-{
-   if (deref->child == NULL) {
-      return false;
-   } else {
-      switch (deref->child->deref_type) {
-      case nir_deref_type_array: {
-         nir_deref_array *arr = nir_deref_as_array(deref->child);
-         if (arr->deref_array_type == nir_deref_array_type_indirect)
-            return true;
-
-         assert(arr->deref_array_type == nir_deref_array_type_direct);
-
-         if (node->children[arr->base_offset] &&
-             deref_may_be_aliased_node(node->children[arr->base_offset],
-                                       deref->child, state))
-            return true;
-
-         if (node->wildcard &&
-             deref_may_be_aliased_node(node->wildcard, deref->child, state))
-            return true;
-
-         return false;
-      }
-
-      case nir_deref_type_struct: {
-         nir_deref_struct *str = nir_deref_as_struct(deref->child);
-         if (node->children[str->index]) {
-             return deref_may_be_aliased_node(node->children[str->index],
-                                              deref->child, state);
-         } else {
-            return false;
-         }
-      }
-
-      default:
-         unreachable("Invalid nir_deref child type");
-      }
-   }
-}
-
-/* Returns true if there are no indirects that can ever touch this deref.
- *
- * For example, if the given deref is a[6].foo, then any uses of a[i].foo
- * would cause this to return false, but a[i].bar would not affect it
- * because it's a different structure member.  A var_copy involving of
- * a[*].bar also doesn't affect it because that can be lowered to entirely
- * direct load/stores.
- *
- * We only support asking this question about fully-qualified derefs.
- * Obviously, it's pointless to ask this about indirects, but we also
- * rule-out wildcards.  Handling Wildcard dereferences would involve
- * checking each array index to make sure that there aren't any indirect
- * references.
- */
-static bool
-deref_may_be_aliased(nir_deref_var *deref,
-                     struct lower_variables_state *state)
-{
-   nir_deref_var var_deref = *deref;
-   var_deref.deref.child = NULL;
-   struct deref_node *node = get_deref_node(&var_deref, false, state);
-
-   /* An invalid dereference can't be aliased. */
-   if (node == NULL)
-      return false;
-
-   return deref_may_be_aliased_node(node, &deref->deref, state);
-}
-
-static void
-register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
-                    struct lower_variables_state *state)
-{
-   struct deref_node *node = get_deref_node(load_instr->variables[0],
-                                            create_node, state);
-   if (node == NULL)
-      return;
-
-   if (node->loads == NULL)
-      node->loads = _mesa_set_create(state->dead_ctx,
-                                     _mesa_key_pointer_equal);
-
-   _mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
-}
-
-static void
-register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
-                     struct lower_variables_state *state)
-{
-   struct deref_node *node = get_deref_node(store_instr->variables[0],
-                                            create_node, state);
-   if (node == NULL)
-      return;
-
-   if (node->stores == NULL)
-      node->stores = _mesa_set_create(state->dead_ctx,
-                                     _mesa_key_pointer_equal);
-
-   _mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
-}
-
-static void
-register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
-                    struct lower_variables_state *state)
-{
-   for (unsigned idx = 0; idx < 2; idx++) {
-      struct deref_node *node = get_deref_node(copy_instr->variables[idx],
-                                               create_node, state);
-      if (node == NULL)
-         continue;
-
-      if (node->copies == NULL)
-         node->copies = _mesa_set_create(state->dead_ctx,
-                                         _mesa_key_pointer_equal);
-
-      _mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
-   }
-}
-
-/* Registers all variable uses in the given block. */
-static bool
-register_variable_uses_block(nir_block *block, void *void_state)
-{
-   struct lower_variables_state *state = void_state;
-
-   nir_foreach_instr_safe(block, instr) {
-      if (instr->type != nir_instr_type_intrinsic)
-         continue;
-
-      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
-
-      switch (intrin->intrinsic) {
-      case nir_intrinsic_load_var:
-         register_load_instr(intrin, true, state);
-         break;
-
-      case nir_intrinsic_store_var:
-         register_store_instr(intrin, true, state);
-         break;
-
-      case nir_intrinsic_copy_var:
-         register_copy_instr(intrin, true, state);
-         break;
-
-      default:
-         continue;
-      }
-   }
-
-   return true;
-}
-
-/* Walks down the deref chain and returns the next deref in the chain whose
- * child is a wildcard.  In other words, given the chain  a[1].foo[*].bar,
- * this function will return the deref to foo.  Calling it a second time
- * with the [*].bar, it will return NULL.
- */
-static nir_deref *
-deref_next_wildcard_parent(nir_deref *deref)
-{
-   for (nir_deref *tail = deref; tail->child; tail = tail->child) {
-      if (tail->child->deref_type != nir_deref_type_array)
-         continue;
-
-      nir_deref_array *arr = nir_deref_as_array(tail->child);
-
-      if (arr->deref_array_type == nir_deref_array_type_wildcard)
-         return tail;
-   }
-
-   return NULL;
-}
-
-/* Returns the last deref in the chain.
- */
-static nir_deref *
-get_deref_tail(nir_deref *deref)
-{
-   while (deref->child)
-      deref = deref->child;
-
-   return deref;
-}
-
-/* This function recursively walks the given deref chain and replaces the
- * given copy instruction with an equivalent sequence load/store
- * operations.
- *
- * @copy_instr    The copy instruction to replace; new instructions will be
- *                inserted before this one
- *
- * @dest_head     The head of the destination variable deref chain
- *
- * @src_head      The head of the source variable deref chain
- *
- * @dest_tail     The current tail of the destination variable deref chain;
- *                this is used for recursion and external callers of this
- *                function should call it with tail == head
- *
- * @src_tail      The current tail of the source variable deref chain;
- *                this is used for recursion and external callers of this
- *                function should call it with tail == head
- *
- * @state         The current variable lowering state
- */
-static void
-emit_copy_load_store(nir_intrinsic_instr *copy_instr,
-                     nir_deref_var *dest_head, nir_deref_var *src_head,
-                     nir_deref *dest_tail, nir_deref *src_tail,
-                     struct lower_variables_state *state)
-{
-   /* Find the next pair of wildcards */
-   nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
-   nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);
-
-   if (src_arr_parent || dest_arr_parent) {
-      /* Wildcards had better come in matched pairs */
-      assert(dest_arr_parent && dest_arr_parent);
-
-      nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
-      nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);
-
-      unsigned length = type_get_length(src_arr_parent->type);
-      /* The wildcards should represent the same number of elements */
-      assert(length == type_get_length(dest_arr_parent->type));
-      assert(length > 0);
-
-      /* Walk over all of the elements that this wildcard refers to and
-       * call emit_copy_load_store on each one of them */
-      src_arr->deref_array_type = nir_deref_array_type_direct;
-      dest_arr->deref_array_type = nir_deref_array_type_direct;
-      for (unsigned i = 0; i < length; i++) {
-         src_arr->base_offset = i;
-         dest_arr->base_offset = i;
-         emit_copy_load_store(copy_instr, dest_head, src_head,
-                              &dest_arr->deref, &src_arr->deref, state);
-      }
-      src_arr->deref_array_type = nir_deref_array_type_wildcard;
-      dest_arr->deref_array_type = nir_deref_array_type_wildcard;
-   } else {
-      /* In this case, we have no wildcards anymore, so all we have to do
-       * is just emit the load and store operations. */
-      src_tail = get_deref_tail(src_tail);
-      dest_tail = get_deref_tail(dest_tail);
-
-      assert(src_tail->type == dest_tail->type);
-
-      unsigned num_components = glsl_get_vector_elements(src_tail->type);
-
-      nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
-      nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);
-
-      nir_intrinsic_instr *load =
-         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
-      load->num_components = num_components;
-      load->variables[0] = nir_deref_as_var(src_deref);
-      load->dest.is_ssa = true;
-      nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);
-
-      nir_instr_insert_before(&copy_instr->instr, &load->instr);
-      register_load_instr(load, false, state);
-
-      nir_intrinsic_instr *store =
-         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
-      store->num_components = num_components;
-      store->variables[0] = nir_deref_as_var(dest_deref);
-      store->src[0].is_ssa = true;
-      store->src[0].ssa = &load->dest.ssa;
-
-      nir_instr_insert_before(&copy_instr->instr, &store->instr);
-      register_store_instr(store, false, state);
-   }
-}
-
-/* Walks over all of the copy instructions to or from the given deref_node
- * and lowers them to load/store intrinsics.
- */
-static bool
-lower_copies_to_load_store(struct deref_node *node,
-                           struct lower_variables_state *state)
-{
-   if (!node->copies)
-      return true;
-
-   struct set_entry *copy_entry;
-   set_foreach(node->copies, copy_entry) {
-      nir_intrinsic_instr *copy = (void *)copy_entry->key;
-
-      emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
-                           &copy->variables[0]->deref,
-                           &copy->variables[1]->deref,
-                           state);
-
-      for (unsigned i = 0; i < 2; ++i) {
-         struct deref_node *arg_node = get_deref_node(copy->variables[i],
-                                                      false, state);
-         if (arg_node == NULL)
-            continue;
-
-         struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
-                                                        copy_entry->hash,
-                                                        copy);
-         assert(arg_entry);
-         _mesa_set_remove(node->copies, arg_entry);
-      }
-
-      nir_instr_remove(&copy->instr);
-   }
-
-   return true;
-}
-
-/* Returns a load_const instruction that represents the constant
- * initializer for the given deref chain.  The caller is responsible for
- * ensuring that there actually is a constant initializer.
- */
-static nir_load_const_instr *
-get_const_initializer_load(const nir_deref_var *deref,
-                           struct lower_variables_state *state)
-{
-   nir_constant *constant = deref->var->constant_initializer;
-   const nir_deref *tail = &deref->deref;
-   unsigned matrix_offset = 0;
-   while (tail->child) {
-      switch (tail->child->deref_type) {
-      case nir_deref_type_array: {
-         nir_deref_array *arr = nir_deref_as_array(tail->child);
-         assert(arr->deref_array_type == nir_deref_array_type_direct);
-         if (glsl_type_is_matrix(tail->type)) {
-            assert(arr->deref.child == NULL);
-            matrix_offset = arr->base_offset;
-         } else {
-            constant = constant->elements[arr->base_offset];
-         }
-         break;
-      }
-
-      case nir_deref_type_struct: {
-         constant = constant->elements[nir_deref_as_struct(tail->child)->index];
-         break;
-      }
-
-      default:
-         unreachable("Invalid deref child type");
-      }
-
-      tail = tail->child;
-   }
-
-   nir_load_const_instr *load =
-      nir_load_const_instr_create(state->mem_ctx,
-                                  glsl_get_vector_elements(tail->type));
-
-   matrix_offset *= load->def.num_components;
-   for (unsigned i = 0; i < load->def.num_components; i++) {
-      switch (glsl_get_base_type(tail->type)) {
-      case GLSL_TYPE_FLOAT:
-      case GLSL_TYPE_INT:
-      case GLSL_TYPE_UINT:
-         load->value.u[i] = constant->value.u[matrix_offset + i];
-         break;
-      case GLSL_TYPE_BOOL:
-         load->value.u[i] = constant->value.u[matrix_offset + i] ?
-                             NIR_TRUE : NIR_FALSE;
-         break;
-      default:
-         unreachable("Invalid immediate type");
-      }
-   }
-
-   return load;
-}
-
-/** Pushes an SSA def onto the def stack for the given node
- *
- * Each node is potentially associated with a stack of SSA definitions.
- * This stack is used for determining what SSA definition reaches a given
- * point in the program for variable renaming.  The stack is always kept in
- * dominance-order with at most one SSA def per block.  If the SSA
- * definition on the top of the stack is in the same block as the one being
- * pushed, the top element is replaced.
- */
-static void
-def_stack_push(struct deref_node *node, nir_ssa_def *def,
-               struct lower_variables_state *state)
-{
-   if (node->def_stack == NULL) {
-      node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
-                                     state->impl->num_blocks);
-      node->def_stack_tail = node->def_stack - 1;
-   }
-
-   if (node->def_stack_tail >= node->def_stack) {
-      nir_ssa_def *top_def = *node->def_stack_tail;
-
-      if (def->parent_instr->block == top_def->parent_instr->block) {
-         /* They're in the same block, just replace the top */
-         *node->def_stack_tail = def;
-         return;
-      }
-   }
-
-   *(++node->def_stack_tail) = def;
-}
-
-/* Pop the top of the def stack if it's in the given block */
-static void
-def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
-{
-   /* If we're popping, then we have presumably pushed at some time in the
-    * past so this should exist.
-    */
-   assert(node->def_stack != NULL);
-
-   /* The stack is already empty.  Do nothing. */
-   if (node->def_stack_tail < node->def_stack)
-      return;
-
-   nir_ssa_def *def = *node->def_stack_tail;
-   if (def->parent_instr->block == block)
-      node->def_stack_tail--;
-}
-
-/** Retrieves the SSA definition on the top of the stack for the given
- * node, if one exists.  If the stack is empty, then we return the constant
- * initializer (if it exists) or an SSA undef.
- */
-static nir_ssa_def *
-get_ssa_def_for_block(struct deref_node *node, nir_block *block,
-                      struct lower_variables_state *state)
-{
-   /* If we have something on the stack, go ahead and return it.  We're
-    * assuming that the top of the stack dominates the given block.
-    */
-   if (node->def_stack && node->def_stack_tail >= node->def_stack)
-      return *node->def_stack_tail;
-
-   /* If we got here then we don't have a definition that dominates the
-    * given block.  This means that we need to add an undef and use that.
-    */
-   nir_ssa_undef_instr *undef =
-      nir_ssa_undef_instr_create(state->mem_ctx,
-                                 glsl_get_vector_elements(node->type));
-   nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
-   def_stack_push(node, &undef->def, state);
-   return &undef->def;
-}
-
-/* Given a block and one of its predecessors, this function fills in the
- * souces of the phi nodes to take SSA defs from the given predecessor.
- * This function must be called exactly once per block/predecessor pair.
- */
-static void
-add_phi_sources(nir_block *block, nir_block *pred,
-                struct lower_variables_state *state)
-{
-   nir_foreach_instr(block, instr) {
-      if (instr->type != nir_instr_type_phi)
-         break;
-
-      nir_phi_instr *phi = nir_instr_as_phi(instr);
-
-      struct hash_entry *entry =
-            _mesa_hash_table_search(state->phi_table,
-                                    _mesa_hash_pointer(phi), phi);
-      if (!entry)
-         continue;
-
-      struct deref_node *node = entry->data;
-
-      nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
-      src->pred = pred;
-      src->src.is_ssa = true;
-      src->src.ssa = get_ssa_def_for_block(node, pred, state);
-
-      _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);
-
-      exec_list_push_tail(&phi->srcs, &src->node);
-   }
-}
-
-/* Performs variable renaming by doing a DFS of the dominance tree
- *
- * This algorithm is very similar to the one outlined in "Efficiently
- * Computing Static Single Assignment Form and the Control Dependence
- * Graph" by Cytron et. al.  The primary difference is that we only put one
- * SSA def on the stack per block.
- */
-static bool
-rename_variables_block(nir_block *block, struct lower_variables_state *state)
-{
-   nir_foreach_instr_safe(block, instr) {
-      if (instr->type == nir_instr_type_phi) {
-         nir_phi_instr *phi = nir_instr_as_phi(instr);
-
-         struct hash_entry *entry =
-            _mesa_hash_table_search(state->phi_table,
-                                    _mesa_hash_pointer(phi), phi);
-
-         /* This can happen if we already have phi nodes in the program
-          * that were not created in this pass.
-          */
-         if (!entry)
-            continue;
-
-         struct deref_node *node = entry->data;
-
-         def_stack_push(node, &phi->dest.ssa, state);
-      } else if (instr->type == nir_instr_type_intrinsic) {
-         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
-
-         switch (intrin->intrinsic) {
-         case nir_intrinsic_load_var: {
-            struct deref_node *node = get_deref_node(intrin->variables[0],
-                                                     false, state);
-
-            if (node == NULL) {
-               /* If we hit this path then we are referencing an invalid
-                * value.  Most likely, we unrolled something and are
-                * reading past the end of some array.  In any case, this
-                * should result in an undefined value.
-                */
-               nir_ssa_undef_instr *undef =
-                  nir_ssa_undef_instr_create(state->mem_ctx,
-                                             intrin->num_components);
-
-               nir_instr_insert_before(&intrin->instr, &undef->instr);
-               nir_instr_remove(&intrin->instr);
-
-               nir_src new_src = {
-                  .is_ssa = true,
-                  .ssa = &undef->def,
-               };
-
-               nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
-                                        state->mem_ctx);
-               continue;
-            }
-
-            if (!node->lower_to_ssa)
-               continue;
-
-            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
-                                                      nir_op_imov);
-            mov->src[0].src.is_ssa = true;
-            mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
-            for (unsigned i = intrin->num_components; i < 4; i++)
-               mov->src[0].swizzle[i] = 0;
-
-            assert(intrin->dest.is_ssa);
-
-            mov->dest.write_mask = (1 << intrin->num_components) - 1;
-            mov->dest.dest.is_ssa = true;
-            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
-                             intrin->num_components, NULL);
-
-            nir_instr_insert_before(&intrin->instr, &mov->instr);
-            nir_instr_remove(&intrin->instr);
-
-            nir_src new_src = {
-               .is_ssa = true,
-               .ssa = &mov->dest.dest.ssa,
-            };
-
-            nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
-                                     state->mem_ctx);
-            break;
-         }
-
-         case nir_intrinsic_store_var: {
-            struct deref_node *node = get_deref_node(intrin->variables[0],
-                                                     false, state);
-
-            if (node == NULL) {
-               /* Probably an out-of-bounds array store.  That should be a
-                * no-op. */
-               nir_instr_remove(&intrin->instr);
-               continue;
-            }
-
-            if (!node->lower_to_ssa)
-               continue;
-
-            assert(intrin->num_components ==
-                   glsl_get_vector_elements(node->type));
-
-            assert(intrin->src[0].is_ssa);
-
-            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
-                                                      nir_op_imov);
-            mov->src[0].src.is_ssa = true;
-            mov->src[0].src.ssa = intrin->src[0].ssa;
-            for (unsigned i = intrin->num_components; i < 4; i++)
-               mov->src[0].swizzle[i] = 0;
-
-            mov->dest.write_mask = (1 << intrin->num_components) - 1;
-            mov->dest.dest.is_ssa = true;
-            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
-                             intrin->num_components, NULL);
-
-            nir_instr_insert_before(&intrin->instr, &mov->instr);
-
-            def_stack_push(node, &mov->dest.dest.ssa, state);
-
-            /* We'll wait to remove the instruction until the next pass
-             * where we pop the node we just pushed back off the stack.
-             */
-            break;
-         }
-
-         default:
-            break;
-         }
-      }
-   }
-
-   if (block->successors[0])
-      add_phi_sources(block->successors[0], block, state);
-   if (block->successors[1])
-      add_phi_sources(block->successors[1], block, state);
-
-   for (unsigned i = 0; i < block->num_dom_children; ++i)
-      rename_variables_block(block->dom_children[i], state);
-
-   /* Now we iterate over the instructions and pop off any SSA defs that we
-    * pushed in the first loop.
-    */
-   nir_foreach_instr_safe(block, instr) {
-      if (instr->type == nir_instr_type_phi) {
-         nir_phi_instr *phi = nir_instr_as_phi(instr);
-
-         struct hash_entry *entry =
-            _mesa_hash_table_search(state->phi_table,
-                                    _mesa_hash_pointer(phi), phi);
-
-         /* This can happen if we already have phi nodes in the program
-          * that were not created in this pass.
-          */
-         if (!entry)
-            continue;
-
-         struct deref_node *node = entry->data;
-
-         def_stack_pop_if_in_block(node, block);
-      } else if (instr->type == nir_instr_type_intrinsic) {
-         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
-
-         if (intrin->intrinsic != nir_intrinsic_store_var)
-            continue;
-
-         struct deref_node *node = get_deref_node(intrin->variables[0],
-                                                  false, state);
-         if (!node)
-            continue;
-
-         if (!node->lower_to_ssa)
-            continue;
-
-         def_stack_pop_if_in_block(node, block);
-         nir_instr_remove(&intrin->instr);
-      }
-   }
-
-   return true;
-}
-
-/* Inserts phi nodes for all variables marked lower_to_ssa
- *
- * This is the same algorithm as presented in "Efficiently Computing Static
- * Single Assignment Form and the Control Dependence Graph" by Cytron et.
- * al.
- */
-static void
-insert_phi_nodes(struct lower_variables_state *state)
-{
-   unsigned work[state->impl->num_blocks];
-   unsigned has_already[state->impl->num_blocks];
-
-   /*
-    * Since the work flags already prevent us from inserting a node that has
-    * ever been inserted into W, we don't need to use a set to represent W.
-    * Also, since no block can ever be inserted into W more than once, we know
-    * that the maximum size of W is the number of basic blocks in the
-    * function. So all we need to handle W is an array and a pointer to the
-    * next element to be inserted and the next element to be removed.
-    */
-   nir_block *W[state->impl->num_blocks];
-
-   memset(work, 0, sizeof work);
-   memset(has_already, 0, sizeof has_already);
-
-   unsigned w_start, w_end;
-   unsigned iter_count = 0;
-
-   struct hash_entry *deref_entry;
-   hash_table_foreach(state->direct_deref_nodes, deref_entry) {
-      struct deref_node *node = deref_entry->data;
-
-      if (node->stores == NULL)
-         continue;
-
-      if (!node->lower_to_ssa)
-         continue;
-
-      w_start = w_end = 0;
-      iter_count++;
-
-      struct set_entry *store_entry;
-      set_foreach(node->stores, store_entry) {
-         nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
-         if (work[store->instr.block->index] < iter_count)
-            W[w_end++] = store->instr.block;
-         work[store->instr.block->index] = iter_count;
-      }
-
-      while (w_start != w_end) {
-         nir_block *cur = W[w_start++];
-         struct set_entry *dom_entry;
-         set_foreach(cur->dom_frontier, dom_entry) {
-            nir_block *next = (nir_block *) dom_entry->key;
-
-            /*
-             * If there's more than one return statement, then the end block
-             * can be a join point for some definitions. However, there are
-             * no instructions in the end block, so nothing would use those
-             * phi nodes. Of course, we couldn't place those phi nodes
-             * anyways due to the restriction of having no instructions in the
-             * end block...
-             */
-            if (next == state->impl->end_block)
-               continue;
-
-            if (has_already[next->index] < iter_count) {
-               nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
-               phi->dest.is_ssa = true;
-               nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
-                                glsl_get_vector_elements(node->type), NULL);
-               nir_instr_insert_before_block(next, &phi->instr);
-
-               _mesa_hash_table_insert(state->phi_table,
-                                       _mesa_hash_pointer(phi), phi, node);
-
-               has_already[next->index] = iter_count;
-               if (work[next->index] < iter_count) {
-                  work[next->index] = iter_count;
-                  W[w_end++] = next;
-               }
-            }
-         }
-      }
-   }
-}
-
-
-/** Implements a pass to lower variable uses to SSA values
- *
- * This path walks the list of instructions and tries to lower as many
- * local variable load/store operations to SSA defs and uses as it can.
- * The process involves four passes:
- *
- *  1) Iterate over all of the instructions and mark where each local
- *     variable deref is used in a load, store, or copy.  While we're at
- *     it, we keep track of all of the fully-qualified (no wildcards) and
- *     fully-direct references we see and store them in the
- *     direct_deref_nodes hash table.
- *
- *  2) Walk over the the list of fully-qualified direct derefs generated in
- *     the previous pass.  For each deref, we determine if it can ever be
- *     aliased, i.e. if there is an indirect reference anywhere that may
- *     refer to it.  If it cannot be aliased, we mark it for lowering to an
- *     SSA value.  At this point, we lower any var_copy instructions that
- *     use the given deref to load/store operations and, if the deref has a
- *     constant initializer, we go ahead and add a load_const value at the
- *     beginning of the function with the initialized value.
- *
- *  3) Walk over the list of derefs we plan to lower to SSA values and
- *     insert phi nodes as needed.
- *
- *  4) Perform "variable renaming" by replacing the load/store instructions
- *     with SSA definitions and SSA uses.
- */
-static bool
-nir_lower_variables_impl(nir_function_impl *impl)
-{
-   struct lower_variables_state state;
-
-   state.mem_ctx = ralloc_parent(impl);
-   state.dead_ctx = ralloc_context(state.mem_ctx);
-   state.impl = impl;
-
-   state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
-                                                   _mesa_key_pointer_equal);
-   state.direct_deref_nodes = _mesa_hash_table_create(state.dead_ctx,
-                                                      derefs_equal);
-   state.phi_table = _mesa_hash_table_create(state.dead_ctx,
-                                             _mesa_key_pointer_equal);
-
-   nir_foreach_block(impl, register_variable_uses_block, &state);
-
-   struct set *outputs = _mesa_set_create(state.dead_ctx,
-                                          _mesa_key_pointer_equal);
-
-   bool progress = false;
-
-   nir_metadata_require(impl, nir_metadata_block_index);
-
-   struct hash_entry *entry;
-   hash_table_foreach(state.direct_deref_nodes, entry) {
-      nir_deref_var *deref = (void *)entry->key;
-      struct deref_node *node = entry->data;
-
-      if (deref->var->data.mode != nir_var_local) {
-         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
-         continue;
-      }
-
-      if (deref_may_be_aliased(deref, &state)) {
-         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
-         continue;
-      }
-
-      node->lower_to_ssa = true;
-      progress = true;
-
-      if (deref->var->constant_initializer) {
-         nir_load_const_instr *load = get_const_initializer_load(deref, &state);
-         nir_ssa_def_init(&load->instr, &load->def,
-                          glsl_get_vector_elements(node->type), NULL);
-         nir_instr_insert_before_cf_list(&impl->body, &load->instr);
-         def_stack_push(node, &load->def, &state);
-      }
-
-      if (deref->var->data.mode == nir_var_shader_out)
-         _mesa_set_add(outputs, _mesa_hash_pointer(node), node);
-
-      foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
-   }
-
-   if (!progress)
-      return false;
-
-   nir_metadata_require(impl, nir_metadata_dominance);
-
-   insert_phi_nodes(&state);
-   rename_variables_block(impl->start_block, &state);
-
-   nir_metadata_preserve(impl, nir_metadata_block_index |
-                               nir_metadata_dominance);
-
-   ralloc_free(state.dead_ctx);
-
-   return progress;
-}
-
-void
-nir_lower_variables(nir_shader *shader)
-{
-   nir_foreach_overload(shader, overload) {
-      if (overload->impl)
-         nir_lower_variables_impl(overload->impl);
-   }
-}
diff --git a/src/glsl/nir/nir_lower_vars_to_ssa.c b/src/glsl/nir/nir_lower_vars_to_ssa.c
new file mode 100644
index 0000000..0f2391a
--- /dev/null
+++ b/src/glsl/nir/nir_lower_vars_to_ssa.c
@@ -0,0 +1,1223 @@
+/*
+ * Copyright © 2014 Intel Corporation
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+ * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+ * IN THE SOFTWARE.
+ *
+ * Authors:
+ *    Jason Ekstrand (jason at jlekstrand.net)
+ *
+ */
+
+#include "nir.h"
+
+struct deref_node {
+   struct deref_node *parent;
+   const struct glsl_type *type;
+
+   bool lower_to_ssa;
+
+   struct set *loads;
+   struct set *stores;
+   struct set *copies;
+
+   nir_ssa_def **def_stack;
+   nir_ssa_def **def_stack_tail;
+
+   struct deref_node *wildcard;
+   struct deref_node *indirect;
+   struct deref_node *children[0];
+};
+
+struct lower_variables_state {
+   void *mem_ctx;
+   void *dead_ctx;
+   nir_function_impl *impl;
+
+   /* A hash table mapping variables to deref_node data */
+   struct hash_table *deref_var_nodes;
+
+   /* A hash table mapping fully-qualified direct dereferences, i.e.
+    * dereferences with no indirect or wildcard array dereferences, to
+    * deref_node data.
+    *
+    * At the moment, we only lower loads, stores, and copies that can be
+    * trivially lowered to loads and stores, i.e. copies with no indirects
+    * and no wildcards.  If a part of a variable that is being loaded from
+    * and/or stored into is also involved in a copy operation with
+    * wildcards, then we lower that copy operation to loads and stores, but
+    * otherwise we leave copies with wildcards alone. Since the only derefs
+    * used in these loads, stores, and trivial copies are ones with no
+    * wildcards and no indirects, these are precisely the derefs that we
+    * can actually consider lowering.
+    */
+   struct hash_table *direct_deref_nodes;
+
+   /* A hash table mapping phi nodes to deref_state data */
+   struct hash_table *phi_table;
+};
+
+/* The following two functions implement a hash and equality check for
+ * variable dreferences.  When the hash or equality function encounters an
+ * array, all indirects are treated as equal and are never equal to a
+ * direct dereference or a wildcard.
+ *
+ * Some of the magic numbers here were taken from _mesa_hash_data and one
+ * was just a big prime I found on the internet.
+ */
+static uint32_t
+hash_deref(const void *void_deref)
+{
+   uint32_t hash = _mesa_FNV32_1a_offset_bias;
+
+   const nir_deref_var *deref_var = void_deref;
+   hash = _mesa_FNV32_1a_accumulate(hash, deref_var->var);
+
+   for (const nir_deref *deref = deref_var->deref.child;
+        deref; deref = deref->child) {
+      switch (deref->deref_type) {
+      case nir_deref_type_array: {
+         nir_deref_array *deref_array = nir_deref_as_array(deref);
+
+         hash = _mesa_FNV32_1a_accumulate(hash, deref_array->deref_array_type);
+
+         if (deref_array->deref_array_type == nir_deref_array_type_direct)
+            hash = _mesa_FNV32_1a_accumulate(hash, deref_array->base_offset);
+         break;
+      }
+      case nir_deref_type_struct: {
+         nir_deref_struct *deref_struct = nir_deref_as_struct(deref);
+         hash = _mesa_FNV32_1a_accumulate(hash, deref_struct->index);
+         break;
+      }
+      default:
+         assert("Invalid deref chain");
+      }
+   }
+
+   return hash;
+}
+
+static bool
+derefs_equal(const void *void_a, const void *void_b)
+{
+   const nir_deref_var *a_var = void_a;
+   const nir_deref_var *b_var = void_b;
+
+   if (a_var->var != b_var->var)
+      return false;
+
+   for (const nir_deref *a = a_var->deref.child, *b = b_var->deref.child;
+        a != NULL; a = a->child, b = b->child) {
+      if (a->deref_type != b->deref_type)
+         return false;
+
+      switch (a->deref_type) {
+      case nir_deref_type_array: {
+         nir_deref_array *a_arr = nir_deref_as_array(a);
+         nir_deref_array *b_arr = nir_deref_as_array(b);
+
+         if (a_arr->deref_array_type != b_arr->deref_array_type)
+            return false;
+
+         if (a_arr->deref_array_type == nir_deref_array_type_direct &&
+             a_arr->base_offset != b_arr->base_offset)
+            return false;
+         break;
+      }
+      case nir_deref_type_struct:
+         if (nir_deref_as_struct(a)->index != nir_deref_as_struct(b)->index)
+            return false;
+         break;
+      default:
+         assert("Invalid deref chain");
+         return false;
+      }
+
+      assert((a->child == NULL) == (b->child == NULL));
+      if((a->child == NULL) != (b->child == NULL))
+         return false;
+   }
+
+   return true;
+}
+
+static int
+type_get_length(const struct glsl_type *type)
+{
+   switch (glsl_get_base_type(type)) {
+   case GLSL_TYPE_STRUCT:
+   case GLSL_TYPE_ARRAY:
+      return glsl_get_length(type);
+   case GLSL_TYPE_FLOAT:
+   case GLSL_TYPE_INT:
+   case GLSL_TYPE_UINT:
+   case GLSL_TYPE_BOOL:
+      if (glsl_type_is_matrix(type))
+         return glsl_get_matrix_columns(type);
+      else
+         return glsl_get_vector_elements(type);
+   default:
+      unreachable("Invalid deref base type");
+   }
+}
+
+static struct deref_node *
+deref_node_create(struct deref_node *parent,
+                  const struct glsl_type *type, void *mem_ctx)
+{
+   size_t size = sizeof(struct deref_node) +
+                 type_get_length(type) * sizeof(struct deref_node *);
+
+   struct deref_node *node = rzalloc_size(mem_ctx, size);
+   node->type = type;
+   node->parent = parent;
+
+   return node;
+}
+
+/* Gets the deref_node for the given deref chain and creates it if it
+ * doesn't yet exist.  If the deref is fully-qualified and direct and
+ * add_to_direct_deref_nodes is true, it will be added to the hash table of
+ * of fully-qualified direct derefs.
+ */
+static struct deref_node *
+get_deref_node(nir_deref_var *deref, bool add_to_direct_deref_nodes,
+               struct lower_variables_state *state)
+{
+   bool is_direct = true;
+
+   struct deref_node *node;
+
+   uint32_t var_hash = _mesa_hash_pointer(deref->var);
+   struct hash_entry *var_entry =
+      _mesa_hash_table_search(state->deref_var_nodes, var_hash, deref->var);
+
+   if (var_entry) {
+      node = var_entry->data;
+   } else {
+      node = deref_node_create(NULL, deref->deref.type, state->dead_ctx);
+      _mesa_hash_table_insert(state->deref_var_nodes,
+                              var_hash, deref->var, node);
+   }
+
+   for (nir_deref *tail = deref->deref.child; tail; tail = tail->child) {
+      switch (tail->deref_type) {
+      case nir_deref_type_struct: {
+         nir_deref_struct *deref_struct = nir_deref_as_struct(tail);
+
+         assert(deref_struct->index < type_get_length(node->type));
+
+         if (node->children[deref_struct->index] == NULL)
+            node->children[deref_struct->index] =
+               deref_node_create(node, tail->type, state->dead_ctx);
+
+         node = node->children[deref_struct->index];
+         break;
+      }
+
+      case nir_deref_type_array: {
+         nir_deref_array *arr = nir_deref_as_array(tail);
+
+         switch (arr->deref_array_type) {
+         case nir_deref_array_type_direct:
+            /* This is possible if a loop unrolls and generates an
+             * out-of-bounds offset.  We need to handle this at least
+             * somewhat gracefully.
+             */
+            if (arr->base_offset >= type_get_length(node->type))
+               return NULL;
+
+            if (node->children[arr->base_offset] == NULL)
+               node->children[arr->base_offset] =
+                  deref_node_create(node, tail->type, state->dead_ctx);
+
+            node = node->children[arr->base_offset];
+            break;
+
+         case nir_deref_array_type_indirect:
+            if (node->indirect == NULL)
+               node->indirect = deref_node_create(node, tail->type,
+                                                  state->dead_ctx);
+
+            node = node->indirect;
+            is_direct = false;
+            break;
+
+         case nir_deref_array_type_wildcard:
+            if (node->wildcard == NULL)
+               node->wildcard = deref_node_create(node, tail->type,
+                                                  state->dead_ctx);
+
+            node = node->wildcard;
+            is_direct = false;
+            break;
+
+         default:
+            unreachable("Invalid array deref type");
+         }
+         break;
+      }
+      default:
+         unreachable("Invalid deref type");
+      }
+   }
+
+   assert(node);
+
+   if (is_direct && add_to_direct_deref_nodes)
+      _mesa_hash_table_insert(state->direct_deref_nodes,
+                              hash_deref(deref), deref, node);
+
+   return node;
+}
+
+/* \sa foreach_deref_node_match */
+static bool
+foreach_deref_node_worker(struct deref_node *node, nir_deref *deref,
+                          bool (* cb)(struct deref_node *node,
+                                      struct lower_variables_state *state),
+                          struct lower_variables_state *state)
+{
+   if (deref->child == NULL) {
+      return cb(node, state);
+   } else {
+      switch (deref->child->deref_type) {
+      case nir_deref_type_array: {
+         nir_deref_array *arr = nir_deref_as_array(deref->child);
+         assert(arr->deref_array_type == nir_deref_array_type_direct);
+         if (node->children[arr->base_offset] &&
+             !foreach_deref_node_worker(node->children[arr->base_offset],
+                                        deref->child, cb, state))
+            return false;
+
+         if (node->wildcard &&
+             !foreach_deref_node_worker(node->wildcard,
+                                        deref->child, cb, state))
+            return false;
+
+         return true;
+      }
+
+      case nir_deref_type_struct: {
+         nir_deref_struct *str = nir_deref_as_struct(deref->child);
+         return foreach_deref_node_worker(node->children[str->index],
+                                          deref->child, cb, state);
+      }
+
+      default:
+         unreachable("Invalid deref child type");
+      }
+   }
+}
+
+/* Walks over every "matching" deref_node and calls the callback.  A node
+ * is considered to "match" if either refers to that deref or matches up t
+ * a wildcard.  In other words, the following would match a[6].foo[3].bar:
+ *
+ * a[6].foo[3].bar
+ * a[*].foo[3].bar
+ * a[6].foo[*].bar
+ * a[*].foo[*].bar
+ *
+ * The given deref must be a full-length and fully qualified (no wildcards
+ * or indirects) deref chain.
+ */
+static bool
+foreach_deref_node_match(nir_deref_var *deref,
+                         bool (* cb)(struct deref_node *node,
+                                     struct lower_variables_state *state),
+                         struct lower_variables_state *state)
+{
+   nir_deref_var var_deref = *deref;
+   var_deref.deref.child = NULL;
+   struct deref_node *node = get_deref_node(&var_deref, false, state);
+
+   if (node == NULL)
+      return false;
+
+   return foreach_deref_node_worker(node, &deref->deref, cb, state);
+}
+
+/* \sa deref_may_be_aliased */
+static bool
+deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref,
+                          struct lower_variables_state *state)
+{
+   if (deref->child == NULL) {
+      return false;
+   } else {
+      switch (deref->child->deref_type) {
+      case nir_deref_type_array: {
+         nir_deref_array *arr = nir_deref_as_array(deref->child);
+         if (arr->deref_array_type == nir_deref_array_type_indirect)
+            return true;
+
+         assert(arr->deref_array_type == nir_deref_array_type_direct);
+
+         if (node->children[arr->base_offset] &&
+             deref_may_be_aliased_node(node->children[arr->base_offset],
+                                       deref->child, state))
+            return true;
+
+         if (node->wildcard &&
+             deref_may_be_aliased_node(node->wildcard, deref->child, state))
+            return true;
+
+         return false;
+      }
+
+      case nir_deref_type_struct: {
+         nir_deref_struct *str = nir_deref_as_struct(deref->child);
+         if (node->children[str->index]) {
+             return deref_may_be_aliased_node(node->children[str->index],
+                                              deref->child, state);
+         } else {
+            return false;
+         }
+      }
+
+      default:
+         unreachable("Invalid nir_deref child type");
+      }
+   }
+}
+
+/* Returns true if there are no indirects that can ever touch this deref.
+ *
+ * For example, if the given deref is a[6].foo, then any uses of a[i].foo
+ * would cause this to return false, but a[i].bar would not affect it
+ * because it's a different structure member.  A var_copy involving of
+ * a[*].bar also doesn't affect it because that can be lowered to entirely
+ * direct load/stores.
+ *
+ * We only support asking this question about fully-qualified derefs.
+ * Obviously, it's pointless to ask this about indirects, but we also
+ * rule-out wildcards.  Handling Wildcard dereferences would involve
+ * checking each array index to make sure that there aren't any indirect
+ * references.
+ */
+static bool
+deref_may_be_aliased(nir_deref_var *deref,
+                     struct lower_variables_state *state)
+{
+   nir_deref_var var_deref = *deref;
+   var_deref.deref.child = NULL;
+   struct deref_node *node = get_deref_node(&var_deref, false, state);
+
+   /* An invalid dereference can't be aliased. */
+   if (node == NULL)
+      return false;
+
+   return deref_may_be_aliased_node(node, &deref->deref, state);
+}
+
+static void
+register_load_instr(nir_intrinsic_instr *load_instr, bool create_node,
+                    struct lower_variables_state *state)
+{
+   struct deref_node *node = get_deref_node(load_instr->variables[0],
+                                            create_node, state);
+   if (node == NULL)
+      return;
+
+   if (node->loads == NULL)
+      node->loads = _mesa_set_create(state->dead_ctx,
+                                     _mesa_key_pointer_equal);
+
+   _mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr);
+}
+
+static void
+register_store_instr(nir_intrinsic_instr *store_instr, bool create_node,
+                     struct lower_variables_state *state)
+{
+   struct deref_node *node = get_deref_node(store_instr->variables[0],
+                                            create_node, state);
+   if (node == NULL)
+      return;
+
+   if (node->stores == NULL)
+      node->stores = _mesa_set_create(state->dead_ctx,
+                                     _mesa_key_pointer_equal);
+
+   _mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr);
+}
+
+static void
+register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node,
+                    struct lower_variables_state *state)
+{
+   for (unsigned idx = 0; idx < 2; idx++) {
+      struct deref_node *node = get_deref_node(copy_instr->variables[idx],
+                                               create_node, state);
+      if (node == NULL)
+         continue;
+
+      if (node->copies == NULL)
+         node->copies = _mesa_set_create(state->dead_ctx,
+                                         _mesa_key_pointer_equal);
+
+      _mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr);
+   }
+}
+
+/* Registers all variable uses in the given block. */
+static bool
+register_variable_uses_block(nir_block *block, void *void_state)
+{
+   struct lower_variables_state *state = void_state;
+
+   nir_foreach_instr_safe(block, instr) {
+      if (instr->type != nir_instr_type_intrinsic)
+         continue;
+
+      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+
+      switch (intrin->intrinsic) {
+      case nir_intrinsic_load_var:
+         register_load_instr(intrin, true, state);
+         break;
+
+      case nir_intrinsic_store_var:
+         register_store_instr(intrin, true, state);
+         break;
+
+      case nir_intrinsic_copy_var:
+         register_copy_instr(intrin, true, state);
+         break;
+
+      default:
+         continue;
+      }
+   }
+
+   return true;
+}
+
+/* Walks down the deref chain and returns the next deref in the chain whose
+ * child is a wildcard.  In other words, given the chain  a[1].foo[*].bar,
+ * this function will return the deref to foo.  Calling it a second time
+ * with the [*].bar, it will return NULL.
+ */
+static nir_deref *
+deref_next_wildcard_parent(nir_deref *deref)
+{
+   for (nir_deref *tail = deref; tail->child; tail = tail->child) {
+      if (tail->child->deref_type != nir_deref_type_array)
+         continue;
+
+      nir_deref_array *arr = nir_deref_as_array(tail->child);
+
+      if (arr->deref_array_type == nir_deref_array_type_wildcard)
+         return tail;
+   }
+
+   return NULL;
+}
+
+/* Returns the last deref in the chain.
+ */
+static nir_deref *
+get_deref_tail(nir_deref *deref)
+{
+   while (deref->child)
+      deref = deref->child;
+
+   return deref;
+}
+
+/* This function recursively walks the given deref chain and replaces the
+ * given copy instruction with an equivalent sequence load/store
+ * operations.
+ *
+ * @copy_instr    The copy instruction to replace; new instructions will be
+ *                inserted before this one
+ *
+ * @dest_head     The head of the destination variable deref chain
+ *
+ * @src_head      The head of the source variable deref chain
+ *
+ * @dest_tail     The current tail of the destination variable deref chain;
+ *                this is used for recursion and external callers of this
+ *                function should call it with tail == head
+ *
+ * @src_tail      The current tail of the source variable deref chain;
+ *                this is used for recursion and external callers of this
+ *                function should call it with tail == head
+ *
+ * @state         The current variable lowering state
+ */
+static void
+emit_copy_load_store(nir_intrinsic_instr *copy_instr,
+                     nir_deref_var *dest_head, nir_deref_var *src_head,
+                     nir_deref *dest_tail, nir_deref *src_tail,
+                     struct lower_variables_state *state)
+{
+   /* Find the next pair of wildcards */
+   nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail);
+   nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail);
+
+   if (src_arr_parent || dest_arr_parent) {
+      /* Wildcards had better come in matched pairs */
+      assert(dest_arr_parent && dest_arr_parent);
+
+      nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child);
+      nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child);
+
+      unsigned length = type_get_length(src_arr_parent->type);
+      /* The wildcards should represent the same number of elements */
+      assert(length == type_get_length(dest_arr_parent->type));
+      assert(length > 0);
+
+      /* Walk over all of the elements that this wildcard refers to and
+       * call emit_copy_load_store on each one of them */
+      src_arr->deref_array_type = nir_deref_array_type_direct;
+      dest_arr->deref_array_type = nir_deref_array_type_direct;
+      for (unsigned i = 0; i < length; i++) {
+         src_arr->base_offset = i;
+         dest_arr->base_offset = i;
+         emit_copy_load_store(copy_instr, dest_head, src_head,
+                              &dest_arr->deref, &src_arr->deref, state);
+      }
+      src_arr->deref_array_type = nir_deref_array_type_wildcard;
+      dest_arr->deref_array_type = nir_deref_array_type_wildcard;
+   } else {
+      /* In this case, we have no wildcards anymore, so all we have to do
+       * is just emit the load and store operations. */
+      src_tail = get_deref_tail(src_tail);
+      dest_tail = get_deref_tail(dest_tail);
+
+      assert(src_tail->type == dest_tail->type);
+
+      unsigned num_components = glsl_get_vector_elements(src_tail->type);
+
+      nir_deref *src_deref = nir_copy_deref(state->mem_ctx, &src_head->deref);
+      nir_deref *dest_deref = nir_copy_deref(state->mem_ctx, &dest_head->deref);
+
+      nir_intrinsic_instr *load =
+         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_load_var);
+      load->num_components = num_components;
+      load->variables[0] = nir_deref_as_var(src_deref);
+      load->dest.is_ssa = true;
+      nir_ssa_def_init(&load->instr, &load->dest.ssa, num_components, NULL);
+
+      nir_instr_insert_before(&copy_instr->instr, &load->instr);
+      register_load_instr(load, false, state);
+
+      nir_intrinsic_instr *store =
+         nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_store_var);
+      store->num_components = num_components;
+      store->variables[0] = nir_deref_as_var(dest_deref);
+      store->src[0].is_ssa = true;
+      store->src[0].ssa = &load->dest.ssa;
+
+      nir_instr_insert_before(&copy_instr->instr, &store->instr);
+      register_store_instr(store, false, state);
+   }
+}
+
+/* Walks over all of the copy instructions to or from the given deref_node
+ * and lowers them to load/store intrinsics.
+ */
+static bool
+lower_copies_to_load_store(struct deref_node *node,
+                           struct lower_variables_state *state)
+{
+   if (!node->copies)
+      return true;
+
+   struct set_entry *copy_entry;
+   set_foreach(node->copies, copy_entry) {
+      nir_intrinsic_instr *copy = (void *)copy_entry->key;
+
+      emit_copy_load_store(copy, copy->variables[0], copy->variables[1],
+                           &copy->variables[0]->deref,
+                           &copy->variables[1]->deref,
+                           state);
+
+      for (unsigned i = 0; i < 2; ++i) {
+         struct deref_node *arg_node = get_deref_node(copy->variables[i],
+                                                      false, state);
+         if (arg_node == NULL)
+            continue;
+
+         struct set_entry *arg_entry = _mesa_set_search(arg_node->copies,
+                                                        copy_entry->hash,
+                                                        copy);
+         assert(arg_entry);
+         _mesa_set_remove(node->copies, arg_entry);
+      }
+
+      nir_instr_remove(&copy->instr);
+   }
+
+   return true;
+}
+
+/* Returns a load_const instruction that represents the constant
+ * initializer for the given deref chain.  The caller is responsible for
+ * ensuring that there actually is a constant initializer.
+ */
+static nir_load_const_instr *
+get_const_initializer_load(const nir_deref_var *deref,
+                           struct lower_variables_state *state)
+{
+   nir_constant *constant = deref->var->constant_initializer;
+   const nir_deref *tail = &deref->deref;
+   unsigned matrix_offset = 0;
+   while (tail->child) {
+      switch (tail->child->deref_type) {
+      case nir_deref_type_array: {
+         nir_deref_array *arr = nir_deref_as_array(tail->child);
+         assert(arr->deref_array_type == nir_deref_array_type_direct);
+         if (glsl_type_is_matrix(tail->type)) {
+            assert(arr->deref.child == NULL);
+            matrix_offset = arr->base_offset;
+         } else {
+            constant = constant->elements[arr->base_offset];
+         }
+         break;
+      }
+
+      case nir_deref_type_struct: {
+         constant = constant->elements[nir_deref_as_struct(tail->child)->index];
+         break;
+      }
+
+      default:
+         unreachable("Invalid deref child type");
+      }
+
+      tail = tail->child;
+   }
+
+   nir_load_const_instr *load =
+      nir_load_const_instr_create(state->mem_ctx,
+                                  glsl_get_vector_elements(tail->type));
+
+   matrix_offset *= load->def.num_components;
+   for (unsigned i = 0; i < load->def.num_components; i++) {
+      switch (glsl_get_base_type(tail->type)) {
+      case GLSL_TYPE_FLOAT:
+      case GLSL_TYPE_INT:
+      case GLSL_TYPE_UINT:
+         load->value.u[i] = constant->value.u[matrix_offset + i];
+         break;
+      case GLSL_TYPE_BOOL:
+         load->value.u[i] = constant->value.u[matrix_offset + i] ?
+                             NIR_TRUE : NIR_FALSE;
+         break;
+      default:
+         unreachable("Invalid immediate type");
+      }
+   }
+
+   return load;
+}
+
+/** Pushes an SSA def onto the def stack for the given node
+ *
+ * Each node is potentially associated with a stack of SSA definitions.
+ * This stack is used for determining what SSA definition reaches a given
+ * point in the program for variable renaming.  The stack is always kept in
+ * dominance-order with at most one SSA def per block.  If the SSA
+ * definition on the top of the stack is in the same block as the one being
+ * pushed, the top element is replaced.
+ */
+static void
+def_stack_push(struct deref_node *node, nir_ssa_def *def,
+               struct lower_variables_state *state)
+{
+   if (node->def_stack == NULL) {
+      node->def_stack = ralloc_array(state->dead_ctx, nir_ssa_def *,
+                                     state->impl->num_blocks);
+      node->def_stack_tail = node->def_stack - 1;
+   }
+
+   if (node->def_stack_tail >= node->def_stack) {
+      nir_ssa_def *top_def = *node->def_stack_tail;
+
+      if (def->parent_instr->block == top_def->parent_instr->block) {
+         /* They're in the same block, just replace the top */
+         *node->def_stack_tail = def;
+         return;
+      }
+   }
+
+   *(++node->def_stack_tail) = def;
+}
+
+/* Pop the top of the def stack if it's in the given block */
+static void
+def_stack_pop_if_in_block(struct deref_node *node, nir_block *block)
+{
+   /* If we're popping, then we have presumably pushed at some time in the
+    * past so this should exist.
+    */
+   assert(node->def_stack != NULL);
+
+   /* The stack is already empty.  Do nothing. */
+   if (node->def_stack_tail < node->def_stack)
+      return;
+
+   nir_ssa_def *def = *node->def_stack_tail;
+   if (def->parent_instr->block == block)
+      node->def_stack_tail--;
+}
+
+/** Retrieves the SSA definition on the top of the stack for the given
+ * node, if one exists.  If the stack is empty, then we return the constant
+ * initializer (if it exists) or an SSA undef.
+ */
+static nir_ssa_def *
+get_ssa_def_for_block(struct deref_node *node, nir_block *block,
+                      struct lower_variables_state *state)
+{
+   /* If we have something on the stack, go ahead and return it.  We're
+    * assuming that the top of the stack dominates the given block.
+    */
+   if (node->def_stack && node->def_stack_tail >= node->def_stack)
+      return *node->def_stack_tail;
+
+   /* If we got here then we don't have a definition that dominates the
+    * given block.  This means that we need to add an undef and use that.
+    */
+   nir_ssa_undef_instr *undef =
+      nir_ssa_undef_instr_create(state->mem_ctx,
+                                 glsl_get_vector_elements(node->type));
+   nir_instr_insert_before_cf_list(&state->impl->body, &undef->instr);
+   def_stack_push(node, &undef->def, state);
+   return &undef->def;
+}
+
+/* Given a block and one of its predecessors, this function fills in the
+ * souces of the phi nodes to take SSA defs from the given predecessor.
+ * This function must be called exactly once per block/predecessor pair.
+ */
+static void
+add_phi_sources(nir_block *block, nir_block *pred,
+                struct lower_variables_state *state)
+{
+   nir_foreach_instr(block, instr) {
+      if (instr->type != nir_instr_type_phi)
+         break;
+
+      nir_phi_instr *phi = nir_instr_as_phi(instr);
+
+      struct hash_entry *entry =
+            _mesa_hash_table_search(state->phi_table,
+                                    _mesa_hash_pointer(phi), phi);
+      if (!entry)
+         continue;
+
+      struct deref_node *node = entry->data;
+
+      nir_phi_src *src = ralloc(state->mem_ctx, nir_phi_src);
+      src->pred = pred;
+      src->src.is_ssa = true;
+      src->src.ssa = get_ssa_def_for_block(node, pred, state);
+
+      _mesa_set_add(src->src.ssa->uses, _mesa_hash_pointer(instr), instr);
+
+      exec_list_push_tail(&phi->srcs, &src->node);
+   }
+}
+
+/* Performs variable renaming by doing a DFS of the dominance tree
+ *
+ * This algorithm is very similar to the one outlined in "Efficiently
+ * Computing Static Single Assignment Form and the Control Dependence
+ * Graph" by Cytron et. al.  The primary difference is that we only put one
+ * SSA def on the stack per block.
+ */
+static bool
+rename_variables_block(nir_block *block, struct lower_variables_state *state)
+{
+   nir_foreach_instr_safe(block, instr) {
+      if (instr->type == nir_instr_type_phi) {
+         nir_phi_instr *phi = nir_instr_as_phi(instr);
+
+         struct hash_entry *entry =
+            _mesa_hash_table_search(state->phi_table,
+                                    _mesa_hash_pointer(phi), phi);
+
+         /* This can happen if we already have phi nodes in the program
+          * that were not created in this pass.
+          */
+         if (!entry)
+            continue;
+
+         struct deref_node *node = entry->data;
+
+         def_stack_push(node, &phi->dest.ssa, state);
+      } else if (instr->type == nir_instr_type_intrinsic) {
+         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+
+         switch (intrin->intrinsic) {
+         case nir_intrinsic_load_var: {
+            struct deref_node *node = get_deref_node(intrin->variables[0],
+                                                     false, state);
+
+            if (node == NULL) {
+               /* If we hit this path then we are referencing an invalid
+                * value.  Most likely, we unrolled something and are
+                * reading past the end of some array.  In any case, this
+                * should result in an undefined value.
+                */
+               nir_ssa_undef_instr *undef =
+                  nir_ssa_undef_instr_create(state->mem_ctx,
+                                             intrin->num_components);
+
+               nir_instr_insert_before(&intrin->instr, &undef->instr);
+               nir_instr_remove(&intrin->instr);
+
+               nir_src new_src = {
+                  .is_ssa = true,
+                  .ssa = &undef->def,
+               };
+
+               nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
+                                        state->mem_ctx);
+               continue;
+            }
+
+            if (!node->lower_to_ssa)
+               continue;
+
+            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
+                                                      nir_op_imov);
+            mov->src[0].src.is_ssa = true;
+            mov->src[0].src.ssa = get_ssa_def_for_block(node, block, state);
+            for (unsigned i = intrin->num_components; i < 4; i++)
+               mov->src[0].swizzle[i] = 0;
+
+            assert(intrin->dest.is_ssa);
+
+            mov->dest.write_mask = (1 << intrin->num_components) - 1;
+            mov->dest.dest.is_ssa = true;
+            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
+                             intrin->num_components, NULL);
+
+            nir_instr_insert_before(&intrin->instr, &mov->instr);
+            nir_instr_remove(&intrin->instr);
+
+            nir_src new_src = {
+               .is_ssa = true,
+               .ssa = &mov->dest.dest.ssa,
+            };
+
+            nir_ssa_def_rewrite_uses(&intrin->dest.ssa, new_src,
+                                     state->mem_ctx);
+            break;
+         }
+
+         case nir_intrinsic_store_var: {
+            struct deref_node *node = get_deref_node(intrin->variables[0],
+                                                     false, state);
+
+            if (node == NULL) {
+               /* Probably an out-of-bounds array store.  That should be a
+                * no-op. */
+               nir_instr_remove(&intrin->instr);
+               continue;
+            }
+
+            if (!node->lower_to_ssa)
+               continue;
+
+            assert(intrin->num_components ==
+                   glsl_get_vector_elements(node->type));
+
+            assert(intrin->src[0].is_ssa);
+
+            nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
+                                                      nir_op_imov);
+            mov->src[0].src.is_ssa = true;
+            mov->src[0].src.ssa = intrin->src[0].ssa;
+            for (unsigned i = intrin->num_components; i < 4; i++)
+               mov->src[0].swizzle[i] = 0;
+
+            mov->dest.write_mask = (1 << intrin->num_components) - 1;
+            mov->dest.dest.is_ssa = true;
+            nir_ssa_def_init(&mov->instr, &mov->dest.dest.ssa,
+                             intrin->num_components, NULL);
+
+            nir_instr_insert_before(&intrin->instr, &mov->instr);
+
+            def_stack_push(node, &mov->dest.dest.ssa, state);
+
+            /* We'll wait to remove the instruction until the next pass
+             * where we pop the node we just pushed back off the stack.
+             */
+            break;
+         }
+
+         default:
+            break;
+         }
+      }
+   }
+
+   if (block->successors[0])
+      add_phi_sources(block->successors[0], block, state);
+   if (block->successors[1])
+      add_phi_sources(block->successors[1], block, state);
+
+   for (unsigned i = 0; i < block->num_dom_children; ++i)
+      rename_variables_block(block->dom_children[i], state);
+
+   /* Now we iterate over the instructions and pop off any SSA defs that we
+    * pushed in the first loop.
+    */
+   nir_foreach_instr_safe(block, instr) {
+      if (instr->type == nir_instr_type_phi) {
+         nir_phi_instr *phi = nir_instr_as_phi(instr);
+
+         struct hash_entry *entry =
+            _mesa_hash_table_search(state->phi_table,
+                                    _mesa_hash_pointer(phi), phi);
+
+         /* This can happen if we already have phi nodes in the program
+          * that were not created in this pass.
+          */
+         if (!entry)
+            continue;
+
+         struct deref_node *node = entry->data;
+
+         def_stack_pop_if_in_block(node, block);
+      } else if (instr->type == nir_instr_type_intrinsic) {
+         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
+
+         if (intrin->intrinsic != nir_intrinsic_store_var)
+            continue;
+
+         struct deref_node *node = get_deref_node(intrin->variables[0],
+                                                  false, state);
+         if (!node)
+            continue;
+
+         if (!node->lower_to_ssa)
+            continue;
+
+         def_stack_pop_if_in_block(node, block);
+         nir_instr_remove(&intrin->instr);
+      }
+   }
+
+   return true;
+}
+
+/* Inserts phi nodes for all variables marked lower_to_ssa
+ *
+ * This is the same algorithm as presented in "Efficiently Computing Static
+ * Single Assignment Form and the Control Dependence Graph" by Cytron et.
+ * al.
+ */
+static void
+insert_phi_nodes(struct lower_variables_state *state)
+{
+   unsigned work[state->impl->num_blocks];
+   unsigned has_already[state->impl->num_blocks];
+
+   /*
+    * Since the work flags already prevent us from inserting a node that has
+    * ever been inserted into W, we don't need to use a set to represent W.
+    * Also, since no block can ever be inserted into W more than once, we know
+    * that the maximum size of W is the number of basic blocks in the
+    * function. So all we need to handle W is an array and a pointer to the
+    * next element to be inserted and the next element to be removed.
+    */
+   nir_block *W[state->impl->num_blocks];
+
+   memset(work, 0, sizeof work);
+   memset(has_already, 0, sizeof has_already);
+
+   unsigned w_start, w_end;
+   unsigned iter_count = 0;
+
+   struct hash_entry *deref_entry;
+   hash_table_foreach(state->direct_deref_nodes, deref_entry) {
+      struct deref_node *node = deref_entry->data;
+
+      if (node->stores == NULL)
+         continue;
+
+      if (!node->lower_to_ssa)
+         continue;
+
+      w_start = w_end = 0;
+      iter_count++;
+
+      struct set_entry *store_entry;
+      set_foreach(node->stores, store_entry) {
+         nir_intrinsic_instr *store = (nir_intrinsic_instr *)store_entry->key;
+         if (work[store->instr.block->index] < iter_count)
+            W[w_end++] = store->instr.block;
+         work[store->instr.block->index] = iter_count;
+      }
+
+      while (w_start != w_end) {
+         nir_block *cur = W[w_start++];
+         struct set_entry *dom_entry;
+         set_foreach(cur->dom_frontier, dom_entry) {
+            nir_block *next = (nir_block *) dom_entry->key;
+
+            /*
+             * If there's more than one return statement, then the end block
+             * can be a join point for some definitions. However, there are
+             * no instructions in the end block, so nothing would use those
+             * phi nodes. Of course, we couldn't place those phi nodes
+             * anyways due to the restriction of having no instructions in the
+             * end block...
+             */
+            if (next == state->impl->end_block)
+               continue;
+
+            if (has_already[next->index] < iter_count) {
+               nir_phi_instr *phi = nir_phi_instr_create(state->mem_ctx);
+               phi->dest.is_ssa = true;
+               nir_ssa_def_init(&phi->instr, &phi->dest.ssa,
+                                glsl_get_vector_elements(node->type), NULL);
+               nir_instr_insert_before_block(next, &phi->instr);
+
+               _mesa_hash_table_insert(state->phi_table,
+                                       _mesa_hash_pointer(phi), phi, node);
+
+               has_already[next->index] = iter_count;
+               if (work[next->index] < iter_count) {
+                  work[next->index] = iter_count;
+                  W[w_end++] = next;
+               }
+            }
+         }
+      }
+   }
+}
+
+
+/** Implements a pass to lower variable uses to SSA values
+ *
+ * This path walks the list of instructions and tries to lower as many
+ * local variable load/store operations to SSA defs and uses as it can.
+ * The process involves four passes:
+ *
+ *  1) Iterate over all of the instructions and mark where each local
+ *     variable deref is used in a load, store, or copy.  While we're at
+ *     it, we keep track of all of the fully-qualified (no wildcards) and
+ *     fully-direct references we see and store them in the
+ *     direct_deref_nodes hash table.
+ *
+ *  2) Walk over the the list of fully-qualified direct derefs generated in
+ *     the previous pass.  For each deref, we determine if it can ever be
+ *     aliased, i.e. if there is an indirect reference anywhere that may
+ *     refer to it.  If it cannot be aliased, we mark it for lowering to an
+ *     SSA value.  At this point, we lower any var_copy instructions that
+ *     use the given deref to load/store operations and, if the deref has a
+ *     constant initializer, we go ahead and add a load_const value at the
+ *     beginning of the function with the initialized value.
+ *
+ *  3) Walk over the list of derefs we plan to lower to SSA values and
+ *     insert phi nodes as needed.
+ *
+ *  4) Perform "variable renaming" by replacing the load/store instructions
+ *     with SSA definitions and SSA uses.
+ */
+static bool
+nir_lower_vars_to_ssa_impl(nir_function_impl *impl)
+{
+   struct lower_variables_state state;
+
+   state.mem_ctx = ralloc_parent(impl);
+   state.dead_ctx = ralloc_context(state.mem_ctx);
+   state.impl = impl;
+
+   state.deref_var_nodes = _mesa_hash_table_create(state.dead_ctx,
+                                                   _mesa_key_pointer_equal);
+   state.direct_deref_nodes = _mesa_hash_table_create(state.dead_ctx,
+                                                      derefs_equal);
+   state.phi_table = _mesa_hash_table_create(state.dead_ctx,
+                                             _mesa_key_pointer_equal);
+
+   nir_foreach_block(impl, register_variable_uses_block, &state);
+
+   struct set *outputs = _mesa_set_create(state.dead_ctx,
+                                          _mesa_key_pointer_equal);
+
+   bool progress = false;
+
+   nir_metadata_require(impl, nir_metadata_block_index);
+
+   struct hash_entry *entry;
+   hash_table_foreach(state.direct_deref_nodes, entry) {
+      nir_deref_var *deref = (void *)entry->key;
+      struct deref_node *node = entry->data;
+
+      if (deref->var->data.mode != nir_var_local) {
+         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
+         continue;
+      }
+
+      if (deref_may_be_aliased(deref, &state)) {
+         _mesa_hash_table_remove(state.direct_deref_nodes, entry);
+         continue;
+      }
+
+      node->lower_to_ssa = true;
+      progress = true;
+
+      if (deref->var->constant_initializer) {
+         nir_load_const_instr *load = get_const_initializer_load(deref, &state);
+         nir_ssa_def_init(&load->instr, &load->def,
+                          glsl_get_vector_elements(node->type), NULL);
+         nir_instr_insert_before_cf_list(&impl->body, &load->instr);
+         def_stack_push(node, &load->def, &state);
+      }
+
+      if (deref->var->data.mode == nir_var_shader_out)
+         _mesa_set_add(outputs, _mesa_hash_pointer(node), node);
+
+      foreach_deref_node_match(deref, lower_copies_to_load_store, &state);
+   }
+
+   if (!progress)
+      return false;
+
+   nir_metadata_require(impl, nir_metadata_dominance);
+
+   insert_phi_nodes(&state);
+   rename_variables_block(impl->start_block, &state);
+
+   nir_metadata_preserve(impl, nir_metadata_block_index |
+                               nir_metadata_dominance);
+
+   ralloc_free(state.dead_ctx);
+
+   return progress;
+}
+
+void
+nir_lower_vars_to_ssa(nir_shader *shader)
+{
+   nir_foreach_overload(shader, overload) {
+      if (overload->impl)
+         nir_lower_vars_to_ssa_impl(overload->impl);
+   }
+}
diff --git a/src/mesa/drivers/dri/i965/brw_fs_nir.cpp b/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
index a520a58..cb6c3c6 100644
--- a/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
+++ b/src/mesa/drivers/dri/i965/brw_fs_nir.cpp
@@ -43,7 +43,7 @@ fs_visitor::emit_nir_code()
    bool progress;
    do {
       progress = false;
-      nir_lower_variables(nir);
+      nir_lower_vars_to_ssa(nir);
       nir_validate_shader(nir);
       progress |= nir_copy_prop(nir);
       nir_validate_shader(nir);
-- 
2.2.1



More information about the mesa-dev mailing list