[Mesa-dev] [PATCH v2 22/25] nir/i965: use two slots from inputs_read for dvec3/dvec4 vertex input attributes

Jason Ekstrand jason at jlekstrand.net
Thu Jan 5 20:34:40 UTC 2017


On Thu, Jan 5, 2017 at 6:56 AM, Juan A. Suarez Romero <jasuarez at igalia.com>
wrote:

> On Thu, 2017-01-05 at 06:41 -0800, Jason Ekstrand wrote:
>
> On Jan 5, 2017 3:11 AM, "Juan A. Suarez Romero" <jasuarez at igalia.com>
> wrote:
>
> On Wed, 2017-01-04 at 07:06 -0800, Jason Ekstrand wrote:
>
> On Jan 4, 2017 5:46 AM, "Juan A. Suarez Romero" <jasuarez at igalia.com>
> wrote:
>
> On Tue, 2017-01-03 at 14:41 -0800, Jason Ekstrand wrote:
>
> I made a few pretty trivial comments.  With those addressed,
>
> Reviewed-by: Jason Ekstrand <jason at jlekstrand.net>
>
> On Dec 16, 2016 8:55 AM, "Juan A. Suarez Romero" <jasuarez at igalia.com>
> wrote:
>
> So far, input_reads was a bitmap tracking which vertex input locations
> were being used.
>
> In OpenGL, an attribute bigger than a vec4 (like a dvec3 or dvec4)
> consumes just one location, any other small attribute. So we mark the
> proper bit in inputs_read, and also the same bit in double_inputs_read
> if the attribute is a dvec3/dvec4.
>
> But in Vulkan, this is slightly different: a dvec3/dvec4 attribute
> consumes two locations, not just one. And hence two bits would be marked
> in inputs_read for the same vertex input attribute.
>
> To avoid handling two different situations in NIR, we just choose the
> latest one: in OpenGL, when creating NIR from GLSL/IR, any dvec3/dvec4
> vertex input attribute is marked with two bits in the inputs_read bitmap
> (and also in the double_inputs_read), and following attributes are
> adjusted accordingly.
>
> As example, if in our GLSL/IR shader we have three attributes:
>
> layout(location = 0) vec3  attr0;
> layout(location = 1) dvec4 attr1;
> layout(location = 2) dvec3 attr2;
>
> then in our NIR shader we put attr0 in location 0, attr1 in locations 1
> and 2, and attr2 in location 3.
>
>
> attr2 goes in locations 3 *and* 4, correct?
>
> Checking carefully, basically we are using slots rather than locations
> in NIR.
>
> When emitting the vertices, we do a inverse map to know the
> corresponding location for each slot.
>
> v2 (Jason):
> - use two slots from inputs_read for dvec3/dvec4 NIR from GLSL/IR.
> ---
>  src/compiler/glsl/glsl_to_nir.cpp            | 28 +++++++++++++
>  src/compiler/nir/nir_gather_info.c           | 48 ++++++++++-----------
>  src/intel/vulkan/genX_pipeline.c             | 63
> +++++++++++++++++-----------
>  src/mesa/drivers/dri/i965/brw_draw_upload.c  | 11 +++--
>  src/mesa/drivers/dri/i965/brw_fs.cpp         | 13 ------
>  src/mesa/drivers/dri/i965/brw_fs_visitor.cpp |  3 +-
>  src/mesa/drivers/dri/i965/brw_nir.c          |  6 +--
>  src/mesa/drivers/dri/i965/brw_nir.h          |  1 -
>  src/mesa/drivers/dri/i965/brw_vec4.cpp       | 11 +++--
>  9 files changed, 106 insertions(+), 78 deletions(-)
>
> diff --git a/src/compiler/glsl/glsl_to_nir.cpp
> b/src/compiler/glsl/glsl_to_nir.cpp
> index 4debc37..0814dad 100644
> --- a/src/compiler/glsl/glsl_to_nir.cpp
> +++ b/src/compiler/glsl/glsl_to_nir.cpp
> @@ -129,6 +129,19 @@ private:
>
>  } /* end of anonymous namespace */
>
> +static void
> +nir_remap_attributes(nir_shader *shader)
> +{
> +   nir_foreach_variable(var, &shader->inputs) {
> +      var->data.location += _mesa_bitcount_64(shader->info->double_inputs_read
> &
> +
> BITFIELD64_MASK(var->data.location));
> +   }
> +
> +   /* Once the remap is done, reset double_inputs_read, so later it will
> have
> +    * which location/slots are doubles */
> +   shader->info->double_inputs_read = 0;
> +}
> +
>  nir_shader *
>  glsl_to_nir(const struct gl_shader_program *shader_prog,
>              gl_shader_stage stage,
> @@ -146,6 +159,13 @@ glsl_to_nir(const struct gl_shader_program
> *shader_prog,
>
>     nir_lower_constant_initializers(shader, (nir_variable_mode)~0);
>
> +   /* Remap the locations to slots so those requiring two slots will
> occupy
> +    * two locations. For instance, if we have in the IR code a dvec3
> attr0 in
> +    * location 0 and vec4 attr1 in location 1, in NIR attr0 will use
> +    * locations/slots 0 and 1, and attr1 will use location/slot 2 */
> +   if (shader->stage == MESA_SHADER_VERTEX)
> +      nir_remap_attributes(shader);
> +
>     shader->info->name = ralloc_asprintf(shader, "GLSL%d",
> shader_prog->Name);
>     if (shader_prog->Label)
>        shader->info->label = ralloc_strdup(shader, shader_prog->Label);
> @@ -315,6 +335,14 @@ nir_visitor::visit(ir_variable *ir)
>        } else {
>           var->data.mode = nir_var_shader_in;
>        }
> +
> +      /* Mark all the locations that require two slots */
> +      if (glsl_type_is_dual_slot(glsl_without_array(var->type))) {
> +         for (uint i = 0; i < glsl_count_attribute_slots(var->type,
> true); i++) {
> +            uint64_t bitfield = BITFIELD64_BIT(var->data.location + i);
> +            shader->info->double_inputs_read |= bitfield;
> +         }
> +      }
>        break;
>
>     case ir_var_shader_out:
> diff --git a/src/compiler/nir/nir_gather_info.c
> b/src/compiler/nir/nir_gather_info.c
> index 07c9949..35a1ce4 100644
> --- a/src/compiler/nir/nir_gather_info.c
> +++ b/src/compiler/nir/nir_gather_info.c
> @@ -53,11 +53,6 @@ set_io_mask(nir_shader *shader, nir_variable *var, int
> offset, int len)
>           else
>              shader->info->inputs_read |= bitfield;
>
> -         /* double inputs read is only for vertex inputs */
> -         if (shader->stage == MESA_SHADER_VERTEX &&
> -             glsl_type_is_dual_slot(glsl_without_array(var->type)))
> -            shader->info->double_inputs_read |= bitfield;
> -
>           if (shader->stage == MESA_SHADER_FRAGMENT) {
>              shader->info->fs.uses_sample_qualifier |= var->data.sample;
>           }
> @@ -83,26 +78,21 @@ static void
>  mark_whole_variable(nir_shader *shader, nir_variable *var)
>  {
>     const struct glsl_type *type = var->type;
> -   bool is_vertex_input = false;
>
>     if (nir_is_per_vertex_io(var, shader->stage)) {
>        assert(glsl_type_is_array(type));
>        type = glsl_get_array_element(type);
>     }
>
> -   if (shader->stage == MESA_SHADER_VERTEX &&
> -       var->data.mode == nir_var_shader_in)
> -      is_vertex_input = true;
> -
>     const unsigned slots =
>        var->data.compact ? DIV_ROUND_UP(glsl_get_length(type), 4)
> -                        : glsl_count_attribute_slots(type,
> is_vertex_input);
> +                        : glsl_count_attribute_slots(type, false);
>
>     set_io_mask(shader, var, 0, slots);
>  }
>
>  static unsigned
> -get_io_offset(nir_deref_var *deref, bool is_vertex_input)
> +get_io_offset(nir_deref_var *deref)
>  {
>     unsigned offset = 0;
>
> @@ -117,7 +107,7 @@ get_io_offset(nir_deref_var *deref, bool
> is_vertex_input)
>              return -1;
>           }
>
> -         offset += glsl_count_attribute_slots(tail->type,
> is_vertex_input) *
> +         offset += glsl_count_attribute_slots(tail->type, false) *
>              deref_array->base_offset;
>        }
>        /* TODO: we can get the offset for structs here see nir_lower_io()
> */
> @@ -163,12 +153,7 @@ try_mask_partial_io(nir_shader *shader, nir_deref_var
> *deref)
>        return false;
>     }
>
> -   bool is_vertex_input = false;
> -   if (shader->stage == MESA_SHADER_VERTEX &&
> -       var->data.mode == nir_var_shader_in)
> -      is_vertex_input = true;
> -
> -   unsigned offset = get_io_offset(deref, is_vertex_input);
> +   unsigned offset = get_io_offset(deref);
>     if (offset == -1)
>        return false;
>
> @@ -184,8 +169,7 @@ try_mask_partial_io(nir_shader *shader, nir_deref_var
> *deref)
>     }
>
>     /* double element width for double types that takes two slots */
> -   if (!is_vertex_input &&
> -       glsl_type_is_dual_slot(glsl_without_array(type))) {
> +   if (glsl_type_is_dual_slot(glsl_without_array(type))) {
>        elem_width *= 2;
>     }
>
> @@ -220,13 +204,27 @@ gather_intrinsic_info(nir_intrinsic_instr *instr,
> nir_shader *shader)
>     case nir_intrinsic_interp_var_at_sample:
>     case nir_intrinsic_interp_var_at_offset:
>     case nir_intrinsic_load_var:
> -   case nir_intrinsic_store_var:
> -      if (instr->variables[0]->var->data.mode == nir_var_shader_in ||
> -          instr->variables[0]->var->data.mode == nir_var_shader_out) {
> +   case nir_intrinsic_store_var: {
> +      nir_variable *var = instr->variables[0]->var;
> +
> +      if (var->data.mode == nir_var_shader_in ||
> +          var->data.mode == nir_var_shader_out) {
>           if (!try_mask_partial_io(shader, instr->variables[0]))
> -            mark_whole_variable(shader, instr->variables[0]->var);
> +            mark_whole_variable(shader, var);
> +
> +         /* We need to track which input_reads bits correspond to a
> +          * dvec3/dvec4 input attribute */
> +         if (shader->stage == MESA_SHADER_VERTEX &&
> +             var->data.mode == nir_var_shader_in &&
> +             glsl_type_is_dual_slot(glsl_without_array(var->type))) {
> +            for (uint i = 0; i < glsl_count_attribute_slots(var->type,
> false); i++) {
> +               int idx = var->data.location + i;
> +               shader->info->double_inputs_read |= BITFIELD64_BIT(idx);
> +            }
> +         }
>        }
>        break;
> +   }
>
>     case nir_intrinsic_load_draw_id:
>     case nir_intrinsic_load_front_face:
> diff --git a/src/intel/vulkan/genX_pipeline.c
> b/src/intel/vulkan/genX_pipeline.c
> index 845d020..7b94959 100644
> --- a/src/intel/vulkan/genX_pipeline.c
> +++ b/src/intel/vulkan/genX_pipeline.c
> @@ -33,26 +33,33 @@
>  static uint32_t
>  vertex_element_comp_control(enum isl_format format, unsigned comp)
>  {
> -   uint8_t bits;
>     switch (comp) {
> -   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
> -   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
> -   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
> -   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
> -   default: unreachable("Invalid component");
> -   }
> -
> -   if (bits) {
> -      return VFCOMP_STORE_SRC;
> -   } else if (comp < 3) {
> -      return VFCOMP_STORE_0;
> -   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
> -            isl_format_layouts[format].channels.r.type == ISL_SINT) {
> -      assert(comp == 3);
> -      return VFCOMP_STORE_1_INT;
> -   } else {
> -      assert(comp == 3);
> -      return VFCOMP_STORE_1_FP;
> +   case 0:
> +      return isl_format_layouts[format].channels.r.bits ?
> +         VFCOMP_STORE_SRC : VFCOMP_STORE_0;
> +   case 1:
> +      return isl_format_layouts[format].channels.g.bits ?
> +         VFCOMP_STORE_SRC : VFCOMP_STORE_0;
> +   case 2:
> +      return isl_format_layouts[format].channels.b.bits ?
> +         VFCOMP_STORE_SRC : ((isl_format_layouts[format].channels.r.type
> == ISL_RAW) ?
> +                             VFCOMP_NOSTORE : VFCOMP_STORE_0);
>
>
> Given all the line wrapping, I think it would be clearer to just have an
> if ladder here
>
> +   case 3:
> +      if (isl_format_layouts[format].channels.a.bits)
> +         return VFCOMP_STORE_SRC;
> +      else
>
>
> Please use braces when one side of the if/else is multiple lines.
>
> +         switch (isl_format_layouts[format].channels.r.type) {
> +         case ISL_RAW:
> +            return isl_format_layouts[format].channels.b.bits ?
> +               VFCOMP_STORE_0 : VFCOMP_NOSTORE;
>
>
> This seems a bit odd.  Mind explaining what's going on here?
>
>
> Yes. When emitting 64-bit components, we either write 128 or 256 bits,
> using VFCOMP_STORE_0 to pad output properly. We write 256 bits if we need
> to emit Blue and/or Alpha components.
>
> If we only need to write 128bits then we use VFCOMP_NOSTORE for the 3rd
> and 4th components.
>
> In above code, we already know we are not emitting Alpha (the first
> condition in "case 3" is false). If we neither need to emit Blue component,
> then we only need to write 128 bits, so we return NOSTORE.
>
> But if Blue is required, then we need to write 256bits, so we return
> VFCOMP_STORE_0 to pad the output.
>
>
> Maybe this would be clearer:  leave it structured the way it was with the
> "bits" temporary and add a new case to the if ladder right after the first
> one that is
>
> } else if (comp >= 2 && !isl_format_layouts[format].channels.b.bits &&
>           isl_format_layouts[format].channels.r.type == ISL_RAW) {
>    /* comment about writing 128-bit chunks */
>    return VFCOMP_NOSTORE;
>
>
> Sounds good for me. This also requires to change the next branch to
>
> } else if(comp < 3 || (comp == 3 &&
> isl_format_layouts[format].channels.r.type == ISL_RAW)) {
> return VFCOMP_STORE_0;
>
>
> Otherwise, it would return the wrong value for 4th component when format
> is R64G64B64.
>
>
> Why are we defaulting the 4th component to zero for 64-bit inputs?  I
> guess the format wouldn't register as integer or float so neither of the
> other two makes sense.  What does the spec day the 4th component should be
> defaulted to?  I'm a bit concerned we may find ourselves needing to inspect
> the shader to get this 100% right. :-(
>
>
> Because in the example above, we need do not have a value for the 4th
> component, but we wrote 3*64 = 192 bits. And as we need to write 256, we
> pad the remaining 64 bits with 0, as required by spec.
>
> From Broadwell spec, command reference structures, page 586:
>
> "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
> 64-bit components are stored
> in the URB without any conversion. In this case, vertex elements must be
> written as 128 or 256 bits, with
> VFCOMP_STORE_0 being used to pad the output as required. E.g., if
> R64_PASSTHRU is used to copy a
> 64-bit Red component into the URB, Component 1 must be specified as
> VFCOMP_STORE_0 (with
> Components 2,3 set to VFCOMP_NOSTORE) in order to output a 128-bit vertex
> element, or Components
> 1-3 must be specified as VFCOMP_STORE_0 in order to output a 256-bit
> vertex element. Likewise, use of
> R64G64B64_PASSTHRU requires Component 3 to be specified as VFCOMP_STORE_0
> in order to output a
> 256-bit vertex element."
>

Ok, please add a spec citation. to explain why we're not using 1 for the
4th component of passthrough formats.  With that, I think it should be
good-to-go.  I didn't realize we were working with a hardware restriction.


>
>
> Note this is not specific for the 4th component. For instance, if the
> input element is a 64-bit single-component value (R64), we would be writing
> 128bits: the first component is the entire Red value (VFCOMP_STORE_SRC),
> which would be
> using the first 64bits; and for the second component we would use 0
> (VCOMP_STORE_0), to pad the remaining 64bits. In this case, as we do not
> have neither 3rd nor 4th components, we would
> use VFCOMP_NOSTORE, so only 128bits are written.
>
>
> I also tried to test what happens when using other value rathen than 0,
> and it doesn't work.
>
>
> J.A.
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.freedesktop.org/archives/mesa-dev/attachments/20170105/e206689c/attachment-0001.html>


More information about the mesa-dev mailing list